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Despite the recent breakthroughs in unsupervised domain adaptation (uDA), no
prior work has studied the challenges of applying these methods in practical ma-
chine learning scenarios. In this paper, we highlight two significant bottlenecks
for uDA, namely excessive centralization and poor support for distributed domain
datasets. Our proposed framework, MDDA, is powered by a novel collaborator
selection algorithm and an effective distributed adversarial training method, and
allows for uDA methods to work in a decentralized and privacy-preserving way.

1 Introduction
In practical machine learning systems, test samples are often drawn from a different data distribu-
tion than the training samples, due to variations in data acquisition processes between the training
and test sets – caused by for example, different illumination conditions and cameras in the con-
text of visual tasks. This shift in data distributions, known as domain shift, is a core reason which
hinders the generalizability of predictive models to new domains. As manual labeling of data in
each test domain is prohibitively expensive, unsupervised domain adaptation (uDA) has emerged
as a promising solution to transfer the knowledge from a labeled source domain to unlabeled target
domains (Long et al. (2015; 2017); Ganin et al. (2016); Tzeng et al. (2017); Hoffman et al. (2018);
Shen et al. (2018); Sankaranarayanan et al. (2018); Hoffman et al. (2018)).

While uDA methods are indeed effective, little attention has been paid on how they would be in-
corporated in real-world machine learning systems. In this paper, we study and propose solutions
for practical problems that arise while applying uDA techniques in ML systems, namely the chal-
lenges of distributed domain datasets and the overly centralized nature of existing uDA approaches.
As a motivating example, consider a scenario wherein a model is trained for the task of fetal head
detection from labeled ultrasound images collected in a hospital in Finland (source domain Sfin).
Subsequently, this pre-trained model has to be deployed in three target hospitals - one in the US
(Tus1) and two in China (Tcn1 and Tcn2). Due to variations in sonogram machines and medical train-
ing of sonographers, a domain shift is likely to occur in the test samples; hence we need to apply
uDA to adapt the source classifier in the target domains.

Existing uDA methods are centralized by design, in that they assume that each target domain would
always adapt from the labeled source domain (Sfin). This raises two issues: firstly, if the machine
hosting the labeled source dataset is unavailable (e.g., it is undergoing maintenance or has connec-
tivity issues), then clearly adaptation is not possible. More importantly, we argue that this choice of
always adapting from a labeled source is not optimal from an adaptation perspective, because the
domain discrepancy between the labeled source and a potential target domain could be high in some
cases. Our work seeks to explore an interesting proposition: in addition to adapting from the labeled
source, can we also perform uDA with other target domains, which themselves may have undergone
domain adaptation in the past.

Further, existing uDA methods do not support distributed domain datasets and assume that source
and target data are available on the same machine. Clearly, this raises privacy and legal concerns
since either the source domain or the target domains need to send their sensitive data (i.e., sono-
grams) to each other to perform uDA. Moreover, such transfer of potentially large datasets also
incurs severe communication costs.

In summary, this paper makes the following contributions:

• We formulate and study a brand-new problem focusing on the challenges of uDA in practical
machine learning systems.

• We propose a multi-step uDA framework, wherein target domains can adapt not only from the la-
beled source, but also from other target domains. Powering this framework is a novel collaborator
selector algorithm that chooses the optimal adaptation collaborator for each target domain, before
initiating the adaptation.
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• We propose an effective technique for allowing uDA algorithms and adversarial training to work
across distributed datasets. Through extensive experiments on five image and speech datasets, we
demonstrate the efficacy of our proposed solution.

2 Problem Formulation and Related Work
Consider a practical scenario of deploying a uDA method in a real-world ML system. Assume that
a data collection exercise yields a labeled dataset upon which a model is trained using supervised
learning. Thereafter, this model needs to be deployed to a population of users (or targets) whose
data is unlabeled and divergent from the training dataset. Mathematically, we are presented with a
single source domain S = (Rn, pS(x, y)), with input data XS and labels YS . There are multiple
target domains {T j

∣∣j = 1, . . . ,K}, with data Xj
T drawn from target distribution pjT (x, y), without

labeled observations. Using supervised learning, we train a representation mapping, MS , and a
classifier, CS for the source domain. However, for the target domains, due to the absence of labeled
observations, supervised learning is not possible and hence we would like to do adaptation with the
source domain. We assume that target domains are introduced sequentially, one at a time.

Under this problem formulation, we highlight two unexplored research challenges:

Collaborator Selection. For each target domain that joins the system, how do we select an optimal
collaborator for domain adaptation that will lead to highest post-adaptation accuracy for the target
domain? Existing uDA methods (e.g., Hoffman et al. (2018); Tzeng et al. (2017); Ganin et al.
(2016) always use the labeled source domain S as the adaptation collaborator for each target domain,
however we argue that it is not optimal to always adapt for the labeled source domain for two
reasons: i) if the domain shift between the target domain and the labeled source is high, we may not
achieve a good adaptation performance (Wulfmeier et al. (2017)); (ii) from a practical perspective,
it makes the entire system centralized and prone to failure if the device hosting the source dataset
is unavailable for adaptation (e.g., due to connectivity issues). Instead, we propose a multi-step
decentralized domain adaptation approach built upon the idea that a new target domain can adapt
not only from the labeled source domain, but also from other target domains in the system which
have already undergone domain adaptation.

More concretely, we define a collaborator set C as the set of domains that are available to collaborate
with a target domain on an adaptation task. At step τ = τ0, only the source domain is present in
the system, hence C0 = {S}. At step τ = τ1, the first target domain T 1 joins the system – at this
moment, only the source domain S has a learned representationMS . Thereafter, T 1 performs uDA
with the source S and learns a representation MT 1 . Subsequently, we have C1 = {S, T 1}, i.e.,
future target domains now have two candidates with whom they can collaborate to perform domain
adaptation. In general, at step τ = τK , CK = {S} ∪

{
T j
∣∣k = 1, . . . ,K

}
.

