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Abstract
In this work, we present an example of the integration of conventional global and diffeomorphic
image registration methods with deep learning. Our method employs a form of autoencoder in
which the encoder network maps an image to a transformation and the decoder interpolates a
deformable template to reconstruct the input. This enables image-based registration to occur
simultaneously with training of deep neural networks, as opposed to current sequential optimization
methods. We apply this approach to atlas creation, showing that a system that jointly estimates
an atlas image while training the registration encoder network results in a high quality atlas despite
drastic dimension reduction. In addition, the shared parametrization for deformations offered by
the neural network enables training the atlas with stochastic gradient descent using minibatches
on a single GPU. We demonstrate this approach using affine transformations and diffeomorphisms
in the LDDMM vector momentum geodesic shooting formulation using the OASIS-3 dataset.
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1. Introduction

Group-wise image registration is an important tool for the analysis of shapes within a population and
enables successful downstream processing methods like atlas-based segmentation (Joshi et al., 2004;
Rohlfing et al., 2004). As a result of its practical importance, the registration process has been studied
extensively from a mathematical perspective in the large deformation diffeomorphic metric mapping
(LDDMM) framework. In the LDDMM methodology, unbiased anatomical atlases are constructed for
a given population by jointly estimating a collection of deformations along with a single representative
image that serves as the atlas (Beg et al., 2005). Extensions to classic LDDMM atlas-building provide
efficient parametrizations for these deformations (Singh et al., 2013), enable much faster integration
of the necessary differential equations for registration (Zhang and Fletcher, 2015), or leverage
Bayesian inference to provide robust distributional estimates for image registration (Zhang et al.,
2013). Given an estimated atlas, more recent work applies deep learning in order to avoid a second
optimization process, allowing single-shot registration of novel images to a precomputed atlas using a
deep network to convert an image to a deformation field (Yang et al., 2017; Pathan and Hong, 2018).

In this work, we take a similar deep learning-based approach of estimating deformations from
images and apply it to the atlas building process itself, jointly estimating the atlas image and the
neural network that diffeomorphically deforms the atlas to match population images. We present
results on a neuroimaging dataset showing that our diffeomorphic autoencoder framework results
in meaningful deformations while minimizing the atlas building objective functional at least as
well as the conventional method. Another key contribution of the current paper is an open source
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Python library called lagomorph that extends the popular PyTorch deep learning module (Paszke
et al., 2017) to enable image registration and computational anatomy1 2.

Our approach has numerous analogues in the deep learning literature. Capsule networks use
multiple convolutional filters to map image patches into a matrix that is propagated via matrix
multiplication through subsequent layers (Hinton et al., 2011; Sabour et al., 2017). This provides
the capability for the capsule network to represent composition of 3D affine transforms through
the network and reconstruct members of a given class based on an estimated pose. As a result,
in some applications capsule networks are able to detect the 3D pose of objects, but lacking the
ability to perform interpolation, they are limited in their capability to represent general free-form
transformations common in image registration tasks.

The closest related methods to the present work are spatial transformer networks (STNs) (Jader-
berg et al., 2015) and related approaches like deforming autoencoders (Shu et al., 2018). An STN is
a neural network that includes layers that take a two-dimensional input image and generate either a
free-form grid or an affine transform which is used to interpolate those images. STNs were developed
in order to enable image classification networks to automatically align small patches within an image
in order to aid recognition. Deforming autoencoders extend STNs by enforcing invertibility in the
deformation field, but they do so at great cost in expressivity. By enforcing the constraint that the Ja-
cobian matrix must be diagonal, they employ a deformation model which is not rotationally invariant
and does not have the ability to represent local shear or rotation, restricting their deformations to be lo-
cally axis-aligned scalings. To our knowledge no existing related approaches enforce invertibility using
diffeomorphism models based on vector field flows that are now common in medical image registration.

