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Abstract

Developing high-performance materials and molecules often requires identifying
those with property values that fall outside the known distribution. Therefore, the
ability to extrapolate to out-of-support (OOS) property values is critical for both
solid-state materials and molecular design. Given the chemical compositions of
solids or SMILES of molecules and their property values, our objective is to learn
a predictor that extrapolates zero-shot to higher ranges. In this work, we employ a
transductive approach to property prediction and achieve more accurate predictions,
as well as a 3x and 2.5x improvement in True Positive Rate (TPR) of OOS materials
and molecules identification, respectively. We leverage analogical input-target
relations in the training and test sets, enabling generalization beyond the training
target support.

1 Introduction

Figure 1: ML methods often fail
in out-of-support prediction. Our
transductive approach predicts val-
ues closer to the desired distribution.

Designing new materials and molecules is essential for the
development of new technologies. Traditionally, this design
process involves extensive experimental trial and error or high-
throughput simulations to screen databases, both of which
are time-consuming and resource-intensive [1, 2]. As a re-
sult, there is increasing interest in applying machine learning
(ML) techniques to accelerate the discovery of materials and
molecules with desired properties [1–5].

One strategy for finding materials with desired properties is
inverse design through conditional generation [4–8, 2]. A
complementary approach is to screen candidate materials and
molecules through property prediction [9–14]. However, both
approaches typically struggle when property values fall out-
side the training distribution [4, 11, 13, 15, 16]. Enhancing
extrapolative capabilities in property prediction would improve
large dataset screening by identifying promising compounds
and molecules with exceptional properties. This approach
could help guide further synthesis and computational efforts,
ultimately advancing materials and molecular design.

∗Denotes equal contribution. † Denotes equal advising.
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Bilinear Transduction [17] has been successful in extrapolation in robotics domains w.r.t. the
input space by making predictions based on analogies. In this work, we empirically investigate
whether Bilinear Transduction improves extrapolation in materials science (Figure 1). Specifically,
extrapolation in the output space, i.e. the property value, for finding high-performance materials.

Our main contributions are (1) adapting a method for extrapolation to a new application in materials
science and (2) an extensive evaluation of our approach on common high-throughput calculated and
experimental solid-state materials and molecules benchmarks, showcasing improved extrapolation to
out-of-support (OOS).

2 Method
2.1 Bilinear Transduction Preliminaries

Bilinear Transduction [17] is a regression method for OOS generalization, a type of distribution
shift where data becomes OOS at test time. By reparameterizing the problem, OOS generalization
is possible via a bilinear predictor. Let X ⊆ Rn denote a representation space of data points and
let Y ⊆ R denote the space of labels. Given a training set Dtr = {(x, y)}n ⊆ X × Y , Bilinear
Transduction learns a transductive predictor that extrapolates in a zero-shot manner to OOS test points.
Naively, one can learn predictor hθ : X → Y . However, machine learning methods often fail under
covariate shift [18, 19]. Instead, Bilinear Transduction offers the following formulation.

Let ∆X = {xi − xj |xi, xj ∈ X} denote the differences distribution. During training, predictor
hθ : ∆X ×X → Y predicts value y2 ∈ Dtr

Y for data point x2 ∈ Dtr
X given anchor point x1 ∈ Dtr

X and
the difference between them ∆x21 = x2 − x1 ∈ Dtr

∆X . The predictor hθ(∆x, x) = fθ(∆x)gθ(x) is
implemented as a bilinear function in non-linear embeddings of ∆x and x.

The test set Dte ⊆ X includes OOS data points. Given test point xte ∈ Dte, its predicted value is
hθ(∆xte,an, xan). Anchor xan ∈ Dtr

X is the training point that minimizes the distance between its
difference with the test point ∆xte,an = xte − xan, and differences within the training distribution
Dtr

∆X . Formally, xan = argminxi∈Dtr{||∆xte,i −∆x||2 | ∆x ∈ Dtr
∆X}. This reparameterization

converts the problem to within support, as ∆xte,an and xan are within the training distribution.

