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ABSTRACT

Weight pruning has been introduced as an efficient model compression technique.
Even though pruning removes significant amount of weights in a network, mem-
ory requirement reduction was limited since conventional sparse matrix formats
require significant amount of memory to store index-related information. More-
over, computations associated with such sparse matrix formats are slow because
sequential sparse matrix decoding process does not utilize highly parallel com-
puting systems efficiently. As an attempt to compress index information while
keeping the decoding process parallelizable, Viterbi-based pruning was suggested.
Decoding non-zero weights, however, is still sequential in Viterbi-based pruning.
In this paper, we propose a new sparse matrix format in order to enable a highly
parallel decoding process of the entire sparse matrix. The proposed sparse matrix
is constructed by combining pruning and weight quantization. For the latest RNN
models on PTB and WikiText-2 corpus, LSTM parameter storage requirement is
compressed 19× using the proposed sparse matrix format compared to the baseline
model. Compressed weight and indices can be reconstructed into a dense matrix
fast using Viterbi encoders. Simulation results show that the proposed scheme can
feed parameters to processing elements 20 % to 106 % faster than the case where
the dense matrix values directly come from DRAM.

1 INTRODUCTION

Deep neural networks (DNNs) require significant amounts of memory and computation as the number
of training data and the complexity of task increases (Bengio & Lecun, 2007). To reduce the memory
burden, pruning and quantization have been actively studied. Pruning removes redundant connections
of DNNs without accuracy degradation (Han et al., 2015). The pruned results are usually stored in a
sparse matrix format such as compressed sparse row (CSR) format or compressed sparse column
(CSC) format, which consists of non-zero values and indices that represent the location of non-zeros.
In the sparse matrix formats, the memory requirement for the indices is not negligible.

Viterbi-based pruning (Lee et al., 2018) significantly reduces the memory footprint of sparse matrix
format by compressing the indices of sparse matrices using the Viterbi algorithm (Forney, 1973).
Although Viterbi-based pruning compresses the index component considerably, weight compression
can be further improved in two directions. First, the non-zero values in the sparse matrix can be
compressed with quantization. Second, sparse-to-dense matrix conversion in Viterbi-based pruning is
relatively slow because assigning non-zero values to the corresponding indices requires sequential
processes while indices can be reconstructed in parallel using a Viterbi Decompressor (VD).

Various quantization techniques can be applied to compress the non-zero values, but they still cannot
reconstruct the dense weight matrix quickly because it takes time to locate non-zero values to the
corresponding locations in the dense matrix. These open questions motivate us to find a non-zero
value compression method, which also allows parallel sparse-to-dense matrix construction. The
contribution of this paper is as follows.
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(a) To reduce the memory footprint of neural networks further, we propose to combine the Viterbi-
based pruning (Lee et al., 2018) with a novel weight-encoding scheme, which also uses the
Viterbi-based approach to encode the quantized non-zero values.

(b) We suggest two main properties of the weight matrix that increase the probability of finding
"good" Viterbi encoded weights. First, the weight matrix with equal composition ratio of ‘0’ and
‘1’ for each bit is desired. Second, using the pruned parameters as "Don’t Care" terms increases
the probability of finding desired Viterbi weight encoding.

(c) We demonstrate that the proposed method can be applied to Recurrent Neural Networks (RNNs)
and Convolutional Neural Networks (CNNs) with various sizes and depths.

(d) We show that using the same Viterbi-based approach to compress both indices and non-zero
values allows us to build a highly parallel sparse-to-dense reconstruction architecture. Using a
custom cycle-simulator, we demonstrate that the reconstruction can be done fast.

2 RELATED WORKS

DNNs have been growing bigger and deeper to solve complex nonlinear tasks. However, Denil
et al. (2013) showed that most of the parameters in neural networks are redundant. To reduce the
redundancy and minimize memory and computation overhead, several weight reduction methods have
been suggested. Recently, magnitude-based pruning methods became popular due to its computational
efficiency (Han et al., 2015). Magnitude-based pruning methods remove weights according to weight
magnitude only and retrain the pruned network to recover from accuracy loss. The method is scalable
to large and deep neural networks because of its low computation overhead. Han et al. (2015) showed
9×-13× pruning rate on AlexNet and VGG-16 networks without accuracy loss on ImageNet dataset.
Although the compression rate was high, reduction of actual memory requirement was not as high
as the compression rate because conventional sparse matrix formats, such as CSR and CSC, must
use large portion of memory to store the indices of surviving weights. Lee et al. (2018) succeeded in
reducing the amount of index-related information using a Viterbi-algorithm based pruning method
and corresponding custom sparse matrix format. Lee et al. (2018) demonstrated 38.1% memory
reduction compared to Han et al. (2015) with no accuracy loss. The memory reduction was limited,
however, due to uncompressed non-zero values.