We aim to enable efficient use of proven image registration models in end-to-end training of
neural networks for existing computational anatomy and medical imaging problems as opposed
to improving performance in recognition tasks involving natural images. As such, we focus on using
well-established diffeomorphic deformation models, implementing not only arbitrary interpolation
grids but integration of the Euler-Poincaré equation on diffeomorphisms (EPDiff), foundational
to the LDDMM methodology, as a differentiable neural network module.

2. Methods

In the LDDMM formulation, a smooth and invertible transformation ϕ of an image I∈L2(R3,R)
is modeled as the group action of ϕ as an element of the diffeomorphism group Diff(R3) on I:

ϕ.I=I◦ϕ−1. (1)
The diffeomorphism group is endowed with a right-invariant Riemannian metric, and distances
between pairs of diffeomorphisms are given by the minimal lengths of paths connecting them (Joshi
et al., 2004; Beg et al., 2005; Hinkle, 2015). Such minimizing paths are called geodesics and obey the
EPDiff equation, which is a differential equation governing the evolution of the tangent vector field
of a geodesic in the diffeomorphism group. A common method of registering images in LDDMM
is to employ a shooting method to the initial value problem associated with the Euler-Poincaré
equation integrated for unit time starting at the identity, parametrized by the initial velocity field
of the evolving deformation, in order to find the closest match of the deformed image ϕ.I to some
target image J under the L2 distance.

We implement LDDMM using the vector momentum formulation first presented in (Singh et al.,
2013). In that method, a diffeomorphism is parametrized by a vector field m called the initial

1. Code: https://github.com/jacobhinkle/lagomorph
2. Experiments: https://github.com/jacobhinkle/diffeomorphic_autoencoders
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momentum. Given m, a diffeomorphism is computed by initializing a ϕ(0,x)=x and integrating
until time one the following form of the EPDiff equation:

v(t,x)=K
(
Dϕ−1(t,x)m(ϕ−1(t,x))

)
,

∂

∂t
ϕ(t,x)=v(t,ϕ(t,x)), (2)

where K is the Green’s function of the differential operator (−α∇2−β∇∇·+γ)2 and D is the
Jacobian operator on vector fields. We used the parameters α= .1,β= 0,γ= .01 for all of the
experiments in the present work.

Notice that ϕ is not needed to integrate the above equation or the action on the image I, so we com-
pute v(t,x) directly at each step and propagate the inverse displacement field h(t,x)=ϕ−1(t,x)−x,
using the following time-stepping scheme:

h(t+∆t,x)=−∆tv(t,x)+h(t,x−∆tv(x)). (3)
Singh et al. (2013) provides details on obtaining the gradient with respect to the initial momentum
m of an L2 objective function subject to the continuous form of the vector EPDiff equation. Instead
of discretizing the continuum solution as in that work, instead we implement the exact numeric
gradient of each step of EPDiff.

Notice that integration of this differential equation requires fully differentiable implementations
of the Jacobian of a vector field contracted with another vector field, as well as linear interpolation
of the vector field m, and the operator K. We implemented the necessary primitives and their
derivatives in an open source Python module we call lagomorph, using the PyTorch framework
to handle automatic propagation of gradients via the chain rule. For the Jacobian operation we
use central finite differences with extrapolation by clamping to the nearest boundary voxel. The
K operator is implemented in the Fourier domain according to the derivation in (Beg et al., 2005).
We also implement linear interpolation where derivatives are computed based on the derivative
of the interpolation weights themselves, avoiding approximate finite difference derivatives in that
case. The simple Euler time-stepping scheme derived above for this ordinary differential equation
was then implemented using lagomorph. For the experiments presented here we integrated EPDiff
using five time steps of the Euler integration scheme described above.