In §3.3, we propose an algorithm to select an optimal collaborator c ∈ CK for each target domain,
that is likely to yield the best accuracy post-adaptation. Once the optimal collaborator is chosen, any
existing uDA method could be employed to perform the pairwise adaptation between the chosen
collaborator and the target domain. In §4, we show the effectiveness of this decentralized and multi-
step adaptation approach against conventional baselines and across a number of uDA techniques.

Distributed and Private Data. Existing uDA methods assume that the datasets from the source
domain S and a given target domain T j are available on the same compute unit (e.g., on a server).
However, this assumption is violated in practical scenarios, as the datasets are often private, and
users or companies may not be allowed to share them with other parties due to legal reasons such as
the data privacy law (GDPR) in Europe. In addition to the privacy issue, exchanging potentially large
datasets incur high communication costs, making it undesirable in practical settings. This raises the
question: can we make domain adaptation methods to work in a distributed and privacy-preserving
manner such that the collaborators in the domain adaptation process can keep their data private and
still receive the benefits of adaptation?

These challenges about making uDA algorithms work in a decentralized and distributed way are
closely related, and addressing them is critical for practical usage of uDA methods. We first describe
(in §3.2) our idea of supporting uDA with distributed domain datasets, by enabling knowledge ex-
change between adaptation collaborators using the gradients of Discriminator, which allows for the
raw data and features of each domain to remain private. Next, in §3.3, we propose an algorithm for
selecting an optimal collaborator for each target domain.
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2.1 Related Work

Bobu et al. (2018) presented the problem of continuous unsupervised adaptation wherein the target
domain is smoothly varying temporally. They proposed an iterative uDA method with a replay
loss to prevent the model from forgetting knowledge from past domains. Although our solution
of multi-step domain adaptation is also iterative, we do not assume any smooth ordering between
target domains, hence warranting the need for collaboration selection. Zhao et al. (2018) proposed
MDAN where a target domain can adapt from multiple labeled source domains. As there is only
one labeled source domain in our setup, this method cannot be directly applied. However, we can
still combine the adversarial losses from multiple domains as proposed in MDAN - as such, we
implement a variant of MDAN as a baseline for our method.

In our paper, the training data from different domains is distributed in separate nodes, which re-
lates our problem to distributed training. The motivation of most existing works in this field is to
accelerate the training process by partitioning the training data into multiple computational nodes
and calculating the gradients in parallel. If the results from all nodes are aggregated globally by
a central node (e.g., parameter server (Li et al. (2014); Dai et al. (2015))), or by message passing
process (e.g., All-Reduce (Sergeev & Del Balso (2018))), then it is called centralized distributed
training. By contrast, if the system does not require to synchronize globally (Lian et al. (2017a);
Tang et al. (2018b)), it is called decentralized training. Besides, decentralized training can be further
accelerated by its conjunction with low-precision training (Tang et al. (2018a)), or asynchronous
training (Lian et al. (2017b)). In addition to acceleration, federated learning (Bonawitz et al. (2019);
Konečnỳ et al. (2016); Yang et al. (2019); Liu et al. (2018)) considers a training setting where the
training data is stored over a large number of separate devices and cannot be shared due to privacy
reasons. Our work builds upon the distributed training literature and we show, for the first time,
how distributed training can be used in the context of uDA. Further, it is important to clarify that
we use ‘decentralization’ in this paper in the context of domain adaptation, i.e., target domains can
choose to adapt from any one of the available domains, instead of a single source domain (akin to a
central node). This makes our techniques and their subsequent evaluation different from traditional
decentralized learning papers.

Finally, an important goal of our paper is to support uDA while keeping the domain datasets private.
There has been active research recently at the intersection of privacy and ML. Melis et al. (2019)
showed that collaborative learning is vulnerable to membership inference attacks and leakage of
dataset properties, and suggested employing dimensionality reduction and Dropout as ways to mit-
igate these attacks. Aono et al. (2017) demonstrated that the gradients of a classifier exchanged in
distributed training can be used to reconstruct the raw training data and proposed using additively
homomorphic encryption to fix the problem. Geyer et al. (2017) proposed a differential privacy
approach to hide a single client’s data contribution during federated learning. Finally, Nasr et al.
(2018) did an in-depth analysis of passive and active white-box attacks on deep learning models.
To the best of our knowledge, no prior work has shown that sharing gradients of a discriminator in
adversarial learning – which is the key component of our approach – can leak raw training data. As
such, our approach provides clear privacy benefits over conventional uDA techniques. That said,
we do not discount the possibility that privacy attacks could be developed on our technique in the
future, and leave it open as a topic of further research.

3 Our Approach

3.1 Primer on Adversarial Domain Adaptation

Before describing our approach, we provide a primer on adversarial domain adaptation which is a
widely used approach for uDA and serves as the basic foundation of our solution. The core idea here
is to use adversarial learning to align the feature representations of the source and target domains,
thereby allowing a source classifier to be used in the target domain. Initially, a source extractor ES

and a source classifierCS are trained using supervised learning by solving the optimization problem:

min
ES ,CS

Lcls = −E(xs,ys)∼(XS ,YS)

K∑
k=1

1[k=ys][log(CS(ES(xs))]
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The goal of the adaptation process is to learn a target extractorET using adversarial learning. To this
end, the source extractor ES is used to initialize the target extractor ET . The weights of the source
model are fixed during adversarial training. As in standard adversarial learning, two losses are
optimized in the training process, a discriminator loss LadvD

and a mapping loss LadvM
. Different

uDA methods compute these two losses in their own way, e.g., ADDA (Tzeng et al. (2017)) uses the
following loss formulations:

min
D
LadvD = −Exs∼XS

[log(D(ES(xs))]− Ext∼XT
[log(1−D(ET (xt))] (1)

min
ET

LadvM = −Ext∼XT
[log(D(ET (xt))] (2)

whereD represents a domain discriminator which aims to distinguish source domain data and target
domain data. Details about other uDA methods are provided in §A.4 in the Appendix.

