
Under review as a conference paper at ICLR 2019

A FAST QUASI-NEWTON-TYPE METHOD FOR LARGE-
SCALE STOCHASTIC OPTIMISATION

Anonymous authors
Paper under double-blind review

ABSTRACT

During recent years there has been an increased interest in stochastic adaptations
of limited memory quasi-Newton methods, which compared to pure gradient-
based routines can improve the convergence by incorporating second order in-
formation. In this work we propose a direct least-squares approach conceptu-
ally similar to the limited memory quasi-Newton methods, but that computes the
search direction in a slightly different way. This is achieved in a fast and numer-
ically robust manner by maintaining a Cholesky factor of low dimension. This is
combined with a stochastic line search relying upon fulfilment of the Wolfe con-
dition in a backtracking manner, where the step length is adaptively modified with
respect to the optimisation progress. We support our new algorithm by provid-
ing several theoretical results guaranteeing its performance. The performance is
demonstrated on real-world benchmark problems which shows improved results
in comparison with already established methods.

1 INTRODUCTION

In learning algorithms we often face the classical and hard problem of stochastic optimisation where
we need to minimise some non-convex cost function f(x)

min
x∈Rd

f(x), (1)

when we only have access to noisy evaluations of the function and its gradients. We take a particular
interest in situations where the number of data and/or the number of unknowns d is very large.

The importance of this problem has been increasing for quite some time now. The reason is simple:
many important applied problems ask for its solution, including most of the supervised machine
learning algorithms when applied to large-scale settings. There are two important situations where
the non-convex stochastic optimisation problem arise. Firstly, for large-scale problems it is often
prohibitive to evaluate the cost function and its gradient on the entire dataset. Instead, it is divided
into several mini-batches via subsampling, making the problem stochastic. This situation arise in
most applications of deep learning. Secondly, when randomised algorithms are used to approxi-
mately compute the cost function and its gradients the result is always stochastic.

Our contributions are: 1. A new stochastic line search algorithm allowing for adaptive step-lengths
akin to what is done in the corresponding state-of-the-art deterministic optimisation algorithms. This
is enabled via a stochastic formulation of the first Wolfe condition. 2. We provide a new and efficient
way of incorporating second-order (curvature) information into the stochastic optimiser via a direct
least-squares approach conceptually similar to the popular limited memory quasi-Newton methods.
3. To facilitate a fast and numerically robust implementation we have derived tailored updating of
a small dimension Cholesky factor given the new measurement pair (with dimension equal to the
memory length). 4. We support our new developments by establishing several theoretical properties
of the resulting algorithm. The performance is also demonstrated on real-world benchmark problems
which shows improved convergence properties over current state-of-the-art methods.

2 RELATED WORK

Due to its importance, the stochastic optimisation problem is rather well studied by now. The first
stochastic optimisation algorithm was introduced by Robbins & Monro (1951). It makes use of first-

1



Under review as a conference paper at ICLR 2019

order information only, motivating the name stochastic gradient (SG), which is the contemporary
term (Bottou et al., 2018) for these algorithms, originally referred to as stochastic approximation.
Interestingly most SG algorithms are not descent methods since the stochastic nature of the update
can easily produce a new iterate corresponding to an increase in the cost function. Instead, they are
Markov chain methods in that their update rule defines a Markov chain.

The basic first-order SG algorithms have recently been significantly improved by the introduction of
various noise reduction techniques, see e.g. (Johnson & Zhang, 2013; Schmidt et al., 2013; Konečný
& Richtárik, 2017; Defazio et al., 2014).