2.1. LDDMM Atlas Building

The conventional approach to diffeomorphic atlas building follows the deformable template paradigm
to register an estimated atlas image to each member in a population of images using smooth,
invertible transformations (Joshi et al., 2004). Before building an atlas, the group G is endowed with
a distance metric a priori defined by the squared geodesic distance. Given the vector momentum
parametrization of diffeomorphisms described in the previous section, the squared distance from the
identity transformation to the diffeomorphism ϕ(1,·) is the squared norm of the initial momentum:

d(e,ϕ(1,·))2 =‖m‖2K=〈Km,m〉2L2, (4)

where e∈Diff(R3) is the identity mapping. The atlas image Î corresponding to a collection of
images {Ji} is then defined implicitly as the minimizer of the following sum:

Î= argmin
I∈L2(R3,R)

∑
i

min
mi:R3→R3

(
‖ϕi(1,·).I−Ji‖2L2+λ‖mi‖2K

)
, (5)

where ϕi(t,·) is the solution to the EPDiff equation given intial momentum mi. We implement
conventional atlas building by jointly estimating, using fixed step-size gradient descent, the atlas
image I along with the momenta mi. In order to standardize raw images, we also implemented
affine atlas building, in which case transformations are directly represented by matrices Ai∈GL(3,R)
and vectors Ti∈R3, with their action on images defined by

(A,T).I(x)=I(Ax+T), (6)
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and the squared norm of mi in the above equations replaced by the squared Euclidean distance
from (A,T) to the identity transformation (id,0).

2.2. Atlas Creation Using Diffeomorphic Autoencoders

Notice that the LDDMM atlas building method resembles a maximum a posteriori (MAP) estimate
in which the data are images Ji generated with Gaussian noise and momenta mi,mj that are
independently generated from a prior Gaussian distribution on the space of momenta M . Related
methods like Zhang et al. (2013) marginalize the momenta mi instead of estimating their modes,
representing a form of expectation maximization (EM) in which the transformations are considered
missing data. In contrast to conventional atlas building (direct minimization of Eq. 5) and the
EM approach of Zhang et al. (2013), in this work we consider an approximation of Eq. 5 where,
given an image, a function performs minimization of the objective with respect to m non-iteratively.
In our model, the momenta mi are determined by applying a function f :L2(R3,R)→M to the
image Ji, which in turn determines a diffeomorphism:

mi=f(Ji;θ),
∂

∂t

∣∣
t=0
ϕi(t,x)=Kmi(x), (7)

where θ∈Θ is a set of parameters for the function f and is independent of Ji and ϕi obeys the
EPDiff equation. We then compute the following

Î= argmin
I∈L2(R3,R)

min
θ∈Θ

(∑
i

‖ϕi(1,·).I−Ji‖2L2+λ‖f(Ji;θ)‖2K+R(θ)

)
. (8)

The function f(Ji;θ) is meant to mimic the result of iterative minimization of the loss to obtain
a momentum vector field. One motivation for doing so is computational; since θ is shared among
all the examples, Eq. 8 is readily optimized using stochastic gradient methods. Furthermore, as
is also the case with related approaches (Yang et al., 2017; Pathan and Hong, 2018) when applying
the atlas to a novel image, the registration procedure amounts to a single evaluation of the function
f, avoiding another round of iterative image registration. Another motivation for this approach
comes from a desire for the mapping from observed images to group elements to be as smooth
as possible, a condition which may be violated in practice as the iterative minimization process
constitutes a dynamical system that is susceptible to local minima and whose paths may bifurcate
in which case the result depends overly on initialization.

The function f must be flexible enough to represent the optimal transformation for each ex-
ample in the dataset, which makes neural network architectures a good fit due to their universal
approximation property. This perspective essentially converts the atlas building problem into an
unsupervised deep learning problem resembling an autoencoder approach (Kingma and Welling,
2014). When the neural network f contains a particularly low-dimensional hidden layer, the space
of activations in that layer is commonly called the latent space and the subnetwork mapping from
the input to that point is called the encoder. In that case, notice that a diffeomorphic autoencoder
amounts to a regular image encoder along with a decoder that maps from the latent space to a
momentum vector field that is integrated via EPDiff to produce a diffeomorphism that in turn
is applied to the template image, which can be thought of as another parameter of the autoencoder
network. Following the autoencoder analogy, in this work we employ standard neural network
architectures and training methodology for training the autoencoder, using mini-batch stochastic
gradient descent to estimate the base image I jointly with the neural network parameters θ.
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Figure 1: Diagram of a diffeomorphic autoencoder network. The momentum encoder neural
network maps each input image to a pose (blue), in this case a diffeomorphism
parametrized by a momentum vector field. The EPDiff equation is integrated to form a
deformation field which is applied to the atlas image, which is then compared to the input
via mean squared error. Estimated components of the network are highlighted in green
with fixed components in black and the image match term of the objective function in red.

