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ABSTRACT

Implicit generative models are difficult to train as no explicit probability density
functions are defined. Generative adversarial nets (GANs) propose a minimax
framework to train such models, which suffer from mode collapse in practice due
to the nature of the JS-divergence. In contrast, we propose a learning by teaching
(LBT) framework to learn implicit models, which intrinsically avoid the mode col-
lapse problem because of using the KL-divergence. In LBT, an auxiliary explicit
model is introduced to learn the distribution defined by the implicit model while
the later one’s goal is to teach the explicit model to match the data distribution.
LBT is formulated as a bilevel optimization problem, whose optimum implies that
we obtain the maximum likelihood estimation of the implicit model. We adopt an
unrolling approach to solve the challenging learning problem. Experimental re-
sults demonstrate the effectiveness of our method.

1 INTRODUCTION

Deep generative models (Kingma & Welling, 2013; Goodfellow et al., 2014; Oord et al., 2016)
have the ability to capture the distributions over complicated manifolds, e.g., natural images. Most
recent state-of-the-art deep generative models (Radford et al., 2015; Arjovsky et al., 2017; Karras
et al., 2017) are usually implicit statistical models (Mohamed & Lakshminarayanan, 2016), also
called implicit probability distributions. Implicit distributions are flexible as they are specified by
a sampling procedure rather than a tractable density. However, this implicit nature makes them
difficult to train since maximum likelihood estimation (MLE) is not directly applicable.

Generative adversarial networks (GANs) (Goodfellow et al., 2014) address this difficulty by adopt-
ing a minimax game, where a discriminator D is introduced to distinguish whether a sample is real
(from the data distribution) or fake (from a generator G), while G tries to fool D via generating
realistic samples. In practice, G and D are optimized alternatively and GANs suffer from the mode
collapse problem. This is because G is optimized to generate samples which are considered as real
ones with high confidence by the current D, and won’t be penalized for missing modes in data dis-
tribution. Although various methods (Metz et al., 2016; Zhao et al., 2016; Arjovsky et al., 2017) try
to modify the vanilla GANs to alleviate the problem, they are still formulated in the minimax frame-
work and do not address the intrinsic weakness of GANs. Therefore, the mode collapse problem of
training implicit models is still largely open.

This problem mainly arises from the objective function in GAN, i.e., JS-divergence over data dis-
tribution p and the generator distribution pG, which is more tolerant to mode collapse compared to
the KL-divergence. As illustrated in the example in Fig. 1, local optima with mode collapse can be
found by optimizing JS-divergence whereas KL(p||pG) achieves its optima iff p = pG. To address
this issue, we propose a novel teacher-student framework to optimize the KL-divergence where we
learn an implicit generator G (also referred as a teacher) by teaching a likelihood estimator E (also
referred as a student) to match the data distribution. In particular, the training scheme is as follows:
(a) The student E is trained to maximize the log-likelihood of samples generated by the teacher G.

(b) The student E is evaluated on the real data samples in terms of log-likelihood as well, and the
teacher G is trained to improve such log-likelihood based on the signal from E.

According to the scheme, we refer to our framework as learning by teaching (LBT).
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Figure 1: Suppose the data distribution is a mixture of Gaussian (MoG), i.e., p(x) = 0.5N (−3, 1)+
0.5N (3, 1), and the model distribution is a MoG with learnable means a and b, i.e., pG(x) =
0.5N (a, 1)+0.5N (b, 1). The figure demonstrate the contour of the two divergences with the x-axis
and y-axis representing the value of a and b respectively. The JS-divergence allows a collapsed local
optima with a = −3.25, b = −2.69 (numerical results).

Intuitively, in LBT, E tells G what must be generated whereas in GAN, D tells G what cannot be
generated. Specifically, in LBT, E learns pG and G aims to adjust its distribution to maximize the
log likelihood of real samples evaluated by the learned E. If pG misses some modes, then pE on
these modes is low, and G will be penalized heavily. In other words, in LBT, the estimator directs
the generated samples to overspread the support of data distribution. In GAN, the goal of D is to
distinguish whether a sample is real or fake and the goal of G is to fool D by generating realistic
samples. G will be penalized much more heavily when generating fake patterns than when missing
modes. Therefore, we can say that LBT and GAN are complementary to each other, where E helps
G to overspread the data distribution and D helps G to generate realistic samples. Thus, we propose
the combined LBT-GAN to improve the performance.