2.2 Bilinear Transduction for Materials

We use descriptor-based representations: composition-based descriptors derived from elemental
properties for solids [20] and RDKit [21] descriptors derived from SMILES [22] for molecules. In
both cases, using fixed descriptor-based representations offers interpretable features, which are readily
found in the periodic table and existing databases [14]. Additionally, for solids, a composition-based
approach enables more robust predictions, as it implies weaker assumptions about the material [23].
In our evaluation of materials datasets, we test OOS extrapolation in Y . We split our datasets such
that OOS test materials are 5% of data with the highest Y values. In addition, we randomly sample
5% of the training data for in-distribution evaluation. During training (Algorithm 1), we predict the
property value yi of material xi from material xj and their difference xi − xj , where material xj has
a lower property value.

Algorithm 1 Bilinear Transduction for Materials
1: Input: Training set (x1, y1), . . . , (xn, yn)
2: Train: Train θ on loss L(θ) =

∑n
i=1

∑
j:yj<yi

ℓ(hθ(xi − xj , xj), yi)

3: Test: For each new xte, let xan = argminxan∈Dtr
X
{∥xte − xan −∆xtr∥2 | ∆xtr ∈ Dtr

∆X}, and predict

y = hθ(xte − xan, xan)

Bilinear Transduction has theoretical guarantees for extrapolation in OOS input space X [17]. In
our setting, while the model is tested on OOS target values, it does not necessarily operate outside
the training input support, and the conditions for the theoretical guarantees are not necessarily met.
Descriptor-based features encapsulate fundamental chemical and physical information that directly
influences materials and molecular characteristics. Therefore, the difference between feature vectors
is related, possibly intricately, to the change in property value. Bilinear Transduction has the potential
to extrapolate by learning how property values change as a function of compositional differences
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instead of predicting these values directly. In this work, we empirically investigate to what degree
Bilinear Transduction extends predictions beyond the training target support.

3 Related Work

In the context of materials science, extrapolation can be done with respect to the materials space or the
properties space. The first includes generalization to out-of-distribution (OOD) materials structures or
chemical spaces. The latter includes extrapolation to OOS property values, as done in this work.

Extrapolation in property space. There has been work on extrapolation to OOS property prediction
by encoding nonlinearities of input-to-target relationships into the input material representation [24],
engineering interpretable descriptors [25, 26] and applying data imputers [27]. The limitations of
classical ML approaches in extrapolating property predictions via regression have also been studied,
leading to a shift towards classifying OOS materials instead [15, 16].

Extrapolation in materials space. Recent studies have been focused on developing deep generative
models which are suggested to achieve unprecedented levels of OOD generalization towards unseen
materials that are dissimilar to the training data, e.g. generalizing to structures with a larger number
of atoms or different elemental combinations [28–30]. However, Li et al. [31] argue that in many
tasks where OOD is defined with respect to the input materials space, the test sets often fall within the
training representation space, making these tasks effectively interpolation rather than extrapolation.

4 Results

We demonstrate Bilinear Transduction’s extrapolation capabilities on three common solid materials
benchmarks (Section 4.1.1) and one common molecules benchmark (Section 4.2.1), compared against
three strong solids baselines (Section 4.1.2) and three strong molecules baselines (Section 4.2.2).
Table 1 compares the mean average error (MAE) for OOS predictions on solids and molecules. We
include additional results in Appendix A.1. Bilinear Transduction performs consistently better or is
comparable to the baselines across differently curated datasets and properties. See Appendix A.3.1
for data representation and processing details for each method.

4.1 Solids

Figure 1 demonstrates that Bilinear Transduction produces a prediction for band gap distribution that
is closer to the OOS ground truth distribution. Figure 2 shows that Bilinear Transduction extrapolates
to some extent, whereas the other baselines do not exceed the training support threshold.

4.1.1 Datasets

Solids datasets include material compositions and their property values. AFLOW contains material
property values obtained from high-throughput calculations [32]. Following Kauwe et al. [15], who
evaluate classical ML algorithms on AFLOW, we curate a subset of six properties: band gap, bulk
modulus, debye temperature, shear modulus, thermal conductivity, and thermal expansion, out of
which the last four are scaled by applying a base 10 logarithm. Matbench is an automated leaderboard
for benchmarking ML algorithms predicting solid material properties [10]. Matbench contains
three composition-based regression tasks: experimentally measured band gap [12], experimentally
measured yield strength of steels [33], and calculated refractive index [34]. Materials Project
(MP) provides materials and their property values derived from high-throughput calculations [35].
Following Wang et al. [11], we focus on bulk modulus, shear modulus, and ratio of elastic anisotropy.
In cases of duplicate compositions, we retain the entry with the target value corresponding to the
lowest formation enthalpy.

