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Abstract

Learning the probability distribution of high-dimensional data is a challenging
problem. To solve this problem, we formulate a deep energy adversarial network
(DEAN), which casts the energy model learned from real data into an optimization
of a goodness-of-fit (GOF) test statistic. DEAN can be interpreted as a GOF game
between two generative networks, where one explicit generative network learns an
energy-based distribution that fits the real data, and the other implicit generative
network is trained by minimizing a GOF test statistic between the energy-based
distribution and the generated data, such that the underlying distribution of the
generated data is close to the energy-based distribution. We design a two-level
alternative optimization procedure to train the explicit and implicit generative
networks, such that the hyper-parameters can also be automatically learned. Exper-
imental results show that DEAN achieves high quality generations compared to the
state-of-the-art approaches.

1 Introduction

Learning the probability distribution of high-dimensional data, such as images and natural language
corpora, is a challenging problem in machine learning. Traditionally, we define a parametric family
of densities {p(x; θ), θ ∈ Θ} and find the one with the maximum likelihood using data {xi}mi=1 in
Θ (known as maximum likelihood estimation, MLE) [KW56]. However, the normalization factor
introduces difficulties during the MLE training, because it is an integration over all configurations of
random variables. Markov chain Monte Carlo (MCMC) [ADFDJ03, SEMFV17] could be used, but
the distributions of real-world data, such as images, have an intriguing property, that probability mass
is concentrated in sharp ridges that are separated by large low probability regions. This complexity of
the probability landscape is a road block and a challenge that MCMC methods have to meet[BCV13].

Inspired by the representation ability of the hierarchical models of deep learning [HS06, HOT06,
B+09, LBH15, GBCB16], and as an alternative to MLE approaches, generative adversarial networks
(GANs) [GPAM+14] represent an important milestone on the path towards more effective generative
models [RMC16, CDH+16, NCT16, ACB17b, ZML17, LCC+17, BSAG18]. GANs are a type
of implicit generative models (IGMs), which generate images drawn from an unknown complex
high-dimensional distribution p(x), using an implicit distribution q(x; θg) usually represented by
a deep network with parameter θg. No estimation of likelihoods or exact inference are required
in GAN-like models. This class of models has recently led to many impressive results [HLP+17,
JZL+17, KALL17, BDS18], and different variants have been proposed for specific tasks, such as
conditional GAN [MO14], Pix2Pix [IZZE17], CycleGAN [ZPIE17], starGAN [CCK+18] and etc.

In our opinion, the existing GAN models are fundamentally two-sample test problems. The goal
of the two-sample test is to determine whether two distributions p and q are different, based on
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samples Dx = {xi}ni=1 ⊂ X and Dx′ = {x′j}mj=1 ⊂ X independently drawn from p and q,
respectively. GANs can be considered two-sample test problems because they need to decide whether
the underlying distribution p(x) of real data and an implicit distribution q(x), which generates fake
data, are different. From this perspective, we summarize existing GAN models into two categories
based on how they measure the discrepancy between p(x) and q(x). The first category is the integral
probability metric (IPM) [Mül97]. For a class F of functions, the IPM δ between two distributions p
and q is defined as

δ(p, q) = sup
f∈F

∣∣∣∣∫
X
f(x)p(x)dx−

∫
X
f(x′)q(x′)dx′

∣∣∣∣ .
If F is a class of Lipschitz functions, δ(p, q) is called the Wasserstein IPM. Wasserstein GANs
(WGANs) were proposed based on the Wasserstein IPM [ACB17a, GAA+17]. If F is a unit
ball within the reproducing kernel Hilbert space (RKHS), δ(p, q) is called the maximum mean
discrepancy (MMD), which has been attracting much attention due to its solid theoretical foundations
[SFG+09, GBR+12, GSS+12, ZGB13, DLL+18]. It is natural that MMD was introduced into GAN-
type learning, named MMD-GAN [LSZ15, DRG15, STS+17, LCC+17, BSAG18, ASBG18]. The
second category is the ζ-divergence [CS04], which is defined as

δζ(p, q) =

∫
X
q(x)ζ

(
p(x)

q(x)

)
dx,

where ζ is a convex, lower-semicontinuous function satisfying ζ(1) = 0. For different ζ, we have
different δζ(p, q) and hence we can design different GAN models [NCT16]. For example, the
pioneering GAN [GPAM+14] is based on the Jensen-Shannon divergence, and the least squares GAN
is related to the Pearson χ2 divergence [MLX+17], which are ζ-divergences.