The well-known drawback of all first-order methods is the lack of curvature information. Analo-
gously to the deterministic setting, there is a lot to be gained in extracting and using second-order
information that is maintained in the form of the Hessian matrix. The standard quasi-Newton method
is the BFGS method, named after its inventors (Broyden, 1967; Fletcher, 1970; Goldfarb, 1970;
Shanno, 1970). In its basic form, this algorithm does not scale to the large-scale settings we are
interested in. The idea of only making use of the most recent iterates and gradients in forming the
inverse Hessian approximation was suggested by Nocedal (1980) and Liu & Nocedal (1989). The
resulting L-BFGS method is computationally cheaper with a significantly reduced memory foot-
print. Due to its simplicity and good performance, this has become one of the most commonly
used second-order methods for large-scale problems. Our developments makes use of the same trick
underlying L-BFGS, but it is carefully tailored to the stochastic setting.

Over the past decade we have witnessed increasing capabilities of these so-called stochastic quasi-
Newton methods, the category to which our developments belong. The work by Schraudolph et al.
(2007) developed modifications of BFGS and its limited memory version. There has also been a
series of papers approximating the inverse Hessian with a diagonal matrix, see e.g. Bordes et al.
(2009) and Duchi et al. (2011). The idea of exploiting regularisation together with BFGS was
successfully introduced by Mokhtari & Ribeiro (2014). Later Mokhtari & Ribeiro (2015) also de-
veloped a stochastic L-BFGS algorithm without regularisation. The idea of replacing the stochastic
gradient difference in the BFGS update with a subsampled Hessian-vector product was recently
introduced by Byrd et al. (2016), and Wang et al. (2017) derived a damped L-BFGS method.

Over the past five years we have also seen quite a lot of fruitful activity in combining the stochas-
tic quasi-Newton algorithms with various first-order noise reduction methods (Moritz et al., 2016;
Gower et al., 2016). A thorough and forward-looking overview of SG and its use within a modern
machine learning context is provided by Bottou et al. (2018). It also includes interesting accounts
of possible improvements along the lines of first-order noise reduction and second-order methods.

It is interesting—and perhaps somewhat surprising—to note that it is only very recently that stochas-
tic line search algorithms have started to become available. One nice example is the approach pro-
posed by Mahsereci & Hennig (2017) which uses the framework of Gaussian processes and Bayesian
optimisation. The step length is chosen that best satisfies a probabilistic measure combining reduc-
tion in the cost function with satisfaction of the Wolfe conditions. Conceptually more similar to our
procedure is the line search proposed by Bollapragada et al. (2018), which is tailored for problems
that are using sampled mini-batches, as is common practice within deep learning.

3 STOCHASTIC LINE SEARCH

In deterministic line search algorithms we first compute a search direction pk and then decide how
far to move along that direction according to

xk+1 = xk + αkpk, (2)

where αk > 0 is referred to as the step length. The search direction is of the form

pk = −Hkgk, (3)

where Hk denotes an approximation of the inverse Hessian matrix. The question of how far to move
in this direction can be framed as the following scalar minimisation problem

min
α
f(xk + αpk), α > 0. (4)

2



Under review as a conference paper at ICLR 2019

The most common way of dealing with this problem is to settle for a possibly sup-optimal solution
that guarantees at least a sufficient decrease. Such at solution can be obtained by selecting a step
length αk that satisfies the following inequality

f(xk + αpk) ≤ f(xk) + cαkg
T
k pk, (5)

where c ∈ (0, 1). The above condition is known as the first Wolfe condition (Wolfe, 1969; 1971) or
the Armijo condition (Armijo, 1966).

While deterministic line search algorithms have been well established for a long time, their stochas-
tic counterparts are still to a large extent missing. Consider the case when the measurements of the
function and its gradient are given by

f̂k = f(xk) + ek, ĝk = gk + vk, (6)

where gk , ∇f(x)|x=xk
, and ek ∈ R and vk ∈ Rd×1 denote noise on the function and gradient

evaluations, respectively. Furthermore we assume that

E [ek] = b, Cov[ek] = σ2
f , E [vk]= 0, Cov[vk] = σ2

gI. (7a)

The challenge is that since f̂k and ĝk are random variables it is not obvious how to select a step
length αk that—in some sense—guarantees a descent direction.