4.1.2 Baselines

We compare with Ridge Regression, the strongest method in Kauwe et al. [15], who evaluate classical
ML algorithms on OOS property values. We further compare with MODNet [13] and CrabNet [11],
leading models in composition-based property prediction.
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(a) (b) (c) (d)

Figure 2: In-distribution, and out-of-support band gap predictions vs. ground truth values.
While (a) Ridge Regression [15], (b) MODNet [13], (c) CrabNet [11] and (d) Bilinear Transduction
(ours), perform well within the training distribution (gray dots bounded by the red horizontal line),
only Bilinear Transduction extends predictions beyond this range on OOS data (red dots).

4.2 Molecules

Figure 4a demonstrates that Bilinear Transduction produces a prediction for the Freesolv data
distribution that is closer to the OOS ground truth distribution. Figures 4b, 4c, 4d and 4e show that
Bilinear Transduction extrapolates, whereas the other baselines rarely surpass the boundary marking
the beginning of the test support.

4.2.1 Datasets

MoleculeNet includes SMILES representations [22] and their property values derived from high-
throughput calculations and experimental trials [36]. We focus on physical chemistry and biophysics
properties suitable for regression – ESOL, freesolv, lipophilicity and BACE binding.

4.2.2 Baselines

we compare with Chemprop [37], a leading method for property prediction from molecular graphs
via message-passing. Chemprop has an advantage as its representations include structural information
that is not explicitly available in the representation we use – RDKit descriptors [21]. In addition,
we compare with Random Forest (RF) [38], a classical ML tree-based method, and Multi Layer
Perceptron (MLP). These serve as ablations of our method, using the same representation with
partial structural information as we do.

Table 1: Solids (top) and molecules (bottom) OOS mean average prediction error and standard error
of the mean.

Dataset Property #Samples Ridge Reg. [15] MODNet [13] CrabNet [11] Ours

AFLOW

Band Gap [eV] 14123 2.59 ± 0.03 2.65 ± 0.04 1.47 ± 0.03 1.51 ± 0.04

[32]

Bulk Modulus [GPa] 2740 74.0 ± 3.8 93.06 ± 3.7 59.25 ± 3.2 47.4 ± 3.4
Debye Temperature [K] 2740 0.45 ± 0.03 0.62 ± 0.03 0.38 ± 0.02 0.31 ± 0.02
Shear Modulus [GPa] 2740 0.69 ± 0.03 0.78 ± 0.04 0.55 ± 0.02 0.42 ± 0.02

Thermal Conductivity [ W
mK

] 2734 1.07 ± 0.05 1.5 ± 0.05 0.97 ± 0.03 0.83 ± 0.04
Thermal Expansion [K−1] 2733 0.44 ± 0.02 0.47 ± 0.02 0.37 ± 0.02 0.39 ± 0.02

Matbench Band Gap [eV] 2154 6.37 ± 0.28 3.26 ± 0.13 2.70 ± 0.13 2.54 ± 0.16

[10] Refractive Index 4764 14.4 ± 2.0 4.24 ± 0.48 3.92 ± 0.5 3.81 ± 0.49
Yield Strength [MPa] 312 972 ± 34 731 ± 82 740 ± 49 591 ± 62

MP Bulk Modulus [GPa] 6307 151 ± 14 60.1 ± 3.9 57.8 ± 4.2 45.8 ± 3.9

[35] Elastic Anisotropy 6331 165 ± 17 60.0 ± 4.5 61.4 ± 4.6 59.8 ± 4.5
Shear Modulus [GPa] 6184 134.5 ± 7.2 65.6 ± 2.5 65.3 ± 2.8 63.2 ± 2.6

Chemprop [37] Random Forests [38] MLP [39]