In this paper, we propose a new paradigm that casts the generative adversarial learning as a goodness-
of-fit (GOF) test problem. It is fundamentally different from the existing GAN models principled
on two-sample tests. The aim of the goodness-of-fit (GOF) test is to determine how well a given
model distribution p fits a set of given samples Dx = {xi}ni=1 from an unknown distribution q. The
knowledge of p is what distinguishes the GOF test from the two-sample test, and brings higher power
(i.e., probability of correctly rejecting the null hypothesis) to the GOF test statistics compared to the
two-sample test statistics. Higher power in hypothesis testing suggests higher discriminability in
GAN training. Specifically, by adopting the energy model to simulate the underlying distribution
of the real data, we propose a deep energy adversarial network (DEAN) that casts the adversarial
learning as an optimization of a GOF test statistic. We adopt a variant of finite set Stein discrepancy
(vFSSD) [JXS+17] as the GOF test statistic, which is a linear time nonparametric kernel test statistic
and shows stronger power than the two-sample test statistic, MMD. The proposed DEAN can be
interpreted as a novel two generator game via GOF tests: One explicit generator is designed to learn
an energy-based distribution (EBD), which maps the real data to a scalar energy-based probability,
and the other implicit generator is trained by minimizing the vFSSD between the EBD and the
generated data. We design a two-level alternative optimization procedure to train the two generators,
such that the explicit one provides the formulation of the distribution and the implicit one produces
genuine-looking images. It is worth noting that the DEAN framework with two generators proposed
in this paper is versatile and able to yield specific training algorithms for different architectures of
deep neural networks.

2 Related Work

Energy-Based GANs. Energy-based models capture dependencies over random variables by defining
an energy function. The energy function maps each configuration of random variables to a scalar
energy value, where lower energy values are assigned to more likely configurations. In general, the
exact MLE of an energy model is challenging to calculate due to the difficulty of evaluating the
normalization constant and its gradient. To overcome this difficulty, deep energy models [NCKN11,
XLZW16, SMSH18] and a series of energy-based GANs have been proposed, including EBGAN
[ZML17], calibrated EBGAN [DAB+17], BEGAN [BSM17] and MAGAN [WCCD17]. In this
paper, we adopt the energy-based models to fit the real data, and use the resulting energy-based
distribution as the known distribution in the GOF test to optimize the implicit generator.

Score Matching and Stein’s Method. Score matching was developed for the parameter estimation
of unnormalized densities caused by the partition function being eliminated in the score function
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[Hyv05, SMSH18]. For the GOF test, traditional methods need to calculate the likelihoods of the
models. However, for large deep generative models, this is computationally intractable due to the
complexity of the models. Recently, Stein’s method [S+72, OGC17] was introduced into the kernel
domain [GM17, WL16, LW16, LW18, FWL17, DLL+19b], which combines Stein’s identity with the
RKHS theory. This is a likelihood-free method that depends on the known distribution p only through
logarithmic derivatives, and is closely related to score matching. The proposed statistic is referred to
as kernel Stein discrepancy (KSD) [CSG16, LLJ16]. To improve the performance of KSD and MMD,
Jitkrittum et al. [JXS+17] proposed the finite set Stein discrepancy (FSSD) by introducing a witness
function on a finite set. Inspired by [JXS+17], we introduce score matching and Stein’s method into
the domain of generative adversarial learning, making the GOF test possible by providing one of the
distributions p and q. We eliminate the partition function by taking logarithmic derivatives of the
energy-based distribution that is directly involved in optimizing the implicit generator.