Several weight quantization methods were also suggested to compress the parameters of neural
networks. Courbariaux et al. (2016); Li et al. (2016); Rastegari et al. (2016) demonstrated that
reducing the weights to binary or ternary was possible, but the accuracy loss of the binary neural
networks was significant. Zhou et al. (2016) reduced the bit resolution of weights to binary, activations
to 2 bits and gradients to 6 bits with 9.8 % top-1 accuracy loss on AlexNet for ImageNet task. Guo
et al. (2017) demonstrated a binary-weight AlexNet with 2.0% top-1 accuracy loss, achieving ∼10×
compression rate. Xu et al. (2018) showed that RNNs can also be quantized to reduce the memory
footprint. By quantizing the weight values to 3 bits with proposed method, the memory footprint
of RNN models were reduced ∼10.5× with negligible performance degradation. Han et al. (2016b)
suggested to combine pruning with weight quantization to achieve higher compression rate. The
results showed 35× increase in compression rate on AlexNet. However, the reduction was limited
since the memory requirement of index-related information was only slightly improved with Huffman
coding.

Although several magnitude-based pruning methods showed high compression rate, computation time
did not improve much, because it takes time to decode the sparse matrix formats that describe irregular
weight indices of pruned networks. Han et al. (2016a; 2017) suggested to use dedicated hardware,
custom sparse matrix formats, and dedicated pruning methods to accelerate the computation even
after pruning. Hanson & Pratt (1989); Yu et al. (2017) tried to accelerate the computation by limiting
the irregularity of weight indices. By pruning neurons or feature maps, pruned weight matrices could
maintain the dense format. These approaches successfully reduced the number of computation of
neural networks, but the compression rate was limited due to additional pruning conditions. Although
Lee et al. (2018) could use the Viterbi encoder to construct the index matrix fast, the process of pairing
the non-zero weight values with the corresponding indices is still sequential, and thus relatively slow.
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3 WEIGHT PRUNING AND QUANTIZATION USING DOUBLE-VITERBI
APPROACH

Figure 1 illustrates the flowchart of the proposed compression method. Viterbi-based pruning (Lee
et al., 2018) is applied first, and the pruned matrix is quantized using alternating multi-bit quantization
method (Xu et al., 2018). Quantized binary code matrices are then encoded using the Viterbi-based
approach, which is similar to the one used in pruning.

Figure 1: Flowchart of Double Viterbi compression. W is the weight of an original network and WP ,
WPQ, and ŴPQ represent the compressed weights after each process. M ∈ {0, 1} is an index matrix
which indicates whether each weight is pruned or not, and � means element-wise multiplication.
{αi}ki=1 ∈ R and {bi}ki=1 ∈ {−1,+1} are constants and binary weights generated by quantization.
{b̂i}ki=1 ∈ {−1,+1} is binary weights encoded by the Viterbi algorithm.

3.1 VITERBI-BASED PRUNING FOR SPARSE MATRIX INDEX COMPRESSION

As the first step of the proposed weight encoding scheme, we compress the indices of the non-zero
values in sparse weight matrix using the Viterbi-based pruning (Figure 1) (Lee et al., 2018). In this
scheme, Viterbi algorithm is used to select a pruned index matrix which minimizes the accuracy
degradation among many candidates which a Viterbi decompressor can generate. While the memory
footprint of the index portion is significantly reduced by the Viterbi-based pruning, the remaining
non-zero values after pruning still require non-negligible memory when high-precision bits are
used. Hence, quantization of the non-zero values is required for further reduction of the memory
requirement. Appendix A.1 explains the Viterbi-based pruning in detail.

3.2 MULTI-BIT QUANTIZATION AFTER VITERBI-BASED PRUNING

After Viterbi-based pruning is finished, the alternating multi-bit quantization (Xu et al., 2018) is
applied to the sparse matrix (Figure 1). As suggested in Xu et al. (2018), real-valued non-zero weights
are quantized into multiple binary codes {bi}ki=1 ∈ {−1,+1}. Detailed algorithm is explained in
Appendix A.2.

In addition to the high compression capabilities, another important reason we chose the alternating
quantization is that the output distribution of the method is well suited to the Viterbi algorithm, which
is used to encode the quantized non-zero values. Detailed explanation is given in Section 3.3.

3.3 ENCODING BINARY WEIGHT CODES USING THE VITERBI ALGORITHM

A sparse matrix that is generated by Viterbi-based pruning and quantization can be represented
using the Viterbi Compression Matrix (VCM) format (Lee et al., 2018). A sparse matrix stored
in VCM format requires much smaller amount of memory than the original dense weight matrix
does. However, it is difficult to parallelize the process of reconstructing sparse matrix from the
representation in VCM format, because assigning each non-zero value to its corresponding index
requires a sequential process of counting ones in indices generated by the Viterbi encoder. To address
this issue, we encode binary weight codes {bi}ki=1 as {b̂i}ki=1 in addition to the indices, based on
the same Viterbi algorithm (Forney, 1973). By using similar VD structures (Figure 2) to generate
both {b̂i}ki=1 and indices, we can generate both {b̂i}ki=1 and corresponding indices at the same time;
thereby parallel sparse-to-dense matrix conversion becomes possible as shown in Figure 3.