Our work in general applies to any feature-alignment based uDA technique, which allows for source
and target encoders to be trained independently. We note that there are indeed uDA approaches
which optimize the source classification loss and adversarial loss in the same batch during training,
but they are not compatible with our problem formulation wherein a pre-trained source model is to
be deployed on a set of target domains. Further, uDA approaches based on generative modeling
(Hoffman et al. (2018); Hosseini-Asl et al. (2018)) are also out of scope of our work.

3.2 Distributed Domain Adaptation
Prior adversarial uDA methods assume that source and target data is available on the same compute
unit to perform adversarial learning. However as discussed in §2, data from different domains is
often distributed and private in realistic applications, and sharing it could be legally prohibited. We
present an approach of performing domain adaptation with distributed domain datasets. In this vein,
two key questions are: a) how to distribute the adversarial network architecture across nodes?, b)
how to exchange information between the source and target nodes during training?

We propose to split each constituent neural network in the adversarial training framework across
source and target nodes. Consequently, the extractor, domain discriminator and task classifier have
source components (ES ,DS ,CS) and target components (ET ,DT ,CT ). Source data and target data
can therefore be fed separately into their own model components to prevent any exchange of raw data
or feature representations across nodes. Given this network architecture, we now present our training
strategy (also summarized in Algorithm 1). The first step is pre-training and initialization. We
assume that the extractor and classifier (ES and CS) of the source domain have been trained either
using supervised learning or through prior domain adaptation, and the source discriminator DS is
initialized randomly. Thereafter, the target domain components,ET ,CT andDT , are initialized with
the respective source components. Figure 3 in Appendix A illustrates our distributed architecture
and in §A.4, we provide the equations for various adversarial losses.

During adversarial training, for each step, source and target domains sample a training batch from
their own domain data and calculate stochastic gradients for DS on source domain data and for ET ,
DT on target domain data accordingly. However, as shown in Eq.1, the discriminator needs to be
trained on data from both the source and target domains, therefore we need a mechanism to transfer
knowledge across between source and target domains. As opposed to transferring the raw data or
extracted features across nodes, our approach performs knowledge exchange through the gradients
of the discriminators. This in turn does afford certain privacy benefits, as we do not transmit raw
data or the extracted features or even the gradients of the feature extractor which can potentially leak
raw data (Aono et al. (2017)). Although to the best of our knowledge, no prior work has shown that
discriminator gradients can leak training data, we do not discount the possibility that such privacy
attacks can be developed in the future. We leave their study and mitigation as a future work.

A simple strategy for knowledge transfer between nodes would be to exchange and average the
gradients of the two discriminators after each step, and then update DS and DT with the averaged
gradients. While this will ensure that the discriminators are synchronized, it incurs a significant
communication cost for each step. Instead, we propose a simple but effective method, called Lazy
Synchronization, to reduce the communication cost of the algorithm. The basic idea is to synchronize
the source and target discriminators every p training steps. We refer to the training steps at which
the synchronization takes place as the sync-up steps while the other steps during which both nodes
are computing the gradients locally are called local steps. For discriminatorsDS andDT , their local
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gradients are accumulated during local steps, and during the sync-up steps the accumulated gradients
are averaged and applied toDS andDT . Through this, we can ensure there is no divergence between
the discriminators, and at the same time we are able to decrease the communication cost to 1/p. Note
that as we only exchange discriminator gradients, our communication costs are independent of the
feature extractors, which can be potentially very deep and large in size.

Algorithm 1: DISTRIBUTED UDA:
Lazy-Synchronized Distributed Domain
Adaptation
Result: ET and CT

1 Input: Pre-trained ES and CS ; Randomly
Initialize DS ; Initialize ET = ES ,
DT =DS , and CT = CS ; Sync up step p;
number of total steps N ;

2 for n = 1, 2, ..., N do
3 Source node and target node sample a

batch of data respectively, ξ(n)s and
ξ
(n)
t ;

4 Calculate gradients ∇g(DS , ξ
(n)
s ) on

source node, gradients∇g(ET , ξ
(n)
t )

and∇g(DT , ξ
(n)
t ) on target node ;

5 if isTargetNode then
6 Apply∇g(ET , ξ

(n)
t ) to ET

7 end
8 Add ∇g(DS , ξ

(n)
s ) to source gradients

buffer GS , add ∇g(DT , ξ
(n)
t ) to

target gradients buffer GT ;
9 if n%p == 0 then

10 Exchange gradients buffer and
calculate averaged gradients
gavg = GS+GT

2p ;
11 Apply gavg to DS and DT ;
12 Clear GS and GT ;
13 end
14 end

Algorithm 2: COLAB SELECT:
Wasserstein-Distance Guided Collab-
orator Selection

1 Input: Candidate set C = {(p1, E1, C1),
(p2, E2, C2). . . (pN , EN , CN )}, Target
Dataset pT ;

2 for (pi, Ei, Ci) in C do
3 Wi =

compute wasserstein distance(pi,
pT );

4 Compute source error εs using a small
labeled test set.;

5 Compute the Lipschitz Constant K for
the source extractor Ei and classifier
Ci. ;

6 εitmax
= εs + 2.K.Wi;

7 end
8 Optimal Collaborator O = argmin

i=1...N

(εitmax
);