Goodness-of-fit Test for Generative Model Learning. In recent years, there are two emerging
families for generative model learning [HYSX18], generative adversarial networks (GANs) and
autoencoders (AEs) or variational AEs (VAEs), which are two distinct paradigms and have both
received extensive studies. Our paper and [PDB18] both introduce GOF tests into deep generative
modeling, but fall into different paradigms: [PDB18] is an AE-based method without adversarial
learning while our paper is a GAN-type approach. The HTAE (hypothesis testing AE) in [PDB18]
minimized the reconstruction error, but no adversarial learning (min-max adversarial optimization)
was involved. The statistic in this paper is a kernel-based nonparametric GOF statistic. The Shapiro-
Wilk test in [PDB18] is a traditional parametric GOF statistic for testing normality.

3 Background

The paradigm of generative adversarial networks (GANs) [GPAM+14] generates samples using a
training procedure that pits a generator G against a discriminator D. D is trained to distinguish
training samples from the samples produced by G, while G is trained to increase the probability of
its samples being incorrectly classified as real data. In the original formulation [GPAM+14], the
training procedure defines a minimax game

min
G

max
D

Ex∼p(x) [logD(x)] + Ez∼pz(z) [log(1−D(G(z)))] ,

where p(x) is a data distribution in Rd, D is a function that maps Rd to [0, 1], and G is a function
that maps a noise vector z ∈ Rm, drawn from a simple distribution pz(z), to the ambient space of the
training data. The idealized algorithm can be shown to converge and to minimize the Jensen-Shannon
divergence between the data generating distribution and the distribution parameterized by G.

Let Hκ be a reproducing kernel Hilbert space (RKHS) defined on the data domain X with the
reproducing kernel κ : X × X → R. We consider the function class F as a unit ball in a universal
RKHS Hκ, since this class is rich enough to show equivalence between the zero expectation of
the statistics and the equality of two distributions [FBJ04, SGF+10, Ste01, MXZ06]. Universality
requires that κ is continuous and Hκ is dense in the space of bounded continuous functions C(X )
with respect to the L∞ norm. Gaussian and Laplacian RKHSs are universal [Ste01].

The mean embedding of a distribution p inF , written as µκ(p) ∈ F , is defined such that Ex∼pf(x) =
〈f, µκ(p)〉 for all f ∈ F . The squared MMD between two distributions p and q is the squared RKHS
distance between their respective mean embeddings,

MMD2[F , p, q] = ‖µκ(p)− µκ(q)‖2F = Ezz′h(z, z′),

where z = (x, y), z′ = (x′, y′) and h(z, z′) = κ(x, x′) + κ(y, y′)− κ(x, y′)− κ(x′, y). It has been
proved that for a unit ball F in a universal RKHS, MMD[F , p, q] = 0 if and only if p = q [GBR+12].

For two sets of samples Dx = {xi}ni=1 ⊂ X ⊆ Rd, where xi ∼ p i.i.d., and Dy = {yj}mj=1 ⊂
Y ⊆ Rd, where yj ∼ q i.i.d., if we assume m = n, the minimum variance unbiased estimator of
MMD2[F , p, q] can be represented as

MMD2
Unb[F , p, q] =

1

n(n− 1)

∑
i 6=j

h(zi, zj).
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The typical two-sample test based GANs are MMD GANs [LSZ15, DRG15, STS+17, LCC+17]
which train the parameter θg by optimizing

arg min
θg

MMD2
Unb[F , p,G(z; θg)].

4 Deep Energy Adversarial Network

In this section, we present the deep energy adversarial network (DEAN). Our primary contribution
is a new paradigm for generative adversarial learning, which consists of two generative networks:
an explicit one that learns an energy-based distribution (EBD) fitting the real data, and an implicit
one that produces genuine-looking images by minimizing the discrepancy between the underlying
distribution of the real data and the EBD produced by the explicit generative network.

The following characteristics make the proposed DEAN distinguishable from the existing GANs.
First, DEAN makes it possible for the generative adversarial learning to approximate the underlying
distribution of the real data, not just produce fake data that mimics the real data. Second, the GOF
test is adopted to replace the two-sample test, such that the knowledge of p is used to increase the
test power (probability of correctly rejecting the null hypothesis). This power can be understood
as the discriminability in GAN training. Third, DEAN can be considered an algorithm for training
deep energy-based models [NCKN11, XLZW16, SMSH18], where the implicit generator is used to
provide “negative” samples. Fourth, the explicit generator plays the role similar to the discriminator
of the existing GAN models. DEAN is a two generator game.