While using VD structures to generate binary weight codes allows parallel sparse-to-dense matrix
conversion, it requires the quantization method to satisfy a specific condition to minimize accuracy
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Figure 2: Structure of Viterbi decompressor (VD) which decodes a binary code compressed to 1/4
times. "D" indicates a D Flip-Flop which delays an input data for a clock cycle in the design and

⊕
indicates an XOR gate.
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Figure 3: Proposed process of sparse-to-dense matrix conversion for the Viterbi-based compressed
matrix. This figure shows an example such that weight values and weight index values are generated
by independent Viterbi decompressors simultaneously.

loss after Viterbi-based encoding. It is known that the VD structure acts as a random number generator
(Lee & Roy, 2012), which produces ‘0’ and ‘1’ with 50 % probability each. Thus, generated binary
weight codes will be closer to the target binary weight codes if the target binary weight code matrix
also consists of equal number of ‘0’ and ‘1’. Interestingly, the composition ratio of ‘-1’ and ‘+1’ in
each bi, which was generated by the alternating quantization method, is 50 % each.

It is because the weights in DNNs are generally initialized symmetrically with respect to ‘0’ (Glorot &
Bengio, 2010; He et al., 2015) and the distribution is maintained even after training (Lin et al., 2016).
The preferable output distribution of the alternating quantization implies that the probability of finding
an output matrix b̂i close to bi with the Viterbi algorithm is high. For comparison, we measured the
accuracy differences before and after Viterbi encoding for several quantization methods such as linear
quantization (Lin et al., 2016), logarithmic quantization (Miyashita et al., 2016), and alternating
quantization (Xu et al., 2018). When the Viterbi encoding is applied to the weight quantized by
alternating quantization (Xu et al., 2018), the validation accuracy degrades by only 2 %. However,
accuracy degrades by 71 % when the Viterbi encoding is applied to the weight quantized using other
methods (Lin et al., 2016; Miyashita et al., 2016). The accuracy difference mainly comes from the
uneven weight distribution. Because weights of neural networks usually have normal distribution, the
composition ratio of ’0’ and ’1’ is not equal when the linear or logarithmic quantization is applied to
the weights unlike alternating quantization.

Another important idea to increase the probability of finding "good" Viterbi encoded weight is to
consider the pruned parameters in bi as "Don’t Care" terms (Figure 4). The "Don’t Care" elements
can have any values when finding b̂i, because they will be masked by the zero values in the index
matrix generated by the Viterbi pruning.

Next, let us describe how we use the Viterbi algorithm for weight encoding. We select the b̂i that
best matches with bi among all possible b̂i cases that the VD can generate, as follows. We first
construct a trellis diagram as shown in Figure 5. The trellis diagram is a state diagram represented
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Figure 4: (a) Target binary weight code bi and (b) corresponding b̂i generated from VD. x indicates
a pruned "Don’t care" term, and elements with underline indicate surviving weights. ‘0’ in (b)
corresponds to ‘-1’ in (a).

with time index T . A state number is represented with Flip-Flop (FF) values, where the rightmost FF
value is the most significant bit (MSB).1 Each transition with a 1-bit input from a state generates the
corresponding multiple output bits.

A cost function for each transition using path and branch metrics is set and computed in the next step.
The branch metric λi,jt is the cost of traveling along a transition from a state i to the successor state j
at the time index t. The path metric is expressed as

Γj
t+1 = max

(
Γi1
t + λi1,jt ,Γi2

t + λi2,jt

)
, (1)

where i1 and i2 are two predecessor states of j. Equation 1 denotes that one of the two possible
transitions is selected to maximize the accumulated value of branch metrics.2 The branch metric is
defined as

βi,j,m
t =

{
1, if bi,j,mt = 2oi,j,mt − 1

0, otherwise
, λi,jt =

No∑
m=1

βi,j,m
t , (2)

where bi,j,mt is the value of binary codes according to the mth VD output at time index t, oi,j,mt is the
value of the mth VD output at time index t, and No is the number of outputs generated by the VD
at each time step. {−1,+1} in the binary codes corresponds to {0, 1} in the VD output in equation
2. Equation 2 maximizes the number of VD outputs that exactly match with corresponding binary
codes while ignoring the pruned parameters (Figure 4). When the last time index is reached, the
state with the maximum path metric is selected. Previous states connected by surviving branches are
traced while corresponding oi,j,mt of each branch is recorded as b̂i,j,m

t . Each binary weight code bi

is encoded as b̂i with a compression ratio of 1/No using this scheme.
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Figure 5: Trellis diagram of the VD in Figure 2. Each circle indicates a state. A circle which is the
source point of arrows indicates a current state and a circuit which is the sink point of arrows indicates
a next state. The arrow indicates a transition from the current state to the next state. Depending on
the input to VD, each current state can be switched to one of the two potential next states in the next
clock. The number in a circle indicates the index for the state.