We explore the idea of requiring equation 5 to be fulfilled in expectation when the exact quantities
are replaced with their stochastic counterparts,

E
[
f̂(xk + αp̂k)− f̂(xk)− cαkĝTk p̂k

]
≤ 0, (8)

where p̂k = −Hkĝk. This is certainly one way in which we can reason about the Wolfe condition
in the stochastic setting we are interested in. Although satisfaction of equation 8 does not leave any
guarantees when considering a single measurement, it still serves as an important property that could
be exploited to provide robustness for the entire optimisation procedure. To motivate our proposed
algorithm we hence start by establishing the following results.

lemma 1 (Stochastic Wolfe condition 1) Assume that i) the gradient estimates are unbiased , ii)
the cost function estimates are possibly biased , and iii) a descent direction is ensured in expectation
E
[
p̂Tk ĝk

]
< 0. Then (for small α:s)

E
[
f̂(xk + αp̂k)

]
≤ E

[
f̂(xk) + cαkĝ

T
k p̂k

]
, where 0 < c < c̄ =

pTkgk
pTkgk − σ2

g Tr (H)
. (9)

Proof 1 See Appendix A.1.

lemma 2 There exists a step length αk > 0 such that E
[
f̂(xk + αkp̂k)− f̂(xk)

]
< 0.

Proof 2 See Appendix A.2

Relying upon these results we propose a line search based on the idea of repeatedly decreasing the
step length αk until the stochastic version of the first Wolfe condition is satisfied. Pseudo-code for
this procedure is given in Algorithm 1. An input to this algorithm is the search direction p̂k, which
can be computed using any preferred method. The step length is initially set to be the minimum of
the "natural" step length 1 and the iteration dependent value ξ/k. In this way the initial step length
is kept at 1 until k > ξ, a point after which it is decreased at the rate 1/k. Then we check whether
the new point xk + αp̂k satisfies the stochastic version of the first Wolfe condition. If this is not
the case, we decrease αk with the scale factor ρ. This is repeated until the condition is met, unless
we hit an upper bound max{0, τ − k} on the number of backtracking iterations, where τ > k is a
positive integer. With this restriction the decrease of the step length is limited, and when k ≥ τ we
use the initial step length no matter if the Wolfe condition is satisfied or not. The purpose of ξ is to
facilitate convergence by reducing the step length as the minima is approached. The motivation of
τ comes from arguing that the backtracking loop does not contribute as much when the step length
is small, and hence it is reasonable to provide a limit on its reduction.

3



Under review as a conference paper at ICLR 2019

Algorithm 1 Stochastic backtracking line search

Require: Iteration index k, spatial point xk, search direction p̂k, scale factor ρ ∈ (0, 1), reduction
limit ξ ≥ 1, backtracking limit τ > 0.

1: Set the initial step length αk = min{1, ξ/k}
2: Set i = 1
3: while f̂(xk + αp̂k) > f̂(xk) + cαkĝ

T
k p̂k and i ≤ max{0, τ − k} do

4: Reduce the step length αk ← ραk
5: Set i← i+ 1
6: end while
7: Update xk+1 = xk + αkp̂k

4 COMPUTING THE SEARCH DIRECTION

In this section we address the problem of computing a search direction based on having a limited
memory available for storing previous gradients and associated iterates. The approach we adopt
is similar to limited memory quasi-Newton methods, but here we employ a direct least-squares
estimate of the inverse Hessian matrix rather than more well-known methods such as damped L-
BFGS and L-SR1. In contrast to traditional quasi-Newton methods, this approach does not strictly
impose neither symmetry or fulfilment of the secant condition. It may appear peculiar to relax
these requirements. However, in this setting is not obvious that enforced symmetry necessarily
produces a better search direction. Furthermore, the secant condition relies upon the rather strong
approximation that the Hessian matrix is constant between two subsequent iterations. Treating the
condition less strictly might be helpful when that approximation is poor, perhaps especially in a
stochastic environment. We construct a limited-memory inverse Hessian approximation in Section
4.1 and show how to update this representation in Section 4.2. In Section 4.3 we discuss a particular
design choice associated with the update and Section 4.4 provides a means to ensure that a descent
direction is calculated. The complete algorithm combining the procedure presented in this section
with the line search routine in Algorithm 1 is given in Appendix C.