Formally, LBT is formulated as a bilevel optimization (Colson et al., 2007) problem, where an upper
level optimization problem (step (b)) is dependent on the optimal solution of a lower level problem
(step (a)). The gradients of the upper problem w.r.t. the parameters of G are unknown since the op-
timal solution of E cannot be analytically expressed by G’s parameters. Though the influence func-
tion (Koh & Liang, 2017) provides a principle way to differentiate through the bilevel optimization
problem, it is computationally expensive. Instead, we propose to use the unrolling technique (Metz
et al., 2016) to efficiently obtain approximate gradients, which are closely connected to the exact
ones given by the influence function. Theoretically, under non-parametric conditions, LBT ensures
that both of the teacher G and the student E converge to the data distribution (See proof in Sec. 4).
Besides, we provide further empirical analysis of the case where a E with limited capbility can still
help G to resist to mode collapse in Appendix B.

To summarize, our contributions are threefold:
1. We propose a novel framework LBT to train an implicit generator by teaching a density estimator.

LBT intrinsically avoids the mode collapse problem and is fully compatible with GANs.
2. Theoretically, we prove that the implicit model will converge to the data distribution in both LBT

and LBT-GAN.
3. Empirically, we show the effectiveness of LBT and LBT-GAN on both synthetic and real datasets.

2 RELATED WORK

Implicit statistical models (Mohamed & Lakshminarayanan, 2016) are of great interests with the
emergence of GANs (Goodfellow et al., 2014) which introduces a minimax framework to train
implicit generative models. Nowozin et al. (2016) generalize the original GANs via introducing
a broad class of f -divergence for optimization. In comparison, LBT provides a different way to
optimize the KL-divergence and achieves good results on avoiding the mode collapse problem and
generating samples when combined with GAN. Arjovsky et al. (2017) propose to minimize the earth
mover’s distance to avoid the problem of gradient vanishing in vanilla GANs. Besides, Li et al.
(2015) train implicit models by matching momentum between generated samples and real samples.

Mode collapse is a well-known problem in practical training of GANs. Much work has been done
to analyze and alleviate the problem (Arjovsky & Bottou, 2017; Arjovsky et al., 2017; Mao et al.,
2017; Metz et al., 2016; Srivastava et al., 2017). Unrolled GAN (Metz et al., 2016) propose to unroll
the update of the discriminator in GANs. The unrolling helps capturing how the discriminator would
react to a change in the generator. Therefore it reduces the tendency of the generator to collapse all
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samples into a single mode. Srivastava et al. (2017) propose VEEGAN that introduces an additional
reconstructor net to map data back to the noise space. Then a discriminator on the joint space is
introduced to learn the joint distribution, similar as in ALI (Dumoulin et al., 2016). Lin et al. (2017)
propose to modify the discriminator to distinguish whether multiple samples are real or generated.
Though such methods can resist mode collapsing to some extent, they are still restricted to the
minimax formulation, which makes the training extremely unstable. We directly compare LBT with
existing methods (Metz et al., 2016; Srivastava et al., 2017; Lin et al., 2017) in our experiments.

In LBT, we need to evaluate the influence of the training data of the estimator, i.e., generated sam-
ples, on the likelihood of test data, i.e., real samples, which is closely related to the influence function
methods. Koh & Liang (2017) propose to use influence function to model the affect of training data
on the loss of test data, which is equivalent to a quadratic approximation at the optimal point. Zhang
et al. (2018) apply this method to debug the training data using a set of trusted items, where the
authors presume that there is bias in the training data. Our method can be treated as another instance
of the influence function , where we try to learn an implicit generative model using the influence of
the generated samples on the log-likelihood of the real data evaluated by the estimator.