1If the VD has N FFs, then the number of states is 2N .
2max function is used instead of min function because the metric value is considered as a degree of ‘reward’

rather than ‘cost’ (Lee et al., 2018).

5



Published as a conference paper at ICLR 2019

3.4 RETRAINING

To maintain the accuracy, the number of incorrect bits in the encoded binary code b̂i compared
to the original binary code bi needs to be minimized. Thus, we retrain the network with ŴPQ =(∑k

i=1 αib̂i

)
�M (M is the index matrix of non-zeros in W), apply the alternating quantization,

and then perform the Viterbi encoding repeatedly (Figure 1). By repeating the retraining, quantization,
and Viterbi encoding, the number of incorrect bits between b̂i and bi can be reduced because the
parameters in the network are fine-tuned close to parameters in ŴPQ. During the retraining period,
we apply the straight-through estimate (Rastegari et al., 2016), i.e. ∂C

∂ŴPQ
= ∂C

∂W as adopted in Xu

et al. (2018). After the last Viterbi encoding is finished, small amount of components in b̂i can be
still different from the corresponding values in bi. To maintain the accuracy, location data for the
incorrect components are stored separately and are used to flip the corresponding VD encoded bits
during on-chip weight reconstruction period. In our experiments, the memory requirement for the
correction data was negligible. After the retraining is finished, we can obtain a compressed parameter
in Viterbi Weight Matrix (VWM) format, which includes {αi}ki=1, compressed input to generate
{b̂i}ki=1, compressed index in VCM format, and indices where {b̂i}ki=1 6= {bi}ki=1. Note that entire
training process used the training dataset and the validation dataset only to decide the best compressed
weight data. The accuracy measurement for the test dataset was done only after training is finished so
that any hyperparameter was not tuned on the test dataset. All the experiments in this paper followed
the above training principle.

4 EXPERIMENTAL RESULTS

4.1 RECURRENT NEURAL NETWORKS (RNN) FOR LANGUAGE MODELING

We first conduct experiments on Penn Tree Bank (PTB) corpus (Marcus et al., 1993). We use
the standard split version of PTB corpus with 10K vocabulary (Mikolov, 2012), and evaluate the
performance using perplexity per word (PPW). We pretrain the RNN model3 which contains 1 layer
of LSTM with 600 memory units, then prune the parameters of LSTMs with 80 % pruning rate using
the Viterbi-based pruning technique4 and retrain the model. Then, we quantize the parameters of
LSTMs using alternating quantization technique, encode the binary weight codes by using the Viterbi
algorithm, and retrain the model. We repeat the quantization, binary code encoding, and retraining
process 5 times.

Number of quantization bits: We quantize the LSTM model with different numbers of quantization
bits k with the fixed No = 5. As k increases, PPW is improved, but the memory requirement for
parameters is also increased (Table 1). Note that k = 3 is the minimum number of bits that minimizes
the model size without PPW degradation. Compared to Lee et al. (2018), further quantization and
Viterbi-based compression reduce the parameter size by 78 % to 90 % (Table 1).

Number of VD outputs: We compress the binary weight codes with different number of VD outputs
No in case of k = 3. As No increases, PPW degrades while the memory requirement for parameters
is increased (Table 1). Large No implies that the binary weight codes are compressed with high
compression ratio 1/No, but the similarity between b̂i and bi decreases. The optimal No is 100/(100-
pruning rate (%)) , where the average number of survived parameters per No serial parameters is 1
statistically, which results in no model performance degradation.

Effectiveness of "Don’t Care": To verify the effectiveness of using the "Don’t Care" elements, we
apply our proposed method on the original network and pruned one. While the pruned network
maintains the original PPW after applying our proposed compression method, applying our method
to the dense network degrades PPW to 102.6. This is because the ratio of incorrect bits between b̂i

and bi decreases from 28.3 % to 1.7 % when we use the sparse bi. Therefore, combination of the
Viterbi pruning and alternating quantization increases the probability of finding b̂i close to bi using
the VD for weight encoding, which results in no PPW degradation.