4.1 QUASI-NEWTON INVERSE HESSIAN APPROXIMATIONS

According to the secant condition (see e.g. Fletcher (1987)), the inverse Hessian matrix Hk should
satisfy

Hkyk = sk, (10)

where yk = gk − gk−1 and sk = xk − xk−1. Since there are generally more unknown values in Hk

than can be determined from yk and sk alone, quasi-Newton methods update Hk from a previous
estimate Hk−1 by solving regularised problems of the type

Hk = arg min
H

‖H −Hk−1‖2F,W s.t. H = HT, Hyk = sk, (11)

where ‖X‖2F,W = ‖XW‖2F = trace(WTXTXW ) and the choice of weighting matrix W results
in different algorithms (see Hennig (2015) for an interesting perspective on this). Examples of the
most common quasi-Newton methods are given in Appendix B.

We employ a similar approach and determine Hk as the solution to the following regularised least-
squares problem

Hk = arg min
H
‖HYk − Sk‖2F + λ‖H − H̄k‖2F , (12)

where Yk and Sk hold a limited number of past ŷk’s and sk’s according to

Yk , [ŷk−m+1, . . . , ŷk] , Sk , [sk−m+1, . . . , sk] . (13)

Here, m << d is the memory limit and ŷk = ĝk − ĝk−1 is an estimate of yk. The regulator matrix
H̄k acts as a prior on H and can be modified at each iteration k. The parameter λ > 0 is used to
control the relative cost of the two terms in equation 12. It can be verified that the solution to the
above least-squares problem (12) is given by

Hk =
(
λH̄k + SkY

T
k

) (
λI + YkY

T
k

)−1
, (14)

4



Under review as a conference paper at ICLR 2019

where I denotes the identity matrix. The above inverse Hessian estimate can be used to generate a
search direction in the standard manner by scaling the negative gradient, that is

p̂k = −Hkĝk. (15)

However, for large-scale problems this is not practical since it involves the inverse of a large matrix.
To ameliorate this difficulty, we adopt the standard approach by storing only a minimal (limited
memory) representation of the inverse Hessian estimate Hk. To describe this, note that the dimen-
sions of the matrices involved are

Hk ∈ Rd×d, Yk ∈ Rd×m, Sk ∈ Rd×m. (16)

We can employ the Sherman–Morrison–Woodbury formula to arrive at the following equivalent
expression for Hk

Hk =
(
H̄k + λ−1SkY

T
k

) [
I − Yk

(
λI + Y T

k Yk
)−1

Y T
k

]
. (17)

Importantly, the matrix inverse
(
λI + Y T

k Yk
)−1

is now by construction a positive definite matrix of
size m×m. Therefore, we construct and maintain a Cholesky factor of λI + Y T

k Yk since this leads
to efficient solutions. In particular, if we express this matrix via a Cholesky decomposition

RT
kRk = λI + Y T

k Yk, (18)

where Rk ∈ Rm×m is an upper triangular matrix, then the search direction p̂k = −Hkĝk can be
computed via

p̂k = −H̄kzk − λ−1Sk(Y T
k zk), zk = ĝk − Ykwk, wk = R−1k

(
R−Tk

(
Y T
k ĝk

))
. (19)

Note that the above expressions for p̂k involve first computing wk, which itself involves a compu-
tationally efficient forward-backward substitution (recalling that Rk is an m ×m upper triangular
matrix and the memory length m is typically 10–50). Furthermore, H̄k is typically diagonal so that
H̄kzk is also efficient to compute. The remaining operations involve four matrix-vector products
and two vector additions. Therefore, for problems where d >> m then the matrix-vector products
will dominate the computational cost.