MoleculeNet
ESOL [mol

L
] 1128 0.47 ± 0.04 0.67 ± 0.04 0.5 ± 0.04 0.42 ± 0.04

[36]
Freesolv [ kJ

mol
] 643 0.44 ± 0.03 0.42 ± 0.02 0.5 ± 0.02 0.08 ± 0.01

Lipophilicity [logD] 4200 0.75 ± 0.02 1.02 ± 0.02 0.9 ± 0.02 0.7 ± 0.02
BACE binding [IC50] 1513 1.03 ± 0.06 0.93 ± 0.05 0.95 ± 0.07 0.73 ± 0.05
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Figure 3: Bilinear Transduction Analogies Visualization. AFLOW bulk modulus OOS predictions
are based on differences between in-distribution anchors and OOS targets, that form analogies to
training pairs. (a) OOS-anchor and training pair differences. (b) Ground truth training (gray) and test
(red) distributions and OOS, anchor, and analogous training pair values. (c) Analogous compounds.
OOS and training target differ by one neighboring f-block element. So do anchor and training anchor.

4.3 Learning Using Analogies

The success of transduction in these tasks is related to one of the tenets of chemistry: similar materials
have similar properties. The transductive approach effectively builds on this idea, by proposing that
similar changes in chemical compounds or molecular structure imply similar changes in properties.
At inference, our approach selects the anchor by minimizing the difference between ∆xte,an and
∆xtr. We demonstrate how these algebraic operations in the embedding space relate to chemical
changes as measured in the domain.

For solids, these operations are expressed as elemental changes. Figure 3 demonstrates this in bulk
modulus inference of an OOS sample with stoichiometry B4ReU. The model selects in-distribution
BiHoPd as the anchor, analogous to training anchor BiDyPd and training target B4ReTh. Specifically,
the compositions of these anchors (BiDyPd and BiHoPd), and the targets (B4ReTh and B4ReU), differ
by only one neighboring f-block element: Dy (Z –– 66) to Ho (Z –– 67), and Th (Z –– 90) to U (Z –– 92).
See Appendix A.2.1 for more examples.

For molecules, these operations manifest as structural similarity. This is notable given that the
RDKit descriptor vector used as input lacks detailed structural and connectivity information from the
SMILES representation. Figure 7 illustrates this in ESOL inference, with the maximum common
structure (MCS) highlighted (Figure 7c) between the anchor-OOS pair, and the training anchor-target
pair. Each pair’s structures show high similarity, differing by the addition of a conjugated double
bond that extends the molecular backbone. See Appendix A.2.2 for additional examples.

5 Discussion

In this work, we demonstrate that Bilinear Transduction improves OOS material and molecular
property value prediction both in support coverage and in mean average error. While this is a
promising avenue to continue exploring, there are several limitations to this approach. Under our
current problem formulation where Y is OOS, the theoretical guarantees for Bilinear Transduction
may not hold. In the future, we plan to (1) investigate why and when the current framework works
well on OOS Y and (2) experiment with learning data representations to fit the Bilinear Transduction
assumptions on OOS X . We believe that advancements in OOS property prediction will accelerate the
screening of promising compositions and molecules for novel functional materials design.
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A Appendix

A.1 Additional Results

In Table 2, we compare the TPR of OOS detection, showcasing our ability to produce candidate
materials with outstanding property values, with an improvement of 3x compared with the strongest
baseline. In Table 3 we demonstrate that all methods perform well, making Bilinear Transduction a
strong predictor both in and out of support alike. In Figure 4 we show extrapolation for a molecular
property, Freesolv.

Table 2: Solids (top) and molecules (bottom) OOS True Positive Rate (TPR).
Dataset Property #Samples Ridge Reg. [15] MODNet [13] CrabNet [11] Ours

AFLOW

Band Gap [eV] 14123 0.0 0.0 0.032 0.132

[32]

Bulk Modulus [GPa] 2740 0.124 0.007 0.199 0.336
Debye Temperature [K] 2740 0.182 0.0 0.0 0.504
Shear Modulus [GPa] 2740 0.058 0.088 0.044 0.182

Thermal Conductivity [ W
mK

] 2734 0.088 0.0 0.0 0.132
Thermal Expansion [K−1] 2733 0.154 0.154 0.132 0.191

Matbench Band Gap [eV] 2154 0.0 0.004 0.0 0.009

[10] Refractive Index 4764 0.009 0.101 0.004 0.122
Yield Strength [MPa] 312 0.0 0.0 0.0 0.0

MP Bulk Modulus [GPa] 6307 0.073 0.003 0.311 0.498

[35] Elastic Anisotropy 6331 0.0 0.0 0.0 0.006
Shear Modulus [GPa] 6184 0.0 0.0 0.003 0.084

Chemprop [37] Random Forest [38] MLP [39]

MoleculeNet
ESOL [mol

L
] 1128 0.357 0.0 0.196 0.268

[36]
Freesolv [ kJ

mol
] 643 0.062 0.0 0.0 0.781

Lipophilicity [logD] 4200 0.024 0.0 0.014 0.057
BACE binding [IC50] 1513 0.0 0.0 0.0 0.013

Table 3: Solids (top) and molecules (bottom) In-distribution mean average prediction error and
standard error of the mean.