3https://github.com/tensorflow/models/blob/master/tutorials/rnn/ptb/ptb_word_lm.py
4We use the VD which consists of a 50-bit VD output and a 5-bit comparator input. 1 skip state is applied to

the Viterbi algorithm (Lee et al., 2018).
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Table 1: Compression result of LSTM model on the PTB corpus with different k and No.

k No PPW Parameter size Compression rate

2 5 84.9 234.4 KB 2.1 % (48×)
3 5 84.6 337.5 KB 3.0 % (33×)
4 5 84.1 502.2 KB 4.5 % (22×)

3 2 84.6 611.2 KB 5.4 % (18×)
3 5 84.6 337.5 KB 3.0 % (33×)
3 10 85.3 290.5 KB 2.6 % (39×)

Pruning (Lee et al., 2018) 84.6 2320.3 KB 20.6 % (5×)
Baseline (Uncompressed) 84.6 11250.0 KB

The latest RNN for language modeling: We further test our proposed method on the latest RNN
model (Yang et al., 2018), which shows the best perplexity on both PTB and WikiText-2 (WT2)
corpus. We prune 75 % of the parameters in three LSTMs with the same condition as we prune
the above 1-layer LSTM model, and quantize them to 3 bits (k = 3). Note that we do not apply
fine-tuning and dynamic evaluation (Krause et al., 2017) in this experiment. The compression result
in Table 2 shows that the memory requirements for the models are reduced by 94.7 % with our
VWM format on both PTB and WT2 corpus without PPW degradation. This result implies that
our proposed compression method can be applied regardless of the depth and size of the network.
Detailed experiment settings and compression results are described in Appendix A.3. In addition, we
extend our proposed method to the RNN models for machine translation (Wu et al., 2016), and its
experimental results are presented in Appendix A.4.

Table 2: Compression result of the lastest LSTM models for PTB and WT2 corpus.

Corpus Compression LSTM Parameter Compression Validation Test
Scheme Size Rate PPW PPW

PTB
Baseline (Uncompressed) 62706.3 KB - 58.7 56.3

Lee et al. (2018) 16038.4 KB 25.6 % (4×) 59.4 56.6
VWM (Ours) 3299.5 KB 5.3 % (19×) 58.7 56.2

WT2
Baseline (Uncompressed) 85664.1 KB - 67.0 64.0

Lee et al. (2018) 22067.8 KB 25.8 % (4×) 67.6 64.6
VWM (Ours) 6732.3 KB 5.3 % (19×) 67.5 64.4

4.2 CONVOLUTIONAL NEURAL NETWORKS (CNN) FOR IMAGE CLASSIFICATION

We also apply our proposed method to a CNN, VGG-9 (2×128C3 - 2×256C3 - 2×512C3 - 2×1024FC
- 10SM5) on CIFAR-10 dataset to verify the proposed technique is valid for other types of DNNs. We
randomly select 5 K validation images among 50 K training images in order to observe validation
error during retraining process and measure the test error after retraining. We use k = 3 for all
layers. Optimal No for each layer is chosen based on the pruning rate of the parameters; No = 4
for convolutional layers, No = 25 for the first two fully-connected layers, and No = 5 for the last
fully-connected layer. We also compute the memory requirement for other compression methods.

Experimental results on VGG-9 is found in Table 3. Compared to Han et al. (2016b), the VWM
format generated by the proposed scheme has 39 % smaller memory footprint due to the compressed
indices, smaller number of bits for quantization, and encoded binary weight codes. This experiment
on CIFAR-10 shows that our proposed method can be applied to DNNs with various types and sizes.
Meanwhile, it can be seen that the combination of the Viterbi-pruning (Lee et al. (2018)) with the
alternating quantization (Xu et al. (2018)) requires 10% smaller memory requirement than the VWM

5nCm means a convolution layer where the number of output channel is n with mxm size of kernel. MP2
means a max-pooling layer with 2x2 size of kernel. nFC is a fully-connected layer with n output neurons, and
10SM is a softmax layer with 10 labels.
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format because the VWM format requires additional memory for indices where {b̂i}ki=1 6= {bi}ki=1.
However, additional "Viterbi-based binary code encoding" process for the VWM format allows
parallel sparse-to-dense matrix conversion, which increases the parameter feeding rate up to 40.5
% compared to Lee et al. (2018). In Section 4.3, we analyze the speed of sparse-to-dense matrix
conversion in detail.

Table 3: VGG-9 compression result on CIFAR-10 dataset.