3. Results

The following experiment was performed on a single Nvidia Tesla V100 GPU, but multi-GPU
and multi-node parallelism are facilitated in a straightforward fashion by PyTorch’s distributed

library.

3.1. Data

The OASIS-3 dataset consists of 1983 3D T1-weighted brain MRI images from 990 subjects (Marcus
et al., 2007). We used a random selection of 25 of the provided skull-stripped images, corresponding
to 25 distinct subjects, cropped from a resolution of 256×256×256 to 165×235×219 voxels, which
was the smallest uniform crop we could perform on the dataset while maintaining a border of at least
one zero voxel in every direction for every image. We then applied average pooling within 2×2×2
windows to downscale the images to the size of 83×118×110 voxels before further processing.

3.2. Affine Autoencoder Results

We built affine atlases using the OASIS-3 data preprocessed as was described in the previous section,
using both conventional atlas building using affine transforms and an affine autoencoder. For the
affine encoder network, we used a convolutional neural network with six convolutional layers followed
by a multilayer perceptron with hidden layers of size 256 then 64, followed by the output of size 12,
representing a 3×3 matrix and three-dimensional translation vector. A ReLU activation was used
at each hidden layer, 2×2×2 local max pooling was used after the first two convolutional layers,
and the convolutions had the following sizes and numbers of channels: (3,2), (3,4), (3,8), (3,8), (3,8),
(3,8). We initialized the network using the Kaiming initialization method built into PyTorch (He
et al., 2015). One of our goals was to maintain simplicity in the network architecture, and we did not
observe a need for further regularization methods like dropout, or heuristics like batch normalization.

Figure 3.2 (left panel) shows the convergence traces of both affine atlas building methods. Interest-
ingly, the conventional affine atlas building algorithm is unable to reach the same mean squared error
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loss as the affine autoencoder. A plausible explanation for this is that the poses for some examples
are not well-optimized and may have fallen into local minima. In the affine autoencoder model,
similar images map to similar transformations, meaning it is much less likely for “normal” images to
be caught in local minima. Additionally, the ability to use minibatch stochastic gradient descent as
opposed to direct gradient descent may play a role in the improved convergence of affine autoencoders.

Figure 2: Reduction in the objective function per epoch for both conventional affine atlas and
affine autoencoder (left) and LDDMM (right) atlas building algorithms on 25 T1w
MRI images from the OASIS-3 dataset. Both LDDMM algorithms used data that were
standardized with affine transforms to align according to a prebuilt affine autoencoder.
The diffeomorphic autoencoder converges to a loss slightly below that of the conventional
atlas building method, despite slower early convergence when features are being learned.

Figure 3.3 (left-most column) shows the results of voxel averaging without transforming the
images, as well as estimated affine autoencoder image (third column), showing considerable increase
in clarity in the affine atlas.

3.3. Diffeomorphic Autoencoder Results

For the LDDMM momentum encoder network, we used a convolutional neural network with 4 convolu-
tional layers followed by a multilayer perceptron with hidden layers of size 256 then 64, followed by the
output vector field of the network of size 3×83×118×110. A ReLU activation is used at each layer,
2×2×2 local max pooling is used after each of the first three convolutional layers, and the convolutions
have the following sizes and numbers of channels: (5,4), (5,16), (5,32), (3,32). As in the affine study,
we initialized the network using Kaiming initialization and did not use dropout or batch normalization.