3 METHOD

Consider an implicit model (or a generator) G(·; θ) parameterized by θ that maps a simple random
variable z ∈ RH to a sample x in the data space RD, i.e., x = G(z; θ). Here, z is typically drawn
from a standard Gaussian distribution pZ and G is typically a feed-forward neural network. The
sampling procedure defines a distribution over the data space, denoted as pG(x; θ). Our goal is to
train the generator to approximate the data distribution p(x).

Since the generator distribution is implicit, it is infeasible to adopt maximum likelihood estimation
directly to train the generator. To address the problem, we propose learning by teaching (LBT),
which introduces an auxiliary density estimator pE(x;φ) parameterized by φ ( e.g., a VAE (Kingma
& Welling, 2013)) to fit the generator distribution pG(x; θ) by maximizing the log-likelihood on
generated samples. We train the generator to maximize the estimator’s likelihood evaluated on the
training data. Formally, LBT is defined as a bilevel optimization problem (Colson et al., 2007):

max
θ

Ex∼p(x)[log pE(x;φ?(θ))],

s.t. φ?(θ) = argmax
φ

Ez∼pZ [log pE(G(z; θ);φ)],
(1)

where φ?(θ) clarifies that the optimal φ? depends on θ. For notational convenience, we denote

fG(φ
?(θ)) =Ex∼p(x)[log pE(x;φ?(θ))],

fE(θ, φ) =Ez∼pZ [log pE(G(z; θ);φ)],
(2)

in the sequel. In Sec. 4, we provide theoretical analysis to show that the generator distribution can
converge to the data distribution given that the generator and the estimator have enough capacity.

3.1 DIFFERENTIATE THROUGH THE BILEVEL OPTIMIZATION PROBLEM

The bilevel problem is generally challenging to solve. Here, we present a stochastic gradient ascend
algorithm (i.e., Algorithm 1) by using an unrolling technique to derive the gradient. Specifically, to
perform gradient ascend, we calculate the gradient of fG with respect to θ as follows:

∂fG(φ
?(θ))

∂θ
=
∂fG(φ

?(θ))

∂φ?(θ)

∂φ?(θ)

∂θ
=
∂fG(φ

?(θ))

∂φ?(θ)

∫
z

∂φ?(θ)

∂G(z; θ)

∂G(z; θ)

∂θ
pZdz, (3)

where both ∂fG(φ?(θ))
∂φ?(θ) and ∂G(z;θ)

∂θ are easy to calculate. However, ∂φ?(θ)
∂G(z;θ) is intractable since φ?(θ)

can not be expressed as an analytic function of the generated samples G(z; θ). In the following, we
rewrite G(z; θ) as xz and ∂fE(θ,φ)

∂φ as∇φ for simplicity.

On one hand, the influence function (Koh & Liang, 2017) provides a way to calculate the gradient
of φ?(θ) w.r.t. the generated samples xz as follows:

∂φ?(θ)

∂xz
= −H−1φ? ∇xz

(
∂fE(θ, φ)

∂φ

∣∣∣∣
φ?

)
, (4)
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Algorithm 1 Stochastic Gradient Ascend Training of LBT with the Unrolling Technique

Input: data x, learning rate ηθ and ηφ, unrolling steps K and inner update iterations M .
Initialize parameters θ0 and φ0, and t = 1.
repeat
φ0t ← φt−1
for i = 1 to M do
φit ← φi−1t + ηφ · ∂fE(θ,φ)

∂φ

∣∣∣
φi−1
t

end for
Update φ: φt ← φMt
φ0t ← φt

Unrolling: φKt ← φ0t +
∑K
i=1 ηφ ·

∂fE(θ,φ)
∂φ

∣∣∣
φi−1
t

Update θ: θt ← θt−1 + ηθ
∂fG(φK

t )
∂θ

Update t: t← t+ 1
until Both θ and φ converge.

where Hφ? is the Hessian of the objective fE w.r.t. φ at φ? and is negative semi-definite (Koh &
Liang, 2017). However, calculating the Hessian and its inverse is computationally expensive.