Layer Parameter
Size (KB)

Pruning
Rate (%)

Compression rate (%)

Pruninga) Pruning + Quantization

Han et al.
(2015)

Lee et al.
(2018)

Han et al.
(2016b)

Proposed
Lee et al. (2018)

VWM
+Xu et al. (2018)

Conv1c) 13.5 - - - 25.0 11.2 11.2
Conv2 576.0 74.6 50.9 28.5 10.3 5.5 6.0
Conv3 1152.0 75.2 49.6 27.9 10.1 5.5 6.0
Conv4 2304.0 75.0 50.1 28.2 10.2 5.5 6.0
Conv5 4608.0 74.8 50.0 28.1 10.2 5.5 6.0
Conv6 9216.0 75.4 50.5 28.4 10.3 5.5 6.0

Fc1 32768.0 96.0 8.1 4.7 1.6 1.0 1.1
Fc2 4096.0 95.9 8.3 4.7 1.7 1.0 1.1
Fc3 40.0 79.7 40.8 23.5 8.3 5.0 5.5

Total 54733.5 89.2 21.9 12.2 4.5 2.5 2.7
(5×) (8×) (22×) (40×) (36×)

Validation error 11.3 % 11.4 % 11.2 % 11.2 % 11.4 %(Uncompressed model:11.5 %)

Test error 12.2 % 12.2 % 12.2 % 12.2 % 12.4 %(Uncompressed model:12.2 %)

a) Non-zero values are represented as 32-bit floating point numbers.
b) Convolution filters are quantized to 8-bit, and weights of fully-connected layers and indices of sparse matrices
are quantized to 5-bit, which is the same quantization condition as the condition used in Han et al. (2016b).
c) For the Conv1 layer, pruning is not applied and only the alternating quantization is applied.

4.3 ANALYSIS ON RECONSTRUCTION SPEED

We built a cycle-level simulator for the weight matrix reconstruction process of the proposed format
to show that the sparse matrix-matrix multiplications with the proposed method can be done fast with
parallel reconstruction of dense matrix. In the simulator, baseline structure feeds two dense input
matrices to processing elements (PEs) using raw data fed by DRAM (Figure 6a), while the proposed
structure reconstructs both index masks and binary codes using the highly compressed data fed by
DRAM and sends the reconstructed values to PEs (Figure 6b). Both index masks and binary codes
are reconstructed by several Viterbi encoders in parallel, and bit errors in binary codes are corrected
in a serial manner using the small number of flip-bit related data, which are received from DRAM.
Simulation results show that the feeding rate of the proposed scheme is 20.0-106.4 % higher than the
baseline case and 10.3-40.5 % higher than Lee et al. (2018), depending on the pruning rate (Figure
6c). The gain mainly comes from the high compression rate and parallel reconstruction process of the
proposed method. As shown in Figure 6c, higher sparsity leads to higher feeding rate. Higher sparsity
allows using many VD outputs for the index Nind, and increasing Nind leads to faster reconstruction.
Also, the reconstruction rate of binary codes becomes higher with reduced number of non-zero values
and corresponding bit corrections.
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Figure 6: (a) Simplified diagrams of baseline and (b) Viterbi-based computation architectures. (c) Rate
of parameter feeding into PEs for the proposed scheme compared to those for the baseline structure,
which receives the dense matrix data directly from DRAM, and Lee et al. (2018). We assumed the
number of VD outputs for the index Nind = 3, 4, 5, 6, 10, 10 respectively as the reciprocal of each
sparsity value. We used Nind = 10 for 95 % sparsity since we compressed matrices with over 90
% sparsity with Nind = 10. We also assumed k = 3, and 1 % bit-wise difference between b̂i and
bi during simulation. We also assumed that 16 non-zero parameters can be fed into the PE array in
parallel and DRAM requires 10 cycles to handle a 256 bit READ operation.

5 CONCLUSIONS

We proposed a DNN model compression technique with high compression rate and fast dense matrix
reconstruction process. We adopted the Viterbi-based pruning and alternating multi-bit quantization
technique to reduce the memory requirement for both non-zeros and indices of sparse matrices. Then,
we encoded the quantized binary weight codes using Viterbi algorithm once more. As the non-zero
values and the corresponding indices are generated in parallel by multiple Viterbi encoders, the
sparse-to-dense matrix conversion can be done very fast. We also demonstrated that the proposed
scheme significantly reduces the memory requirements of the parameters for both RNN and CNN.
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A APPENDIX

A.1 PRUNING USING THE VITERBI ALGORITHM

In Viterbi-based pruning scheme, the binary outputs generated by a Viterbi Decompressor (VD) are
used as the index matrix that indicates whether a weight element is pruned (‘0’) or not (‘1’). Suppose
the number of elements in a target weight matrix is q, and the number of outputs generated by a VD
at each time step is Nind, then only 2q/Nind binary matrices can be generated by the VD among all
2q binary matrices. The index matrix which minimizes the accuracy loss should be selected among
binary matrix candidates which VD can generate in this pruning scheme, and the Viterbi algorithm is
used for this purpose.