4.1 Energy Estimator Network

Energy-based models Eθ(x) : X → R associate an energy value with a sample x, where θ are the
parameters. Ideally, high energy is assigned to the generated fake data, and low energy to real data.
We can obtain a distribution based on Eθ(x),

p(x; θ) =
1

Zθ
exp(−Eθ(x)).

The parameters θ of the energy function are often learned to maximize the likelihood of the data; the
main challenge in this optimization is evaluating the partition function Zθ =

∫
x

exp(−Eθ(x)), which
is an intractable sum or integral for most high-dimensional problems.

Now we define the loss function of the explicit generative network (EGN) of DEAN as follows:

min
θe
E(x; θe) +

[
γ − E

(
G(z; θ∗g); θe

)]+
, (1)

where E(x; θe) is an energy model parameterized by θe, [·]+ = max(·, 0) and γ is a given positive
margin. We can use Dx′ = {x′i := G(zi; θ

∗
g)}ni=1 to denote the generated fake samples with

θ∗g optimized in the implicit generator network, where n is the batch size. Dx′ and the real data
Dx = {xi}ni=1 are both fed into Equation (1), where the real data Dx = {xi}ni=1 is forced to have
low energy, while generated fake data Dx′ is forced to have high energy. This loss function (1) is
possibly the simplest energy-based loss and is the same as that of EBGAN [ZML17]. However, for
the DEAN framework, other energy-based losses can also be adopted, such as the losses in calibrated
EBGAN [DAB+17], BEGAN [BSM17] and MAGAN [WCCD17].

When the network parameters θ∗e are optimized, we can define a probability distribution

p(x; θ∗e) =
1

Zθ∗e
exp(−E(x; θ∗e)).

We take two cases of E(x; θe) as examples. First, we consider the Gaussian-Bernoulli restricted
Boltzmann machine (RBM) [HS06], which is a hidden variable graphical model consisting of a
continuous observable variable, x ∈ Rd, and a binary hidden variable, r ∈ {±1}dh1. We write

E(x; θe) =
1

2
‖x‖2 − bTx− ς(BTx+ c),

1 The joint probability distribution of x and r is p(x, r) = 1
Zθe

exp(xTBr + bTx+ cTx− 1
2
‖x‖2).
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where θe = {b, B, c} and ς(v) =
∑n
i=1 log(exp(vi) + exp(−vi)). For optimized θ∗e , we have

p(x; θ∗e) =
1

Zθ∗e
exp(−E(x; θ∗e)).

Second, we consider a deep auto-encoder as a more complex energy model

E(x; θ) = ‖x−AE(x; θe)‖,

where AE(x; θe) denotes a deep auto-encoder parameterized by θe. For the optimized parameters θ∗e ,
we can define

p(x; θ∗e) =
1

Zθ∗e
exp(−E(x; θ∗e)).

In the implicit generator network of DEAN shown in the next section, we will introduce a score
function [Hyv05] to avoid calculating the partition function Zθ,

s(x, θ) = ∇x log p(x, θ) = −∇xE(x, θ∗e),

since Zθ is independent of x. We will fully exploit the knowledge of the distribution p by introducing
the Stein operator [S+72, OGC17]. It is the knowledge of p that distinguishes the GOF test from the
two-sample test, and makes the DEAN paradigm fundamentally different from the existing GANs.

4.2 GOF-driven Generator Network

We present the implicit generative network (IGN) of DEAN, which is trained by minimizing a GOF
test statistic between the energy-based distribution p(x; θ∗e) learned by the EGN and the generated
(fake) data, such that the underlying distribution of the generated data is close to p(x; θ∗e).