On the other hand, a local optimum φ̂? of the density estimator parameters can be expressed as the
fixed point of an iterative optimization procedure,

φ0 =φ

φk+1 =φk + η · ∂fE(θ, φ)
∂φ

∣∣∣∣
φk

(5)

φ̂? = lim
k→∞

φk,

where η is the learning rate1. Since the samples used to evaluate the likelihood fE(θ, φ) are gener-
ated by G, each step of the optimization procedure is dependent on θ. We thus write φk(θ, φ0) to
clarify that φk is a function of θ and the initial value φ0. Since ∂fE(θ,φ)

∂φ is differentiable w.r.t. xz
for most density estimators such as VAEs, φk(θ, φ0) is also differentiable w.r.t. xz . By unrolling
for K steps, namely, using φK(θ, φ0) to approximate φ?(θ) in the objective fG(φ?(θ)), we opti-
mize a surrogate objective for the generator formulated as fG(φK(θ, φ0)). Thus, the term ∂φ?(θ)

∂xz
is

approximated as ∂φ?(θ)
∂xz

≈ ∂φK(θ,φ0)
∂xz

, which is known as the unrolling technique (Metz et al., 2016).

We now build connections between the above approximate gradients and the exact gradients given
by the influence function. Assuming that the parameters of the density estimator is at its optimum
φ?, i.e., φ0 = φ?, we examine the case of K = 1. The result of one step unrolling is given by:

∂φ1

∂xz
=
∂(φ0 + η∇φ)

∂xz
= η

∂∇φ
∂xz

= η∇xz

(
∂fE(θ, φ)

∂φ

∣∣∣∣
φ0

)
= η∇xz

(
∂fE(θ, φ)

∂φ

∣∣∣∣
φ?

)
. (6)

Note that the inner product of ∂φ1

∂xz
and ∂φ?

∂xz
given by the influence function is positive because the

Hessian Hφ? is negative semi-definite (Koh & Liang, 2017). Therefore, the unrolling technique
essentially gives an approximation of the influence function in Eqn. (4) under the condition that the
estimator is good enough (near to its optimaum φ?). Besides, the unrolling technique is much more
efficient as it does not need to inverse the Hessian matrix.

Finally, the generator and the likelihood estimator can be updated using the following process,

θ ← θ + ηθ
∂fG(φ

K(θ, φ))

∂θ
, φ← φ+ ηφ

∂fE(θ, φ)

∂φ
, (7)

where ηθ and ηφ are the learning rates for the generator and the estimator, respectively. We perform
several updates of φ per update of θ to keep the estimator good. Note that for other gradient-based
optimization methods such as Adam (Kingma & Ba, 2014), the unrolling procedure is similar (Metz
et al., 2016). In our experiments, only a few steps of unrolling, e.g., 5 steps, are sufficient for the
training. The whole training algorithm is described in Algorithm 1.

1We have omitted the learning rate decay for simplicity.
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3.2 AUGMENTING LBT WITH A DISCRIMINATOR

In LBT, the uncovered modes give a large penalty to the generator G through the unrolled estimator
E and E can successfully spread the generated samples to match the whole data distribution. How-
ever, due to the zero-avoiding property of MLE (Nasrabadi, 2007), it can hardly give a large penalty
to the generator for generating low-quality samples when all modes are covered by the generated
samples. Hence, we propose to augment the LBT framework by incorporating a discriminator to pe-
nalize the generator for generating unreal samples. Formally, the objective is formulated as follows:

max
θ

Ex∼p(x)[log pE(x;φ?(θ))] + λGEz∼pZ [logD(G(z; θ);ψ?)],

s.t. φ?(θ) = argmax
φ

Ez∼pZ [log pE(G(z; θ);φ)],

ψ? = argmax
ψ

Ex∼p(x)[logD(x;ψ)] + Ez∼pZ [log(1−D(G(z; θ);ψ))],

(8)

where ψ is the parameters of discriminator D and λG balances the weight between two losses. We
call the above method LBT-GAN.

4 THEORETICAL ANALYSIS

In this section, we prove that both the generator and the estimator can converge to the data distribu-
tion, under the assumption that the generator and estimator have infinity capacity.

Theorem 1. For a fixed generator G, the optimal likelihood estimator E converges to the generator
distribution, i.e., pE(x;φ?) = pG(x; θ).