9 Return EO and CO;

Algorithm 3: MDDA: Multi-step Decen-
tralized Domain Selection

1 Input: Initial Candidate set C = {(ES ,
CS)}, Ordering of K target domains T =
T1, T2 . . . TK ;

2 for Ti in T do
3 Obtain the optimal collaborator O ∈ C

using COLAB SELECT;
4 Run DISTRIBUTED DA between O

and Ti to obtain ETi
and CTi

;
5 C← C ∪{(ETi

, CTi
)};

6 end

The target extractor ET is independent of the source data, therefore it is updated for each batch
using the adversarial formulation proposed by the underlying adaptation algorithm. For instance,
Equation 9 shows the loss function to update ET as proposed in ADDA. On the other hand, GRL
(Ganin et al. (2016)) uses a gradient reversal technique which results in LadvM

= −LadvD
, Shen

et al. (2018) uses the Wasserstein Distance as a metric for adversarial training. Details about the
adversarial loss functions of different algorithms used in this paper are provided in §A.4. Finally,
the target classifier CT is initialized with CS and is not updated in the training process. The intuition
is that if the feature space of the target domain can be successfully aligned with the source domain,
then CS can directly be used in the target domain without any adaptation.

In §4.2, we empirically show that our method can obtain comparable accuracy to non-distributed
training algorithms, while at the same time, preserving private user data and minimizing the com-
munication costs in the training process.

3.3 Wasserstein distance guided collaborator selection
We now discuss how to select an optimal adaptation collaborator c ∈ CK for each target domain.
Indeed, we should select a collaborator that is likely to yield the lowest target error post adapta-
tion, but can we choose the optimal collaborator even before performing domain adaptation? In a
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seminal theoretical work, Ben-David et al. (2010) showed that the target error is bounded by the
sum of source error and the divergence between source and target distributions. Redko et al. (2017)
and Shen et al. (2018) did a similar analysis using the Wasserstein distance, which, together with
Lipschitz functions, forms the basis for our collaborator selection method.

A function f : X → R is θ-Lipschitz if it satisfies the inequality ‖f(x)−f(y)‖ ≤ θ‖x−y‖ for some
θ ∈ R+. The smallest such θ is called the Lipschitz constant Lip(f) of f . Further, the 1-Wasserstein
distance (Villani (2008)) between two distributions p1 and p2 – using the duality formula – is

W1(p1, p2) = sup
f :Lip(f)≤1

Ep1
[f ]− Ep2

[f ] (3)

Shen et al. (2018) computed the following robustness bound
εp2

(h, h′) ≤ εp1
(h, h′) + 2θW1 (p1, p2) (4)

for any two θ-Lipschitz hypotheses h and h′, where we denoted
εp(h, h

′) = Ep [‖h− h′‖] . (5)

Our method is motivated by the observation that the above bound is a good approximation of the
error εp2

(h) = εp2
(h, htrue), provided that both the true hypothesis htrue and the learned hypotheses

h = E ◦ C are θ-Lipschitz, and the push-forward measures E∗p are close together in the Wasser-
stein distance, for a sufficiently small θ. These conditions are motivated by the fact that the domains
should be well aligned for unsupervised domain adaptation to be effective. Using a Lipschitz contin-
uous extractor allows us to perform adversarial alignment of higher order features, while maintaining
a Lipschitz continuity guarantee on the true hypothesis as a function of the encoded features E(x),
where x ∼ p2.

Now assume we are trying to use domain adaptation to find a model for a domain D = (Rn, p) and
we have a set of candidate domains Dk = (Rn, pk), k = 1, . . . ,K each with a pre-trained model
Mk = (Ek, Ck), obtained by using either supervised learning or prior domain adaptation. We use
the estimate provided by Equation 4 to select the optimal collaborator domain

Dopt = argmin
k=1,...,K

εpk
(Ek ◦ Ck) + 2θW1(pk, p) (6)

and thereafter perform adaptation from Dopt to D.

Enforcing Lipschitz continuity and computing the Wasserstein distance. Training neural net-
works with minimal Lipschitz constants can be done by directly regularizing the spectral norm of
the linear part of each layer Mises & Pollaczek-Geiringer (1929); Gouk et al. (2018), or a gradient
penalty Gulrajani et al. (2017), or indirectly by using L1 or L2 weight decay. Enforcing a hard con-
straint on θ can be done by rescaling the linear part of each layer or, indirectly, by weight clipping.
For the feature extractor and classifier neural networks, we employ Spectral Norm regularization
proposed by Gouk et al. (2018). Further, to compute the Wasserstein distance between distributions,
we train a Wasserstein critic with gradient penalty as proposed by Gulrajani et al. (2017). This critic
can also be trained in a distributed manner following our lazy synchronization strategy (§ 3.2).

3.4 Multi-Step Decentralized Domain Adaptation (MDDA)
Using the two core ideas discussed § 3.2 and § 3.3, we now summarize our multi-step DA algorithm
MDDA (Algorithm 3). Assume we are given a source domain with pre-trained model and an ar-
bitrary ordering of K unlabeled target domains. For every target domain that joins the system, we
run collaborator selection with the candidates available in the system. Upon selecting an optimal
collaborator, we run the distributed DA algorithm to enable uDA in a privacy-preserving manner.
The adaptation process results in a feature extractor ET and a classifier CT for the target domain.
Finally, the recently adapted target domain is added to the candidate set, and may serve as a potential
collaborator for future domains.