We first introduce the Stein operator [S+72, OGC17], which depends on the distribution p on-
ly through logarithmic derivatives. A Stein operator Tp takes a multivariate function f(x) =
(f1(x), . . . , fd(x))T ∈ Rd as input and outputs a function (Tpf)(x) : Rd → R. The function Tpf
has the key property that, for all fs in an appropriate function class, Ex∼q[(Tpf)(x)] = 0 if and only
if p = q. Thus, this expectation can be used to test the goodness-of-fit: how well a model distribution
p fits a given set of samples {xi}ni=1 ⊂ X ⊆ Rd from an unknown distribution q.

We consider the function class Fd := F × · · · × F , where F is a unit-norm ball in a universal
RKHS. Assume that fi ∈ F for all i = 1, . . . , d such that f ∈ Fd with the inner product 〈f, g〉Fd :=∑d
i=1〈fi, gi〉F for g ∈ Fd. According to the reproducing property of F , fi(x) = 〈fi, κ(x, ·)〉F , and

∂κ(x,·)
∂xi

∈ F , we define ωp(x, ·) = ∂ log p(x)
∂x κ(x, ·) + κ(x,·)

∂x . Kernel Stein operator can be written as

(Tpf)(x) =

d∑
i=1

(
∂ log p(x)

∂xi
fi(x) +

∂fi(x)

∂xi

)
= 〈f, ωp(x, ·)〉Fd .

Now we introduce the kernel Stein discrepancy (KSD) [CSG16, LLJ16], which is formulated as

KSD[Fd, p,Dx] = sup
‖f‖Fd≤1

〈f,Ex∼qωp(x, ·)〉 := ‖g(·)‖Fd , (2)

where g(·) = Ex∼qωp(x, ·).

Let V = {v1, . . . , vJ} ⊂ Rd be random vectors drawn from a distribution, where J is a pre-defined
hyper-parameter. The statistic of the finite set Stein discrepancy (FSSD) [JXS+17] is defined as

FSSD[Fd, p,Dx] =
1

dJ

d∑
i=1

J∑
j=1

g2i (vj),

where g(·) is referred to as the Stein witness function, given in Equation (2).

In the following, we present a variant of FSSD as the loss function of the IGN of DEAN. Let
Ω(x) ∈ Rd×J , such that

Ω(x)i,j = ωp,i(x, vj)/
√
dJ, τ(x) = vec(Ω(x)) ∈ RdJ ,
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where vec(·) denotes the vectorization of matrices. The unbiased estimator of FSSD is defined as

F̂SSD
2
[Fd, p,Dx] =

2

n(n− 1)

∑
i<j

∆(xi, xj),

where ∆(x, y) = τ(x)Tτ(y). Without loss of generality, we will adopt F̂SSD
2
[p,Dx] as an abbrevia-

tion, since the function class Fd is fixed when the kernel is given.

Now we present a variant of F̂SSD
2
[p,Dx] as the loss function. The reason for introducing a variant

is as follows. According to Proposition 2 in [JXS+17], under the alternative hypothesis H1 : p 6= q,

nF̂SSD
2
∼
√
nN (0, σH1

) + nFSSD2,

if σH1 = 4µTΣqµ > 0, where µ = Ex∼q[τ(x)] and Σq = covx∼q[τ(x)] ∈ RdJ×dJ . From the

above equation, we know that nF̂SSD
2

is highly dependent on the dimension of the data: when the
dimension d increases, the dimension of Σq will also increase, and then the variance σH1

becomes
larger. When the variance becomes larger, the resulting values of the statistic will become unstable.
To alleviate the impact of dimension and stabilize the statistic, we introduce

vFSSD[p,Dx] =
1

σ̂H1

F̂SSD
2
[p,Dx]

as the variant of F̂SSD
2
[p,Dx] [JXS+17], where σ̂H1

is an empirical estimate of σH1
= 4µTΣqµ,

which is the empirical variance of the limiting distribution of
√
n
(

F̂SSD
2
− FSSD2

)
. Now we

define the loss function of the IGN as follows:

min
θg

max
ξ

vFSSDξ [p(x; θ∗e),Dx′ ] , (3)

where ξ =
{
{vi}Ji=1 , σk

}
denotes the hyper-parameters of vFSSD, including the kernel parameter

σk and J test locations {vi}Ji=1.