Proof. The objective of the estimator is to maximize the log-likelihood of the generated samples:

Ex∼pG(x;θ)[log pE(x;φ)] =Ex∼pG(x;θ)[log
pE(x;φ)

pG(x; θ)
] + Ex∼pG(x;θ)[log pG(x; θ)] (9)

=−KL(pG(x; θ)||pE(x;φ))−H(pG(x; θ)),

whereH(pG(x; θ)) is the entropy of the generator distribution which is a constant with respect to the
estimator E. Hence, maximizing Eqn. (9) is equivalent to minimizing the KL divergence between
pG and pE . The likelihood estimator thus achieves optimal when pE = pG.

Theorem 2. Maximizing Eqn. (1) is equivalent to minimizing the KL-divergence between the data
distribution and the generator distribution.

Proof. Because pE(x;φ
?) = pG(x; θ) (proved above), it is straightforward that maximizing

Eqn. (1) is equivalent to solving the problem: maxθ Ex∼p(x)[log pG(x; θ)], which is the maximum
likelihood estimation and is equivalent to minimizing the KL-divergence between p(x) and pG(x; θ).
The optimal is achieved when pG = p.
The conclusions of the above two theorems imply that the global optimum of LBT is achieved at
pG = pE = p. Since the optimum of GAN’s minimax framework is also achieved at pG = p, it is
straight-forward that LBT-GAN in Eqn. (8) has the same optimal solution as LBT.

5 EXPERIMENTS

We now present the empirical results of LBT on both synthetic and real datasets. Throughout the
experiments, we set the unrolling steps K = 5 and use Adam (Kingma & Ba, 2014) optimiza-
tion method with the default setting for both the generator and the estimator (and the discriminator
for LBT-GAN). We set the inner update iterations M for the estimator to 15. We use variational
auto-encoders (VAEs) as the density estimators for both LBT and LBT-GAN. All the decoders and
encoders in VAEs are two-hidden-layer fully-connected MLPs. In LBT-GAN, we set λG = 0.1 for
synthetic datasets and λG = 1 for real datasets. We will release the code after the blind review.

5.1 SYNTHETIC DATASETS

We first compare LBT with state-of-the-art competitors (Goodfellow et al., 2014; Mao et al., 2017;
Metz et al., 2016; Srivastava et al., 2017) on 2-dimensional (2d) synthetic datasets, which are con-
venient for qualitative and quantitative analysis.
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Figure 2: Density plots of the true distributions and the generator distributions of different methods
trained on the ring data (Top) and the grid data (Bottom).
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Figure 3: Three different metrics evaluated on the generator distributions of different methods
trained on the ring data (Top) and the grid data (Bottom). The metrics from left to right are: Number
of modes covered (the higher the better); Averaged intra-mode KL divergence (the lower the better);
Percentage of high quality samples (the higher the better).

Specifically, we construct two datasets: (i) ring: mixture of 8 2d Gaussian distributions arranged
in a ring and (ii) grid: mixture of 100 2d Gaussian distributions arranged in a 10-by-10 grid. All
of the mixture components are isotropic Gaussian, i.e., with standard diagonal covariance. For the
ring data, the deviation of each Gaussian component is diag(0.1, 0.1) and the radius of the ring is 1
2. For the grid data, the spacing between adjacent modes is 0.2 and the deviation of each Gaussian
component is diag(0.01, 0.01). Fig. 2a and Fig. 2h show the true distributions of the ring data
and the grid data, respectively. For fair comparison, we use the same network architectures (two-
hidden-layer fully-connected MLPs) for the generators of all methods. For GAN-based methods,
the discriminators are also two-hidden-layer fully-connected MLPs. The number of hidden units for
the generators and the estimators (and the discriminators for LBT-GAN) is 128.

To quantify the quality of the generator learned by different methods, we report 3 metrics to demon-
strate different characteristics of generator distributions:

• Percentage of High Quality Samples (Srivastava et al., 2017): We define a generated sample
as a high quality sample if it is within three standard deviations of the nearest mode. We generate
500, 000 samples from each method and report the percentage of high quality samples.