Constructing Rk can be achieved in several ways. The so-called normal-equation method constructs
the (upper triangular) part of λI + Y T

k Yk and then employs a Cholesky routine, which produces Rk
inO(nm(m+1)

2 +m3/3) operations. Alternatively, we can computeRk by applying Givens rotations

or Householder reflections to the matrixMk =
[√
λI Y T

k

]T
. This costsO(2m2((n+m)−m/3))

operations, and is therefore more expensive, but typically offers better numerical accuracy (Golub
& Van Loan, 2012).

4.2 FAST AND ROBUST INCLUSION OF NEW MEASUREMENTS

In order to maximise the speed, we have developed a method for updating a Cholesky factor given
the new measurement pair (sk+1, ŷk+1). Suppose we start with a Cholesky factor Rk at iteration k
such that

RT
kRk = λI + Y T

k Yk. (20)

Assume, without loss of generality, that Yk and Sk are ordered in the following manner

Yk , [Y1, ŷk−m+1,Y2] , Sk , [S1, sk−m+1,S2] , (21)

where Y1, Y2, S1 and S2 are defined as

Y1 , [ŷk−m+`+1, . . . , ŷk] , Y2 , [ŷk−m+2, . . . , ŷk−m+`] , (22a)

S1 , [sk−m+`+1, . . . , sk] , S2 , [sk−m+2, . . . , sk−m+`] , (22b)

and ` is an appropriate integer so that Yk and Sk have m columns. The above ordering arises from
“wrapping-around” the index when storing the measurements. We create the new Yk+1 and Sk+1 by
replacing the oldest column entries, ŷk−m+1 and sk−m+1, with the latest measurements ŷk+1 and
sk+1, respectively, so that

Yk+1 , [Y1, ŷk+1,Y2] , Sk+1 , [S1, sk+1,S2] . (23)

5



Under review as a conference paper at ICLR 2019

The aim is to generate a new Cholesky factor Rk+1 such that

RT
k+1Rk+1 = λI + Y T

k+1Yk+1. (24)

To this end, let the upper triangular matrix Rk be written conformally with the columns of Yk as

Rk =

[R1 r1 R2

· r2 r3
· · R4

]
, (25)

so thatR1 andR2 have the same number of columns as Y1 and Y2, respectively. Furthermore, r1 is
a column vector, r2 is a scalar and r3 is a row vector. Therefore,

RT
kRk =

RT
1R1 RT

1 r1 RT
1R2

· r22 + rT1 r1 rT1R2 + r2r3
· · RT

4R4 +RT
2R2 + rT3 r3


=

λI + YT
1 Y1 YT

1 ŷk−m+1 YT
1 Y2

· λ+ ŷTk−m+1ŷk−m+1 ŷTk−m+1Y2
· · λI + YT

2 Y2

 . (26)

By observing a common structure for the update λI + Y T
k+1Yk+1 it is possible to write

λI + Y T
k+1Yk+1 =

λI + YT
1 Y1 YT

1 ŷk+1 YT
1 Y2

· λ+ ŷTk+1ŷk−m+1 ŷTk+1Y2
· · λI + YT

2 Y2


=

RT
1R1 RT

1 r4 RT
1R2

· r25 + rT4 r4 rT4R2 + r5r6
· · RT

6R6 +RT
2R2 + rT6 r6

 , (27)

where r4, r5 and r6 are determined by

r4 = R−T1 (YT
1 ŷk+1), r5 =

(
λ+ ŷTk+1ŷk+1 − rT4 r4

)1/2
, r6 =

1

r5

(
ŷTk+1Y2 − rT4R2

)
. (28)

The final termR6 can be obtained by noticing that

RT
6R6 +RT

2R2 + rT6 r6 = RT
4R4 +RT

2R2 + rT3 r3, (29)

which implies

RT
6R6 = RT

4R4 − rT6 r6 + rT3 r3. (30)

ThereforeR6 can be obtained in a computationally very efficient manner by down-dating and updat-
ing the Cholesky factor R4 with the rank-1 matrices rT6 r6 and rT3 r3, respectively (see e.g. Section
12.5.3 in Golub & Van Loan (2012)).