Remark: In Equation (3), the inner maximum is used to optimize the hyper-parameters ξ of IGN
itself. This is similar to the idea of Equation (3) in [LCC+17]. We can set random values for the
hyper-parameters ξ. If so, we solve the DEAN framework by alternately optimizing the loss function
of EGN (Equation (1)) and the loss function of IGN (Equation (3)) with fixed ξ. However, maximizing
Equation (3) with respect to the hyper-parameters ξ can increase the test power of vFSSD2, which
will eventually force the IGN to produce more realistic-looking images.

Therefore, we present the following two objectives, (4) and (5), to optimize Equation (3) and improve
the test power of DEAN.

max
ξ

vFSSDξ [p(y; θ∗e),Dx′∗ ] , (4)

where Dx′∗ =
{
x′∗i := G(zi; θ

∗
g)
}n
i=1

and G(zi; θ
∗
g) is a deep network with the optimized parameter

θ∗g . The hyper-parameters ξ =
{
{vi}Ji=1 , σk

}
will be optimized in Equation (4).

min
θg

vFSSDξ∗ [p(y; θ∗e),Dx′ ] , (5)

where ξ∗ =
{
{v∗i }

J
i=1 , σ

∗
k

}
denotes the optimized hyper-parameters, and the parameters θg for

Dx′ = {x′i := G(zi; θg)}ni=1 will be optimized.

In summary, DEAN is solved by alternately optimizing Equation (1) and Equation (3); Equation (3)
is solved by alternatively optimizing Equation (4) and Equation (5), if necessary. It is a two-level
alternative optimization procedure. The energy-based probability p(x; θe∗), playing the role of a
discriminator, is trained to provide low energy to the real data, and high energy to the fake data
produced by the IGN G(z, θg). The IGN is trained by minimizing vFSSD between the generated data

2Please refer to Proposition 4 of [JXS+17].
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and p(x; θ∗e), such that the underlying distribution of the generated data gradually becomes closer to
p(x; θ∗e) that fits the real data.

Finally, we characterize the solutions of DEAN. Let px and px′ be the distributions of real and fake
data; pe denotes the energy-based distribution. In DEAN, pe is a bridge connecting px and px′ . For
the IGN, the network is trained to have px′ equal to pe. Please refer to Theorem 1, which can be
easily proved based on Theorem 1 of [JXS+17]. For the EGN, pe is learned to estimate px. Please see
Theorem 2, which can be proved according to Theorem 1 of [ZML17] and Theorem 1 of [GPAM+14]
with fixed px′ . Different from GANs, which are implicit generative models (IGMs), DEAN can
explicitly estimate the underlying distribution of the real data after estimating θe and θg .

Theorem 1 We assume that Dx′ is drawn from px′ . If κ is a universal and analytic kernel;
Ea∼px′Eb∼pe

[
sT(a)s(b)κ(a, b) + sT(b)∇aκ(a, b) + sT(a)∇bκ(a, b) +

∑d
i=1

∂2κ(a,b)
∂ai∂bi

]
< ∞

with s(a) = ∇a log pe(a); Ea∼px′‖∇a log pe(a)−∇a log px′(a)‖2 <∞; lim‖a‖→∞ pe(a)g(a) =
0, where g(·) is given in Eq. (2) in Section 4.2; for any J ≥ 1, almost surely FSSD[pe,Dx′ ] = 0 if
and only if px′ = pe.

Theorem 2 Let Λ(θe) = E(x; θe) +
[
γ − E

(
G(z; θ∗g); θe

)]+
. The minimum of Λ(θe) is achieved if

and only if pe = px. With the optimized θ∗e ,
∫
x,z

Λ(θ∗e)px(x)pz(z)dxdz = γ.

5 Experiments

Here, we conduct experiments to evaluate the performance of the proposed DEAN as compared with
the existing GAN models.

We compared five related GAN models, DCGAN [RMC16], EBGAN [MLS+17], WGAN-GP
[SGZ+16], MMD-GAN [LCC+17, BSAG18] and Scaled MMD-GAN (SMMD-GAN) [ASBG18].