• Number of Modes Covered: We count a mode as a covered mode if the number of its high qual-
ity samples is greater than 20% of the expected number. For example, when we generate 500, 000
2In the original Unrolled GANs setting (Metz et al., 2016), the std of each component is 0.02 and the radius

of the ring is 2. In our setting, the ratio of std to radius is 10 times larger. We choose this setting in order to
characterize different performance of “Intra-mode KL divergence” clearly.
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Table 1: Degree of mode collapse measured by number of mode captured and KL divergence on
Stacked MNIST. Results are averaged over 5 runs.

DCGAN ALI Unrolled GAN VEEGAN DCGAN(ours) LBT-GAN
Modes 99 16 48.7 150 188.8 999.6

KL 3.4 5.4 4.32 2.95 3.17 0.19

(a) D=1 size of G: DCGAN(left) and LBT-GAN(right) (b) D=0.5 size of G:DCGAN(left) and LBT-GAN(right)

Figure 4: Generated samples of DCGANs and LBT-GANs with different size of discriminators.
LBT-GANs can successfully generate high quality samples under different network architectures.

samples from the generator trained on the ring dataset (which has 8 modes), the expected number
of high quality samples for each mode is about 500, 000/8 = 62, 5003. Thus in this case, we
count a mode as covered if it has at least 62, 500 × 20% = 12, 500 high quality samples. Intu-
itively, lower number of modes covered indicates higher global mismatch between the generator
distribution and the true distribution.

• Averaged Intra-Mode KL Divergence: We assign each generated sample to the nearest mode
of the true distribution. Then for each mode, we fit a Gaussian model on all assigned samples.
The fitted Gaussian model can be viewed as an estimation of the generator distribution at the
corresponding mode, whose true distribution is also Gaussian. We analytically calculate the KL
divergence between the true distribution and the estimated distribution at each mode, which we
call intra-mode KL divergence. Intuitively, the intra-mode KL divergence measures the local
mismatch between the generator distribution and the true distribution. We report the averaged
intra-mode KL divergence over all modes.

Fig. 2 shows the generator distributions learned by different methods. Each distribution is plotted
using kernel density estimation with 500, 000 samples. We can see that our LBT manages to cover
the largest number of modes on both ring and grid datasets compared to other methods, demon-
strating that LBT can generate globally diverse samples. The quantitative results are included in
Fig. 3a&3d. Note that our method covers all the 100 modes on the grid dataset while the best com-
petitors LSGAN and VEEGAN cover 88 modes and 79 modes, respectively. Moreover, the number
of modes covered by LBT increases consistently during the training. On the contrary, Unrolled GAN
and VEEGAN can sometimes drop the covered modes, attributed to their unstable training.

Fig. 3b&3e show the results of averaged intra-mode KL divergence. We can see that LBT and
LBT-GAN consistently outperform other competitors, which demonstrates that LBT framework can
capture better intra-mode structure. According to Fig. 2c&2e, although LSGAN and VEEGAN can
achieve good mode coverage, they tend to concentrate most of the density near the mode means and
fail to capture the local structure within each mode. In LBT-GAN, the discriminator has a similar
effect, while the estimator prevents the generator to over-concentrate the density. Therefore, the
Intra-mode KL divergence of LBT-GAN may oscillate during training as in Fig. 3b.

Finally, we show the percentages of high quality samples for each method in Fig. 3c and Fig. 3f.
We find that LBT-GAN achieves better results than LBT and outperforms other competitors. As
LBT-GAN can benefit from the discriminator to generate high quality samples while maintaining
the global and local mode coverage, we use LBT-GAN in the following experiments.

5.2 STACKED MNIST

Stacked MNIST (Metz et al., 2016) is a variant of the MNIST (LeCun et al., 1998) dataset created
by stacking three randomly selected digits along the color channel to increase the number of discrete

3The exact expected number of high quality samples for each mode should be a little bit less than 62500 in
this case, according to the three-sigma rule.
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(a) CIFAR10: DCGAN(left) and LBT-GAN(right). (b) CelebA: DCGAN(left) and LBT-GAN(right).