The overall pruning process is similar to the binary weight encoding process using the Viterbi
algorithm in Section 3.3. First, Trellis diagram (Figure 5) of the VD which is used for pruning is
constructed, and then the cost function is computed by using the path metric and the branch metric.
The same path metric shown in Equation 1 in Section 3.3 is used to select the branch which maximizes
the path metric between two connected branches from the previous states. On the other hand, a
different branch metric λi,jt is used for pruning, which is expressed as:

Di,j,m
t =

(
W i,j,m

t − THp

)
/S1, 0 ≤W i,j,m

t ,THp ≤ 1

βi,j,m
t =

tanh
(
Di,j

t

)
× S2,when survived

− tanh
(
Di,j

t

)
× S2,when pruned

, λi,jt =

R∑
m=1

βi,j,m
t ,

(3)

where W i,j,m
t is the magnitude of a parameter at the mth VD output and time index t, normalized by

the maximum absolute value of all elements in target weight matrix, and THp is the pruning threshold
value determined heuristically. As βi,j,m

t gives additional points (penalties) to the parameters with
large magnitude to survive (be pruned), the possibility to prune small-magnitude parameters is
maximized. S1 and S2 are the scaling factors which is empirically determined. (Lee et al. (2018)
uses 5.0 and 104 each). After computing the cost function through the whole time steps, the state
with the maximum path metric is chosen, and we trace the previous state by selecting the surviving
branch and corresponding indices backward until the first state is reached.

The ideal pruning rate of the Viterbi-based pruning is 50 %, because the VD structures act like
random number generator and the probability to generate ‘0’ or ‘1’ is 50 % each. For various pruning
rates, comparators and comparator threshold value, THc, are used. A NC -bit comparator receives Nc

VD outputs and generates 1-bit result whether the value made by the combination of the received VD
outputs (e.g. {out1, out2, · · · , outNind

} where outi indicates the ith VD output) is greater than THc

or not. For example, suppose a 4-bit comparator is used to the VD in Figure 1 and THc = 3, then the
probability for the comparator to generate ‘1’ is 25%(= (3 + 1)/24) and this percentage is the target
pruning rate. Comparators and THc control the value of pruning rates and the index compression
ratio decreases by 1/Nc times.

It is reported that a low Nind is desired to prune weights of convolutional layers while high Nind can
be used to prune the weights of fully-connected layers because of the trade-off between the index
compression ratio and the accuracy (Lee et al., 2018). Thus, in our paper, we use Nind = 50 and
Nc = 5 to prune weights of LSTMs and fully-connected layers in VGG-6 on CIFAR-10. On the
other hand, we use Nind = 10 and Nc = 5 to prune weights of convolutional layers in VGG-6 on
CIFAR-10.
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A.2 ALTERNATING MULTI-BIT QUANTIZATION ON SPARSE MATRIX

Algorithm 1: Alternating multi-bit quantization for sparse weight
input :Sparse weight w ∈ Rn , the number of quantization bits k,

the number of iterations T
output :{αi,bi}ki=1 , with αi ∈ R, bi ∈ {−1,+1}n
r0 = w, m = sign (|w|)

. Step 1. Initialization
for i← 1 to k do

αi ←
∑
|ri−1|∑

m ; . Average norm-1 of non-zeros

bi ← sign (ri) ;
ri−1 ← w −

∑i
j=1 αjbj ;

end
B← [b1, · · · ,bk] ;

. Step 2. Alternating quantization
if det

(
BTB

)
6= 0 then

for t← 1 to T do

[α1, α2, ..., αk]←
((

BTB
)−1

BTw
)T

;

Construct v in ascending order ;
Update {bi}ki=1 according to v ; . Pruned components in {bi}ki=1 are set to
‘0’
B← [b1, · · · ,bk] ;

end
end
B← [b1 + (¬m) , · · · ,bk + (¬m)] ;
. Pruned components in {bi}ki=1 are set to ‘+1’ because bi ∈ {−1,+1}n.

Algorithm 1 explains the multi-bit quantization process applied to a sparse matrix. Given {αi}ki=1 with
α1 ≥ α2 · · · ≥ αk−1 ≥ αk ≥ 0 and the number of quantization bits k, each non-zero value in a sparse
weight matrix w is quantized to a value v ∈ v = {−

∑k
i=1 αi,−

∑k−1
i−1 αi + αk, · · · ,

∑k−1
i−1 αi −

αk,
∑k

i=1 αi}. Algorithm 1 is a derivative of the alternating multi-bit quantization algorithm (Xu
et al., 2018) with some consideration for sparse matrix. First, {αi}ki=1 is initialized with the average
norm-1 value of non-zeros in w instead of the average norm-1 value of entire elements in a dense
matrix, which was the case in Xu et al. (2018). Also, if the inverse matrix of BTB does not exist due
to high pruning rate, Algorithm 1 does not proceed to the second alternating quantization step. Note
that the model performance was not degraded much without running the second quantization step.
Pruned components are represented with ‘0’ during the quantization. After the quantization, {bi}ki=1
for the pruned components are set to ‘+1’ because bi ∈ {−1,+1}n. It does not matter whether
pruned components are represented as ‘-1’ or ‘+1’, because they will be eventually masked by the
binary index matrix indicating the location of non-zeros.
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A.3 DETAILED COMPRESSION RESULTS OF THE LATEST RNN FOR LANGUAGE MODELING

The RNN model in Yang et al. (2018) is composed of three LSTM layers, and use various learning
techniques such as mixture-of-softmaxes (MoS) to achieve better perplexity. As shown in Table A1
and Table A2, the parameters in the first layer have high sparsity, so we use No = 6. In the remaining
layers, however, we use No = 3 because the parameters are pruned with only about 70 % pruning
rate. We repeat the process of quantization, binary code encoding, and retraining only once.