4 Evaluation

4.1 Implementation
Datasets. We conduct experiments on five image and audio datasets: Rotated MNIST, Digits, and
Office-Caltech, DomainNet and Mic2Mic. Rotated MNIST is a variant of MNIST with numbers
rotated from 0°to 330°at increments of 30°. Each rotation is considered a separate domain. The
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Digits adaptation task has five domains: MNIST (M), USPS (U), SVHN (S) (Netzer et al. (2011)),
MNIST-M and SynNumbers (SYN) (Ganin & Lempitsky (2014)). Each domain consists of 10
digit classes ranging from 0-9 in different styles. The Office-Caltech dataset contains object images
from 10 classes obtained from Amazon (A), DSLR camera (D), Web camera (W), and Caltech-
256 (C). DomainNet (Peng et al. (2018)) is a new dataset from which we use four labeled image
domains containing 345 classes each: Real (R), QuickDraw (Q), Infograph (I), and Sketch (S).
Finally, Mic2Mic (Mathur et al. (2019)) is a speech-based keyword detection dataset wherein the
keywords are recorded with four different microphones: Matrix Creator (C), Matrix Voice (V),
ReSpeaker (R) and USB (U). Each microphone represents a domain.

Baselines. To evaluate our collaborator selection strategy, we compare it against the following:

• Labeled Source. This represents the most commonly used approach in uDA works, wherein every
target domain performs a pairwise adaptation with the labeled source domain S.

• Random Collaborator. Here, we randomly choose a collaborator c ∈ CK from the collaborator
set and perform adaptation with the target domain.

• Multi-Collaborator. This approach is based on MDAN proposed by Zhao et al. (2018), wherein
all available candidate domains are used for adaptation, however the contribution of each domain is
dynamically re-weighted in the adversarial training process. However, note that MDAN assumes
that all the candidate domains are labeled and jointly optimize the classification loss with the
adversarial training. In our scenario, only one candidate domain has labeled data (S) while others
are unlabeled. As such, we implement a modified version of MDAN which only optimizes their
proposed adversarial loss in line with our problem formulation in §3.1.

Further, we compare our proposed distributed adversarial learning architecture against (i) a non-
distributed uDA baseline wherein the source and target data reside on the same node, and (ii) D-
PSGD proposed by Lian et al. (2017a) for distributed training of neural networks.

Experiment Setup. We follow the same evaluation protocol as earlier uDA works (Hoffman et al.
(2018); Tzeng et al. (2017)) wherein the unlabeled training instances from source and target domains
are used for adversarial training, and the adapted model is evaluated on a held-out test dataset from
target domain. In addition, we use a small subset of the training instances (10% of the total instances)
for doing collaborator selection. Further, as we explained earlier, we assume that target domains
join the system sequentially in an order, one at a time. Therefore, for each dataset, we randomly
select different orderings of source and target domains and present average results across them. Our
system is implemented with Tensorflow 2.0 and trained on Nvidia V100 GPUs. For more details
about network architectures and training hyper-parameters, please see Appendix A.

4.2 Results
We now present our results of applying MDDA on five datasets. Overall, our results show that
MDDA selects the right collaborator for adaptation in 82% of the cases, which result in the highest
mean target domain accuracy when compared to other baselines.

Performance of Collaborator Selection. For each dataset, we choose three random orderings of
source and target domains, e.g., for Office-Caltech, we choose O1=W,A,D,C; O2=D,C,A,W; and
O3=A,D,W,C. Here the first domain in the order (in bold) represents the labeled source domain,
while the others are unlabeled target domains in the order in which they join the system. Please
refer to Appendix A for details about the orderings used for other datasets.

Figure 1 shows the accuracy of our collaborator selection algorithm. For this experiment, we per-
form adaptation between a target domain and each available candidate, and based on the target
accuracy after each pairwise adaptation, we obtain the collaborator that yields the highest accuracy
for each target domain. This serves as the ground truth for our algorithm. Thereafter, we run our
collaborator selection algorithm on each ordering and obtain the optimal collaborator based on Al-
gorithm 2. By comparing the output of our algorithm with the ground truth, we obtain Figure 1
which shows that on average, our algorithm has a selection accuracy of 82%. On further analysis,
we found that our algorithm primarily makes mistakes when two candidates have similar domain
discrepancy (estimated using the W1 distance) with the target domain and we pick the second most
optimal collaborator. In such scenarios, although the top-1 collaborator selection accuracy drops,
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it typically does not impact the target error significantly because adapting with the second-most
optimal domain also yields a good adaptation performance.

RMNIST Mic2Mic Digits Office-Caltech DomainNet

O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2

No Adaptation 36.23 36.23 35.80 73.11 73.38 74.7 64.34 73.42 57.80 93.41 87.15 92.32 19.09 19.03
Random 42.89 39.73 43.49 76.9 79.1 78.0 65.11 78.41 59.5 95.45 90.10 95.69 32.21 33.19

Labeled Source 53.62 54.53 46.47 78.07 80.96 79.96 66.02 81.46 65.89 95.45 91.98 95.57 34.28 34.21
Multi-Collaborator 36.08 37.88 37.84 74.34 75.19 75.37 60.63 64.19 62.91 87.64 88.33 92.37 25.3 24.1

MDDA (Ours) 86.08 70.84 79.19 78.07 80.12 79.96 81.87 89.03 64.85 95.82 89.58 96.01 34.21 34.34

Ideal 86.38 71.77 79.52 78.07 80.96 79.96 83.84 89.03 69.32 95.82 92.09 96.01 34.28 34.34

Table 1: Target accuracy under different techniques of selecting a collaborator using ADDA. Ideal
refers to the best achievable performance if the most optimal collaborator is picked for each target.

Table 1 shows, for three different orderings, the mean accuracy across all target domains with
MDDA and other baselines. We observe that in majority of the scenarios, MDDA outperforms
the labeled-source adaptation baseline which is commonly used in uDA methods. This confirms our
key intuition that a labeled source domain is not always optimal for domain adaptation, and demon-
strates the value of a more flexible and decentralized approach like MDDA. Interestingly, we observe
that while the multi-collaborator baseline is less accurate than MDDA in general, its performance is
particularly poor on Rotated MNIST in which the number of collaborators are quite high – while a
detailed investigation of this finding is outside the scope of this paper, we surmise that this technique
does not scale well as the number of collaborator domains increase. MDDA, on the contrary, only
performs pairwise adaptation once an optimal collaborator is selected, as such it scales gracefully as
the number of target domains increase.