Figure 5: Generated samples on CIFAR10 (a) and CelebA (b) of DCGANs and LBT-GANs.

modes. There are 1,000 modes corresponding to 10 possible digits in each channel. Following (Metz
et al., 2016; Srivastava et al., 2017), we randomly stack 128,000 samples serving as the training data.
A classifier trained on the original MNIST data helps us identify digits in each channel. Following
(Srivastava et al., 2017; Metz et al., 2016), we use 26,000 samples to calculate the number of modes
to which at least one sample belongs. Besides, we also report the KL divergence between the
generated distribution and the uniform distribution over the modes. Since reasonably finetuned GAN
can generate 1000 modes, we select much smaller convolutional networks as both the generator and
discriminator making our setting comparable to Metz et al. (2016). For LBT-GAN’s VAE estimator,
the number of hidden units of the two-hidden-layer MLP decoder and encoder are both 1000-400.

Table 1 presents the quantitative results. As we can see, LBT-GAN surpasses other competitors in
terms of the number of captured modes, which demonstrates the effectiveness of the LBT frame-
work. Specifically, LBT-GAN can successfully capture almost all modes under the LBT framework,
and the results of KL divergence indicate that the distribution of LBT-GAN over modes is much
more balanced compare to other competitors. Our method achieves comparable results with Pac-
GAN (Lin et al., 2017). However, PacGAN is highly sensitive to the network architectures and it
only generates 444 modes in our implementation, whereas LBT-GAN can successfully generalize to
PacGAN’s architecture and capture all 1000 modes. Our hypothesis is that the auxiliary estimator
helps LBT generalize accross different architectures.

Fig. 4 shows the generated samples of GANs and LBT-GANs with different size of discriminators.
The visual quality of the samples generated by LBT-GANs is better than GANs. Further, we find
the sample quality of DCGANs is sensitive to the size of the discriminators, while LBT-GANs can
generate high-quality samples under different network architectures.

5.3 CELEBA & CIFAR10
We also evaluate LBT on natural images, including CIFAR10 (Krizhevsky & Hinton, 2009) and
CelebA (Liu et al., 2015) datasets. The generated samples of DCGANs and LBT-GANs are illus-
trated in Fig. 5. As the capacity of the vanilla VAE is not sufficient in such cases, LBT shows
comparable results as the original GAN. We expect the performance of LBT can be boosted with
much powerful estimators like Pixel-CNNs (Oord et al., 2016).

6 CONCLUSIONS & DISCUSSIONS

We present a novel framework LBT to train an implicit generative model via teaching an auxiliary
likelihood estimator, which is formulated as a bilevel optimization problem. Unrolling techniques
are adopted for practical optimization. Finally, LBT is justified both theoretically and empirically.

The main bottleneck of LBT is how to efficiently solve the bilevel optimization problem. For one
thing, each update of LBT could be slower than that of the existing methods because the computa-
tional cost of the unrolling technique grows linearly with respect to the unrolling steps. For another,
LBT may need larger number of updates to converge than GAN because training a density estimator
is more complicated than training a classifier. Overall, if the bilevel optimization problem can be
solved efficiently in the future work, LBT can be scaled up to larger datasets.

LBT bridges the gap between the training of implicit models and explicit models. On one hand, the
auxiliary explicit models can help implicit models overcome the mode collapse problems. On the
other hand, the implicit generators can be viewed as approximate samplers of the density estimators
like Pixel-CNNs (Oord et al., 2016), from which getting samples is time-consuming. We discuss the
former direction in this paper and leave the later direction as future work.
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(a) Learning curves of LBT on the ring data with
different unrolling steps K. The inner update iter-
ations M is fixed to 15.
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(b) Learning curves of LBT on the ring data with
different inner update iterations M . The unrolling
steps K is fixed to 5.

Figure 6: Sensitivity analysis of the unrolling steps K and the inner update iterations M .

A SENSITIVITY ANALYSIS OF K AND M

Theoretically, a larger unrolling steps K can provide less biased gradients of G and a larger inner
update iterations M can better approximate the condition in Eqn. (6) as analyzed in Sec. 3.1. How-
ever, large K and M on the other hand increase the computational costs. To successfully balance
this trade-off, we provide sensitivity analysis of K and M in LBT. We adopt the values of the ob-
jective function Eqn. (1), i.e., the log-likelihood of real samples evaluated by the learned estimator,
as the quantitative measurement.