Table A1: Compression result of the lastest LSTM model for PTB corpus.

Layer LSTM Parameter Pruning Compression rate (%)

Size (KB) Rate (%) Lee et al. (2018) VWM (ours)

LSTM1 18600.0 86.7 13.9 3.7
LSTM2 28800.0 70.1 30.5 5.9
LSTM3 15306.3 70.2 30.4 6.0

Total 62706.3 75.0 25.6 5.3
(4×) (19×)

Validation PPW 58.7 59.4 58.7
Test PPW 56.3 56.6 56.2

Table A2: Compression result of the lastest LSTM model for WT2 corpus.

Layer LSTM Parameter Pruning Compression rate (%)

Size (KB) Rate (%) Lee et al. (2018) VWM (ours)

LSTM1 26054.7 86.1 14.5 3.7
LSTM2 41328.1 69.4 31.3 6.0
LSTM3 18281.3 71.2 29.4 5.9

Total 85664.1 74.9 25.8 5.3
(4×) (19×)

Validation PPW 67.0 67.6 67.5
Test PPW 64.0 64.6 64.4

A.4 RECURRENT NEURAL NETWORKS (RNN) FOR MACHINE TRANSLATION

We also extend our experiments on the RNN models for machine translation (Wu et al., 2016) 6. We
use the model which consists of an encoder, a decoder and an attention layer. 4-layer LSTMs with
1024 units compose each encoder and decoder. A bidirectional LSTM (BiLSTM) is used for the
first layer of the encoder. The weights of LSTM models are pruned with 75 % pruning rate by the
Viterbi-based pruning techinque, then k = 4 is used for quantization. Optimal No values are used
according to the sparsity of each LSTM layer (i.e. 3 ≤ No ≤ 6 is enough to encode binary weight
codes with 70 - 83% of sparsity). The process of quantization, binary code encoding, and retraining
is repeated only once in this case, too. As shown in Table A3 and Table A4, we reduce the memory
requirement of each baseline model by 93.5 % using our proposed technique. This experiment results
show that our proposed scheme can be extended to RNNs for other complex tasks.

6https://github.com/tensorflow/nmt
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Table A3: Compression result of the GNMT model for WMT En→ De.

Network Layer LSTM Parameter Pruning Compression rate (%)

Type Size (KB) Rate (%) Lee et al. (2018) VWM (ours)

Encoder

BiLSTM (FW) 32768.0 83.3 17.3 4.8
BiLSTM (BW) 32768.0 76.7 23.9 5.8

LSTM1 49152.0 74.1 26.5 6.2
LSTM2 32768.0 70.9 29.8 7.3
LSTM3 32768.0 74.2 26.4 6.3

Decoder

LSTM4 49152.0 76.1 24.6 6.0
LSTM5 49152.0 79.3 21.3 5.7
LSTM6 49152.0 73.4 27.2 6.6
LSTM7 49152.0 69.3 31.3 7.8

Total 376832.0 75.1 25.6 6.3
(4×) (16×)

Validation BLEU (WMT 15) 25.6 25.8 25.2
Test BLEU (WMT 16) 30.1 29.9 29.0

Table A4: Compression result of the GNMT model for WMT De→ En.

Network Layer LSTM Parameter Pruning Compression rate (%)

Type Size (KB) Rate (%) Lee et al. (2018) VWM (ours)

Encoder

BiLSTM (FW) 32768.0 81.6 19.0 5.0
BiLSTM (BW) 32768.0 75.5 25.1 6.0

LSTM1 49152.0 73.9 26.7 6.3
LSTM2 32768.0 71.3 29.4 6.8
LSTM3 32768.0 73.4 27.2 6.5

Decoder

LSTM4 49152.0 76.5 24.1 6.0
LSTM5 49152.0 80.3 20.3 5.5
LSTM6 49152.0 73.2 27.5 6.6
LSTM7 49152.0 68.9 31.8 7.8

Total 376832.0 74.9 25.8 6.3
(4×) (16×)

Validation BLEU (WMT 15) 28.0 28.4 28.0
Test BLEU (WMT 16) 33.2 33.3 33.0
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