The results presented so far used the adversarial loss formulation from Eq. 1 and 2 which was
proposed in ADDA. In Table 2, we evaluate the applicability of MDDA to methods that use other
adversarial loss formulations such as (i) when a Gradient Reversal Layer (GRL) is used to compute
the mapping loss, (ii) when Wasserstein Distance is used as a loss metric for domain discriminator
(Shen et al. (2018)) and (iii) a recently proposed uDA technique called CADA (Zou et al. (2019))
which enforces consensus between source and target features. More details about these techniques
and their optimization objectives are provided in Appendix A.

We observe that while different techniques yield different target accuracies, MDDA can work in
conjunction with all of them to improve the overall accuracy over the conventional labeled source
baseline.

RMNIST (O1) Digits (O2)

ADDA GRL WassDA CADA ADDA GRL WassDA CADA

No Adaptation 36.23 36.23 36.23 36.23 73.42 73.42 73.42 73.42
Random 42.89 39.33 43.78 57.13 78.41 79.22 74.91 76.70

Labeled Source 53.62 45.60 37.99 37.65 81.46 76.66 77.31 65.22
MDDA(Ours) 86.08 63.49 85.6 78.37 89.03 85.24 79.48 76.79

Ideal 86.38 68.92 86.94 79.50 89.92 85.42 79.9 78.1

Table 2: Mean target accuracy for a random or-
der of domains for different adaptation methods.
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Figure 1: Mean accuracy of collabora-
tor selection for three orderings for Ro-
tated MNIST (RM), Digits (DI), Mic2Mic
(M2M), Office (OC) and DomainNet(DN).

Performance of Distributed Domain Adaptation. We now evaluate our Lazy-synchronized DA
algorithm from a domain adaptation lens. Our key objective is to evaluate the target-domain accuracy
and communication trade-off, i.e., can we save communication costs associated with distributed
training while ensuring similar levels of target domain accuracy as the conventional non-distributed
DA algorithms. In Figure 2, we plot the target domain accuracy with the number of adversarial
training steps for three uDA tasks. It can be observed that even with lazy synchronization (sync-up
step size p = 4), we can achieve similar target accuracy and convergence rate as non-distributed
and synchronized training methods, while incurring only 25% of the communication costs (as we
are exchanging data every 4 steps). We also note that the distributed training baseline (DPSGD)
performs poorly for adversarial training primarily because of the non-overlapping label spaces on
each node (with respect to the domain label).

Table 3 expands this finding to show the target domain accuracy for 10 adaptation tasks under differ-
ent training mechanisms. Further, we also report the average time taken to perform the adversarial
training for different datasets. Note that the training time is the sum of local computation time and
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Figure 2: Comparison of target domain accuracy and training convergence across non-distributed
and distributed training methods. For Lazy-synchronized approach, we use sync-up step p = 4. For
Mic2Mic, the PSGD baseline did not improve the accuracy, as such we omit it from the figure.

communication time across nodes. In conventional non-distributed DA, it is assumed that the do-
main datasets are available on the same node, as such there is no communication required during the
training, which expectedly results in the fastest training process, at the expense of user privacy. In
the fully-synchronized case, the amount of communication equals the size of discriminator gradients
multiplied by the number of training steps, whereas in the lazy-synchronized case, the communica-
tion amount is one pth of the amount of fully synchronized case, where p is the sync-up step. Based
on the amount of data communicated across nodes, we estimate the communication time by assum-
ing a bandwidth of 40Mbps which is roughly the average upload speed for broadband connections
globally1. The computation time is measured for each training step and aggregated to get the total
computation time. By adding the total computation time with the total communication time, we
obtain the total training time reported in Table 3.

As shown in Table 3, the Lazy-Synchronized approach achieves target accuracy close to non-
distributed and fully-synchronized approaches. For example, in the D→ A task in Office-Caltech,
our approach – while ensuring that domain data remains private – results in 91.77% target domain
accuracy, which is indeed close to the 92.01% and 92.13% accuracy of non-distributed and fully-
synchronized training mechanism. Further, we observe that the training time of our approach is
significantly less than the fully-synchronized approach due to the reduced communication.

RMNIST Office-Caltech Digits DomainNet Mic2Mic

Training 0 → 60 150 → 180 t (min) W → C D → A t (min) M-M → U Syn → U t (min) S → R Q → R t (min) C → R R →C t (min)

Source-Only 32.68 61.51 - 87.81 85.28 - 57.54 79.32 - 34.34 30.75 - 69.65 69.11 -

Non-Distributed 69.61 91.86 0.15 91.74 92.01 11 82.1 90.1 0.67 54.91 50.67 1.12 78.02 77.94 5.8

Synchronized 69.30 91.21 6.8 91.02 92.13 28 82.13 89.9 20.7 54.23 49.95 17.5 81.5 81.1 22.5

Lazy Synchronized 68.34 90.16 1.8 90.56 91.77 15.3 81.66 89.78 5.7 53.25 49.02 5.2 77.48 81.03 10

Table 3: Target Domain Accuracy and Training Time (averaged across two adaptation tasks) for
each dataset. As expected, the Non-Distributed approach is the fastest as it does not require any
communication during training, at the expense of user privacy. Our Lazy-Synchronized approach
(p=4) provides the best trade-off between accuracy and training time, without requiring the exchange
of raw domain data.