Dataset Property Ridge Reg. [15] MODNet [13] CrabNet [11] Ours

AFLOW

Band Gap [eV] 0.87 ± 0.04 0.56 ± 0.02 0.35 ± 0.02 0.61 ± 0.02

[32]

Bulk Modulus [GPa] 15.41 ± 1.21 15.1 ± 1.3 8.01 ± 1.05 13.06 ± 1.6
Debye Temperature [K] 0.13 ± 0.01 0.13 ± 0.01 0.09 ± 0.01 0.14 ± 0.01
Shear Modulus [GPa] 0.31 ± 0.03 0.27 ± 0.02 0.19 ± 0.02 0.31 ± 0.03

Thermal Conductivity [ W
mK

] 0.47 ± 0.03 0.4 ± 0.02 0.31 ± 0.03 0.43 ± 0.04
Thermal Expansion [K−1] 0.11 ± 0.01 0.07 ± 0.01 0.04 ± 0.0 0.11 ± 0.01

Matbench Band Gap [eV] 1.75 ± 0.07 0.32 ± 0.03 0.24 ± 0.03 0.49 ± 0.05

[10] Refractive Index 1.00 ± 0.05 0.15 ± 0.01 0.13 ± 0.02 0.16 ± 0.01
Yield Strength [MPa] 411 ± 75 62.5 ± 11.8 52.4 ± 18.1 156 ± 33

MP Bulk Modulus [GPa] 36.9 ± 1.21 18.63 ± 1.16 10.2 ± 0.8 19.4 ± 1.3

[35] Elastic Anisotropy 22.00 ± 2.01 2.12 ± 0.34 1.24 ± 0.06 2.4 ± 0.3
Shear Modulus [GPa] 35.7 ± 1.2 12.8 ± 0.7 8.75 ± 0.63 13.6 ± 0.7

Chemprop [37] Random Forest [38] MLP [39]

MoleculeNet
ESOL [mol

L
] 0.28 ± 0.03 0.25 ± 0.03 0.28 ± 0.03 0.29 ± 0.04

[36]
Freesolv [ kJ

mol
] 0.16 ± 0.02 0.20 ± 0.06 0.18 ± 0.06 0.12 ± 0.02

Lipophilicity [logD] 0.36 ± 0.02 0.40 ± 0.02 0.38 ± 0.03 0.46 ± 0.03
BACE binding [IC50] 0.45 ± 0.04 0.37 ± 0.04 0.43 ± 0.05 0.51 ± 0.05
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(a)

(b) (c)

(d) (e)

Figure 4: Left: OOS prediction. Our transductive approach predicts values closer to the desired
distribution (a). Right: In-distribution, and OOS Freesolv predictions vs. ground truth values.
While (b) Chemprop [37], (c) RF, (d) MLP and (e) Bilinear Transduction (ours) perform well within
the training distribution (gray dots bounded by the red horizontal line), only Bilinear Transduction
performs well beyond this range on OOS data (red dots).

A.2 Additional Results For Analogy Analysis

A.2.1 Solids

Figure 5 describes shear modulus inference of OOS NOs via anchor NIr, analogous to training anchor
CaP2Rh2 and training target CaP2Ru2. In this case, the training anchor and target (CaP2Rh2 and
CaP2Ru2) and test anchor and target (NIr and NOs) differ by one d-block element: Rh (Z –– 45) to
Ru (Z –– 44) and Ir (Z –– 77) to Os (Z –– 76). Figure 6 describes bulk modulus inference of OOS N3Nb4
via anchor HfNbP, analogous to training anchor HfMoP and training target Mo8P5. Additional
examples include shear modulus prediction for OOS NbSiIr via anchor NbSiPt analogous to training
anchor GeNbIr and target GeNbPt, and OOS ReSiNb via anchor OsSiZr analogous to training anchor
GeIrNb and target GeIrPt.