The evaluations are conducted on three popular datasets, including MNIST [LBBH98] (70,000
images, 28 × 28), CIFAR-10 [KH09] (60,000 images, 32 × 32), and CelebA [YLLT15] (202,599
face images, resized and cropped to 160× 160).

For MNIST and CIFAR-10, the IGN of DEAN adopts a DCGAN generator [RMC16] with vFSSD
as the loss function. An auto-encoder with convolutional layers is adopted as the EGN of DEAN
(analogous to the discriminators of the existing GANs). The loss of the discriminator is defined in (1),
where we set γ = 1 as in [ZML17], and E(x; θ) = ‖x−AE(x; θe)‖3. For CelebA, we use a ResNet
as the IGN and an auto-encoder as the EGN. The input noise vector z ∈ R128 for the generator (IGN)
is independently drawn from a standard normal distribution.

(a) Fixed ξ (b) Optimized ξ (c) Fixed ξ (d) Optimized ξ

Figure 1: Images generated by DEAN with fixed and optimized hyper-parameters ξ on MNIST and
CIFAR-10.

Kernel selection is import to the performance of kernel methods [DL14b, DL14a, DL17, LLD+18,
LLD+18, DLL+19a, LLJ+19]. We introduce the mixture of linear and rational quadratic functions
given in [BSAG18] as kernel functions for the DEAN framework: κdot+rq(x, y) = κdot(x, y) +

κrq(x, y), κdot = 〈x, y〉, κrq(x, y) =
∑
α∈A κ

rq
α (x, y), κrqα (x, y) =

(
1 + ‖x−y‖2

2α

)−α
, where

3We also adopted RBM as the energy function at the initial stage. However, the performance of DEAN with
RBM is not comparable to that with autoencoder, so we discarded the results.
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A = {0.2, 0.5, 1, 2, 5}. If we simply calculate pixel-level kernels, the performance is poor due
to the high dimension of the images. Following [LCC+17], we consider kernels defined on
top of a low-dimensional representation φθ : X → Rs, which implies that κdot+rqθ (x, y) =

κdot+rq(φθ(x), φθ(y)). In DEAN, we adopt the output of the inner layer of the auto-encoder as
the low-dimensional representation φθ. We set the number of test locations J = 5 to compute the
value of vFSSD.

(a) DCGAN (b) WGAN-GP (c) EBGAN

(d) MMD-GAN (e) SMMD-GAN (f) DEAN

Figure 2: Faces generated by different GAN models trained on CelebA.

All models are trained on an NVIDIA Tesla V100 GPU. We adopt five EGN updates per IGN
step. For IGN, we optimize the hyper-parameter ξ by Equation (4) for every update. We use initial
learning rates of 0.0001 for MNIST, CIFAR-10 and CelebA. We use the Adam optimizer [KB15]
with β1 = 0.5, β2 = 0.9.

We show the images generated by DEAN trained on MNIST and CIFAR-10 in Figure 1. We have two
observations: a) DEAN can produce genuine-looking images; b) the quality of the images generated
with optimized hyper-parameter ξ is better than that with fixed hyper-parameter. The generated
images trained on CelebA are shown in Figure 2. We can find that faces generated by DEAN are
realistic-looking. In the compared methods, the face quality of SMMD-GAN is better than that
of other GANs. However, the existing MMD loss may discourage the learning of fine details in
data [WSH19]. Therefore, higher discriminability of the loss function and automatically tunable
hyper-parameters of DEAN may help to learn fine details of images.

6 Conclusions

In this paper, we established the connection between the goodness-of-fit (GOF) test and generative
adversarial learning, and proposed a new adversarial learning paradigm. It is a game between two
generative networks, fundamentally different from the existing GANs principled on two-sample
tests, which may open the door for research into generative-to-generative adversarial learning models.
Empirical evaluations have shown that DEAN can achieve high quality generations as compared to the
state-of-the-art approaches. Besides GOF-test GANs, in the near future, we will study independence-
test GANs via Hilbert Schmidt independence criterion (HSIC) [GFT+08].
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