We first investigate the influence of the number of unrolling steps K on the training procedure. We
use the experimental settings of the ring problem except that we vary the value of K. In Fig. 6a,
we show the learning curves with K = {1, 3, 5, 15}. We observe that K = 1 leads to a suboptimal
solution and larger K leads to better solution and convergence speed. We do not observe significant
improvement with K larger than 5.

We show the influence of the number of inner update iterations M during training in Fig. 6b. We
use the experimental settings of the ring problem except that we use different M = {5, 10, 15, 50}.
Our observation is that larger M leads to faster convergence, which is consistent with the analysis
in Sec. 3.1.

B AN ESTIMATOR WITH INSUFFICIENT CAPABILITY STILL HELPS THE
GENERATOR

Below, we give a further analysis in the case where the estimator has limited capability. In this case,
LBT itself cannot guarantee that the generator can model the data distribution since the nonparamet-
ric assumption in Sec. 4 is not met, but LBT still provides complementary information to GAN and
can improve GAN. Below, we empirically verify this argument with two examples of LBT-GAN:

1. a toy example where an estimator with insufficient capability can help G escape a bad local
optimum of GAN;

2. the Stack-MNIST experiment where a much smaller VAE can help G cover 1000 modes and
generate realistic samples.

For the toy example, we consider the same settings as in Sec. 1. Suppose that the data distribution
is a mixture of Gaussians (MoG), i.e., p(x) = 0.5N (−3, 1) + 0.5N (3, 1) and the generator G is
also a MoG, i.e., pG(x) = 0.5N (a, 1) + 0.5N (b, 1) which has enough capacity to capture p(x).
In this case, it is possible for GAN to fall into bad local optima that collapse to certain mode, e.g.,
a = −3.25, b = −2.69, because of the property of JS-divergence. In LBT, we suppose that the
estimator E is with insufficient capability, i.e., a single Gaussian pE(x) = N (c, 1) with a learnable
mean c, which can only capture the mean of a distribution. In this case, G needs to teach E to

11



Under review as a conference paper at ICLR 2019

0 1000 2000 3000 4000 5000 6000

Iterations

4

3

2

1

0

1

2

3

Va
lu

e

Training Dynamics

GAN-a
GAN-b
LBT-GAN-a
LBT-GAN-b

(a) The training process of both
GAN and LBT-GAN with a toy ex-
ample.

8 6 4 2 0 2 4 6 8

x

0.0

0.1

0.2

0.3

0.4

p G
(x

)

Learned Distribution of GAN
GAN
Data

8 6 4 2 0 2 4 6 8

x

0.0

0.1

0.2

0.3

0.4

p G
(x

)

Learned Distribution of LBT-GAN
LBT-GAN
Data
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Figure 7: The training process and learned distribution of GAN and LBT-GAN for a simple toy
example.

Figure 8: The generated samples of LBT-GAN with a smaller VAE (left) and the samples from the
smaller VAE (right).

capture the mean of p(x), i.e., c = 0. Though E does not capture p(x), it still regularizes G to learn
a pG(x) with zero mean. Therefore, if pG is around the bad local optimum of GAN whose mean is
about −2.97 (where the gradients of the GAN part of LBT-GAN will be nearly zero), the gradients
of the LBT part will encourage the generator to overspread the data distribution. Namely, even given
an estimator of limited capability, LBT-GAN has no such bad local optima thanks to the LBT part.
A clear demonstration is shown in Fig. 7, where we identically initialize the means of G in both
LBT-GAN and GAN around −3. GAN converges to the local optimum of JS-divergence, whereas
LBT-GAN can successfully regularize the generator to a distribution with zero mean and converges
to the global optimal quickly.

For the second example, we re-implement our LBT-GAN on the Stacked-MNIST dataset with a
much smaller VAE where both the encoder and the decoder are two-hidden-layer MLPs with only
20 units in each hidden layer. The samples from the smaller VAE are of poor quality (See the
right panel of Fig. 8), which means that it can hardly capture the distribution of Stacked-MNIST.
Nevertheless, using such a simple VAE, LBT-GAN can still cover all the 1000 modes and generate
visually realistic samples which is illustrated in the left panel of Fig. 8.
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