5 Limitations and Conclusion
We introduced a novel perspective on uDA research and explored practical challenges associated
with deploying uDA methods in real-world ML systems. Our proposed framework MDDA is the
first-ever solution aiming to make uDA work in a decentralized and distributed manner.

As uDA is a rapidly evolving field, we did not study every class of uDA algorithms (e.g., those
which combine feature-level adaptations with instance-level adaptations) in this paper. We also
made an assumption that target domains are introduced sequentially in the system, however there
could indeed be other ways in which ML models would evolve in practice (e.g., multiple target
domains join together or in batches). We leave those scenarios as future work. Finally, our method
provides user privacy by only sending discriminator gradients across nodes. While no prior work
has shown that discriminator gradients can leak raw data, we do not discount the possibility that
privacy attacks could be developed on MDDA in the future. We leave a detailed privacy study of
MDDA as a future work.

1https://www.speedtest.net/global-index
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A Appendix
Here we provide details about our experiment setup and model architectures. We are also in the
process of obtaining necessary clearances to release our source code to the community.

A.1 Domain Orderings.

As we mentioned in our problem formulation, the order of target domains joining the system can
effect the decisions of our collaborator selecting algorithm, and lead to different target accuracies.
To measure the effect of target orders, we reported three different orders for each data set in our
experiments. We specify these order as follows:

O1 O2 O3

RMNIST 0,30,60,90,120,150, 0,180,210,240,270,300, 30,0,180,210,240,330,
180,210,240,270,300,330 330,30,60,90,120,150 60,90,270,300,120,150

Mic2Mic C,V,R,U R,U,C,V V,R,U,C

Digits svhn,mnist,mnist modified, synth digits,usps,mnist, mnist modified,mnist,svhn,
synth digits,usps mnist modified,svhn usps,synth digits

Office-Caltech W,A,D,C D,C,A,W A,D,W,C

DomainNet S,R,I,Q S,Q,I,R R,I,Q,S

Table 4: Ordering of source and target used in our experiments. Domains in bold correspond to the
labeled source domain, which is introduced first in the system.

A.2 Model Architectures and Hyperparameters.

We now describe the neural architectures used for each dataset along with the hyperparameters used
in supervised and adversarial learning.

Rotated MNIST: We use the well-known LeNet architecture for this dataset as shown below. The
model was trained for each source domain with a learning rate of 10−4 using the Adam optimizer
and a batch size of 32.

Conv2D(filters = 20, kernel_size = 5, activation=’relu’),
MaxPooling2D(pool_size = 2, strides = 2),
Conv2D(filters = 50, kernel_size = 5, activation=’relu’),
MaxPooling2D(pool_size = 2, strides = 2),
Flatten(),
Dense(500, activation=’relu’),
Dense(10, activation=’softmax’)

In order to enforce the Lipschitz continuity, we added spectral norm regularization during the train-
ing process. In the adversarial training process, we used the ADDA losses to perform domain
adaptation with a learning rate of 10−5 for the target extractor and 10−4 for the discriminator.

12
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Office-Caltech: We used Keras Inception-V3 pre-trained on ImageNet as the base model for this
task. We added a bottleneck layer and a final classification layer. The model was trained for each
source domain with a learning rate of 10−5 using the Adam optimizer and a batch size of 32.

InceptionV3(include_top=False, input_shape=(299, 299, 3),avg=’pool’),
Dense(256, activation=’relu’)
Dense(10, activation=’softmax’)

In order to enforce the Lipschitz continuity, we added spectral norm regularization during the train-
ing process. In the adversarial training process, we used the ADDA losses to perform domain
adaptation with a learning rate of 10−5 for the target extractor and 1e-4 for the discriminator.

DomainNet: We used Keras ResNet50-v2 pre-trained on ImageNet as the base model for this task.
The model was trained for each source domain with a learning rate of 1e-5 using the Adam optimizer
and a batch size of 64.

ResNet50V2(include_top=False, input_shape=(224, 224,3), avg=’pool’),
Dense(245, activation=’softmax’)

In order to enforce the Lipschitz continuity, we added spectral norm regularization during the train-
ing process. In the adversarial training process, we used the ADDA losses to perform domain
adaptation with a learning rate of 10−6 for the target extractor and 10−4 for the discriminator.

Mic2Mic: We mainly used three convolutional layers for this task. The model was trained for each
source domain with a learning rate of 10−5 using the Adam optimizer and a batch size of 64.

Conv2D(filters = 64, kernel_size = (8,20), activation=’relu’)
MaxPooling2D(pool_size = (2,2)),
Conv2D(filters = 128, kernel_size = (4,10), activation=’relu’),
MaxPooling2D(pool_size = (1,4)),
Conv2D(filters = 512, kernel_size = (2,2)),
Flatten(),
Dense(256, activation=’relu’),
Dense(31)

In order to enforce the Lipschitz continuity, we added spectral norm regularization during the train-
ing process. In the adversarial training process, we used the ADDA losses to perform domain
adaptation with a learning rate of 10−6 for the target extractor and 10−4 for the discriminator.

Digits: We constructed a neural network with three convolutional layer and some additional tech-
niques like Dropout, BatchNormalization, for this task. The model was trained for each source
domain with a learning rate of 10−5 using the Adam optimizer and a batch size of 64.

inputs = tf.keras.Input(shape=(32,32,3), name=’img’)
x = Conv2D(filters = 64, kernel_size = 5, strides=2)(inputs)
x = BatchNormalization()(x, training=is_training)
x = Dropout(0.1)(x, training=is_training)
x = ReLU()(x)
x = Conv2D(filters = 128, kernel_size = 5, strides=1)(x)
x = BatchNormalization()(x, training=is_training)
x = Dropout(0.3)(x, training=is_training)
x = ReLU()(x)
x = Conv2D(filters = 256, kernel_size = 5, strides=1)(x)
x = BatchNormalization()(x, training=is_training)
x = Dropout(0.5)(x, training=is_training)
x = ReLU()(x)
x = Flatten()(x)
x = Dense(512)(x)
x = BatchNormalization()(x, training=is_training)
x = ReLU()(x)
x = Dropout(0.5)(x, training=is_training)
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outputs = Dense(10)(x)

In order to enforce the Lipschitz continuity, we added spectral norm regularization during the train-
ing process. In the adversarial training process, we used the ADDA losses to perform domain
adaptation with a learning rate of 10−6 for the target extractor and 10−4 for the discriminator.