A.2.2 Molecules

Figures 7 and 8 display additional analogical molecule pairs. Two distinct modes of similarity can
be identified: one is between the training anchor and target, and between the test anchor and target
Figures 8a, 8b, 8c, and the other is between the anchors, and between the targets Figures 8d, 8e, 8f.
In the anchor selection process, the model can converge to an anchor that is either very similar to the
OOS target, in a way that two training samples are similar (in X space), or that is different from the
OOS target and similar to the training anchor and the training target will be similar to the OOS. For
both modes, we can spot analogous differences between the molecules.
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(a)

(b)

(c)

Figure 5: Visualizing Analogies in Bilinear Transduction. AFLOW shear modulus OOS predictions
are based on in-distribution anchors, that paired with OOS points, form analogies to training pairs.
(a) PCA plot of all samples in the dataset. The difference between the OOS point and its anchor
is similar to the difference between the training point and anchor. (b) Ground truth shear modulus
training (gray) and test (red) distributions and OOS, anchor, and analogous training pair values. (c)
Analogy compositional visualization. anchor and OOS differ by one neighboring d-block element. So
do training anchor and training target.

(a)

(b)

(c)

Figure 6: Visualizing Analogies in Bilinear Transduction. AFLOW bulk modulus OOS predictions
are based on in-distribution anchors, that paired with OOS points, form analogies to training pairs. (a)
PCA plot of all samples in the dataset. The difference between the OOS point and its anchor is similar
to the difference between the training point and anchor. (b) Ground truth shear modulus training
(gray) and test (red) distributions and OOS, anchor, and analogous training pair values. (c) Analogy
compositional visualization.
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Figure 7: Bilinear Transduction Analogy Visualization. MoleculeNet ESOL OOS predictions are
based on differences between in-distribution anchors and OOS targets, that form analogies to training
pairs. (a) OOS-anchor and training pair differences. (b) Ground truth training (gray) and test (red)
distributions and OOS, anchor, and analogous training pair values. (c) Analogous molecule pairs. The
similarity between OOS-anchor and training anchor and target is highlighted in red, using the MCS
metric.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 8: Analogical Molecules pairs. Molecules are paired according to maximum similarity. (a-c)
top pair: OOS are similar to their anchors, bottom pair: training targets are similar to their anchors.
(d-f) top pair: OOS are similar to training targets, bottom pair: anchors are similar to training anchors.
For each pair, we denote the relevant benchmark and chemical operator differentiating samples within
each pair. Left Columns: (a) lipophilicity, Cl addition. (b) BACE, addition or completion of a ring.
(c) lipophilicity, F addition. (d) BACE, targets differ in OH functional group and anchors are the
same. (e) ESOL, additional C. (f) ESOL, targets differ in additional C and anchors differ in functional
group position in the ring.
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A.3 Implementation Details

A.3.1 Data Representation

Ridge Regression. We adhere to the data preprocessing scheme outlined in Kauwe et al. [15] on
AFLOW and featurize data using element-based Oliynyk descriptors [20]. The data is scaled using the
StandardScaler and normalized using the Normalizer from the sklearn library based on the training
data statistics.

MODNet. Following De Breuck et al. [13] on Matbench, we create element-based feature vectors
using Matminer [40], and then select features based on the normalized mutual information [41]. The
data is scaled using the MinMaxScaler based on the training data statistics.

CrabNet. Following Wang et al. [11] on MP, we leverage mat2vec, learned via self-supervised
natural language processing techniques, trained on a large corpus of scientific literature.

Bilinear Transduction. We use the Ridge Regression representation and processing for AFLOW,
and the MODNet representation and processing for Matbench. For MP, we use a descriptor-based
representation, Oliynyk [20], scaled with MinMaxScaler from the sklearn library based on the training
data statistics.

A.3.2 Bilinear Transduction Hyperparameter Search

In Table 1, we report the best OOS MAE score for Bilinear Transduction on AFLOW over a hy-
perparameter search on the number of predictor network layers (3, 4), layer size (256, 512, 1024)
and embedding size (42, 48, 64). The hyperparameter search revealed little sensitivity to changes in
hyperparameter values, indicating the robustness of our evaluation.
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