We first trained an affine autoencoder and used it to pre-align the images, then trained both
conventional atlas building and a diffeomorphic autoencoder in separate steps. For each of those
steps, the same atlas-building objective function was minimized. Figure 3.2 (right panel) shows
that, as in the affine case, the diffeomorphic autoencoder converges to a slightly lower objective
function value, despite slower convergence in an early phase of training, presumably during which
the network is finding relevant features for encoding before proceeding to tune the pose outputs
(decoder) to best match the data.

Clearly, the diffeomorphic atlases show improvement over the affine atlas in each case, with a
considerable amount of structure visible in the LDDMM atlas that is not present in the affine atlas,
indicating that the predictive diffeomorphism network has encoded meaningful transformations.

Figure 3.3 shows the effect of interpolation in the latent space of the trained diffeomorphic autoen-
coder. In this case, we use the width 64 fully-connected hidden layer in our network as the latent space,
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Figure 3: Comparison of estimated atlases. (left to right) Voxel average, affine autoencoder
template, conventional LDDMM atlas, and diffeomorphic autoencoder atlas of 25 T1w
MRI images from the OASIS-3 dataset. The diffeomorphic autoencoder atlas closely
resembles the conventional atlas, and both of those show considerable increased detail
compared to the affine atlas.

and interpolate between the corresponding encoded positions of two images in that space. The result
is a collection of decoded continuously-varying smooth transformations (Fig. 3.3, bottom row) that
continuously transform the atlas image from one configuration to the other. Unlike a conventional
autoencoder or Euclidean interpolation of the input images (Fig. 3.3, top row), the diffeomorphic
autoencoder provides canonical point correspondences along the interpolation path and preserves
fine details from the template. This is remarkable considering that the autoencoder has reduced
the dimension from the image size of over a million voxels to just 64 dimensions in the latent space.

4. Conclusion

Previously, Yang et al. (2017) showed that deep neural networks provide sufficient flexibility to
effectively perform image registration within a given population. In this work we go further, showing
that deep learning provides utility in the atlas building process itself. More broadly, this work
represents, to our knowledge, the first example of end-to-end training of a deep learning-enabled
LDDMM registration algorithm.
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Figure 4: Diffeomorphic interpolation using the autoencoder (axial slices). (top row) Euclidean
interpolation between two affine standardized images. (middle row) Deformed atlas image
resulting from interpolation in latent space of diffeomorphic autoencoder. (bottom row) De-
formation grids corresponding to interpolation in latent space of diffemorphic autoencoder.

Like with conventional autoencoders, a possible pitfall to this approach is that the momentum
encoder network may be too simplistic to faithfully represent the variability in deformations that are
present in a population. Care should be taken then to compare against conventional atlas building
where possible and to design the autoencoder network to balance efficiency with expressivity. More
intricate neural momentum encoder architectures than the rudimentary networks used in the present
work are certainly conceivable, and are readily implemented with reasonable performance using
our lagomorph library. Intuitively, it appears likely that existing architectures like capsule networks
and STN architectures in particular will be useful for building these momentum encoder networks.

Integration of deep learning into the atlas creation methodology promises to enable creative new
approaches to statistical shape analysis in neuroimaging and other fields. Inherent to this approach
is the view that the compression that occurs in a deep neural network applied to neuroimages is most
effectively represented as dimension reduction within the diffeomorphism group representing the
expected anatomic variability, as opposed to conventional autoencoder approaches that are primarily
designed to represent appearance and the presence or absence of image components directly. In
the future we plan to leverage PyTorch-based frameworks including probabilistic programming
libraries like Pyro, in order to perform efficient Bayesian inference in image registration using a
variational autoencoder approach. We also plan to use diffeomorphic autoencoders to integrate
deep learning approaches to segmentation like fully convolutional networks (Long et al., 2015) and
U-nets (Ronneberger et al., 2015) with successful atlas-based approaches.
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