A.3 Architecture Diagram

Figure 3 shows the general architecture of our distributed lazy-synchronized training technique. As
explained in Algorithm 1 and § 3.2, we split each constituent neural network in the adversarial train-
ing framework across source and target nodes. Consequently, the extractor, domain discriminator
and task classifier have source components and target components. Knowledge exchange between
the nodes is done through exchanging the discriminator gradients in the sync-up steps.

Source 
Extractor 
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Extractor 
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Discriminator 

ξ(n)
t

Apply  to target 
extractor for every step

∇g(ET, ξ(n)
t )

In non-sync steps: 
Accumulate local gradients


In sync-up steps: 
Aggregate accumulated gradients, 

then update discriminators  

ξ(n)
s

Gradients of target 
extractor ∇g(ET, ξ(n)

t )

Gradients of target 
discriminator ∇g(DT, ξ(n)

t )

Gradients of source 
discriminator ∇g(DS, ξ(n)

s )

Figure 3: Distributed adversarial training architecture of MDDA

A.4 Details of Domain Adaptation Algorithms

We now discuss the adversarial training formulation of the various uDA algorithms with which we
evaluated the efficacy of our proposed MDDA framework. As shown in Table 4.2, we evaluate our
method with four domain adaptation techniques: ADDA (Tzeng et al. (2017)), Gradient Reversal
(Ganin et al. (2016)) and Wasserstein DA (Shen et al. (2018)), and CADA (Zou et al. (2019)) Below
are the adversarial training formulations of these techniques as proposed in their original papers.

ADDA. Following the same notations used earlier in the paper, the adversarial loss formulations of
ADDA can be represented mathematically as:

min
D
LadvD = −Exs∼XS

[log(D(ES(xs))]− Ext∼XT
[log(1−D(ET (xt))] (7)

min
ET

LadvM = −Ext∼XT
[log(D(ET (xt))] (8)

The Discriminator D is optimized using LadvD where the domain data from source and target do-
mains are assigned different domain labels (0 and 1). To update the feature extractor ET , ADDA
proposes to invert the domain labels, which results in the loss formulation given in LadvM

.

In order to run ADDA in a distributed manner, we decompose the discriminator D into DS and DT

which results in the following loss functions:

LadvDS
= −Exs∼XS

[log(DS(ES(xs))] (9)

LadvDT
= −Ext∼XT

[log(1−DT (ET (xt))] (10)
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min
ET

LadvM = −Ext∼XT
[log(DT (ET (xt))] (11)

Thereafter, we compute local gradients for DS and DT ,

∇g(DS , xs) =
δLadvDS

δDS
(12)

∇g(DT , xt) =
δLadvDT

δDT
(13)

and aggregate them in the sync-up step as shown in Algorithm 1. The aggregated gradients are used
to optimize DS and DT , while ET is optimized using the loss function in Equation 11.

Gradient Reversal. The Gradient Reversal approach uses the same loss formulation for the dis-
criminators DS and DT as ADDA as shown in Equations 7, 9, 10.

However, to update the target extractor ET , it leverages the gradient reversal strategy, resulting in
the following loss function.

min
ET

LadvM = −LadvDT

= Ext∼XT
[log(1−DT (ET (xt))]

(14)

The computation of local gradients for DS and DT follow the same process as shown in Equations
12 and 13.

Wasserstein DA. In this recently published technique, authors use the Wasserstein distance as the
loss function for discriminator. Wasserstein distance between two datasets is defined as

Wasserstein(Xs, Xt) =
1

ns

∑
xs∼XS

D(ES(xs))−
1

nt

∑
xt∼XT

D(ET (xt)) (15)

where ns and nt are the number of samples in the dataset. The discriminator loss is computed as:

min
D
LadvD = −Exs∼XS ,xt∼XT

[Wasserstein(xs, xt)] + γLgrad (16)

where Lgrad is the gradient penalty used to enforce the Lipschitz constraint on the discriminator.
Further, the target extractor is optimized using the following loss function:

min
ET

LadvM = Exs∼XS ,xt∼XT
[Wasserstein(xs, xt)] (17)

We use the same strategy to compute local gradients for DS and DT as shown in Eq 12 and 13.

CADA. Consensus Adversarial Domain Adaptation is a technique recently proposed by Zou et al.
(2019) which enforces the source and target extractors to arrive at a consensus in the feature space
through adversarial training. It uses the same loss formulation for the discriminators DS and DT as
ADDA as shown in Equations 7, 9, 10. However, the key difference is that CADA optimizes both
the source and target feature extractors in the training process, until the discriminator can no longer
distinguish the features from source and target domains.

min
ES

LadvM1
= −Exs∼XS

[log(DS(ES(xs))] (18)

min
ET

LadvM2
= −Ext∼XT

[log(DT (ET (xt))] (19)

Thereafter, a shared classifier is trained on the sourced labeled data by keeping the source feature
extractor fixed. The shared classifier can be used with the target extractor to make predictions.
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min
CShared

Lclf = −E(xs,ys)∼(XS ,YS)

K∑
k=1

1[k=ys][log(CShared(ES(xs))]
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