4.3 SELECTING H̄k

There is no magic way of selecting the prior matrix H̄k. However, in practise it has proved very
useful to employ a simple strategy of H̄k , γkI, where the positive scalar γk > 0 is adaptively
chosen in each iteration. As a crude measure of progress we adopt the following rule

γk =

{
κγk−1, if αk−1 = 1,
γk−1/κ, if αk−1 < 1/ρq,
γk−1, otherwise,

(31)

where κ ≥ 1 is a scale parameter, and q corresponds to the number of backtracking loops in the
line search; the values κ = 1.3 and q = 3 were found to work well in practise. The intuition
behind equation 31 is that if no modification of the step length αk is made, we can allow for a
more "aggressive" regularisation. Note that a low γk is favouring small elements in Hk. Since
p̂k = −Hĝk, this limits the magnitude of p̂k and the change ‖xk+1− xk‖ is kept down. Hence, it is
good practice to set the initial scaling γ0 relatively small and then let it scale up as the optimisation
progresses. Furthermore, we should point out that a diagonal H̄k comes with an efficiency benefit,
since the product H̄kzk in equation 19 then is obtained as the element-wise product between two
vectors.

6



Under review as a conference paper at ICLR 2019

4.4 ENSURING A DESCENT DIRECTION

In deterministic quasi-Newton methods, the search direction pk must be chosen to ensure a descent
direction such that pTkgk < 0, since this guarantees reduction in the cost function for sufficiently
small step lengths αk. Since pk = −Hgk, we have that pTkgk = −gTkHkgk which is always negative
if the approximation Hk of the inverse Hessian is positive definite. Otherwise, we can modify the
search direction by subtracting a multiple of the gradient pk ← pk − βkgk. This is motivated by
noticing that

(pk − βgk)Tgk = pTkgk − βkgTk gk, (32)

which always can be made negative by selecting βk large enough, i.e. if

βk >
pTkgk
gTk gk

. (33)

In the stochastic setting, the condition above does not strictly enforce a descent direction. Hence
the search direction p̂k as determined by equation 15 is not a descent direction in general. However,
ensuring that the condition is fulfilled in expectation is necessary since this is one of the assumptions
made in lemma 1. Hence, we now establish the following result.

lemma 3 If

βk >
pTkgk − σ2

g Tr (H)

gTk gk + dσ2
g

, (34)

then

E
[
(p̂k − βkĝk)Tĝk

]
< 0. (35)

Proof 3 See Appendix A.3.

In the practical setting we can not use equation 34 as it is, since we do not have access to gk and
pk, nor the noise variance σ2

g . Instead we suggest a pragmatic approach in which these quantities

are replaced by their estimates ĝk, p̂k and σ̂2
g . The noise estimate σ̂2

g could either be regarded a
design parameter or empirically calculated from one or more sets of repeatedly collected gradient
measurements. Nevertheless, picking βk sufficiently large ensures fulfilment of equation 32 and
equation 35 simultaneously.

5 NUMERICAL EXPERIMENTS

Let us now put our new developments to the test on a suite of problems from different categories
to exhibit different properties and challenges. In Section 5.1 we study a commonly used bench-
mark, namely the collection of logistic classification problems described by Chang & Lin (2011)
in the form of their library for support vector machines (LIBSVM). In Section 5.2 we consider an
optimisation problem arising from the use of deep learning to solve the classical machine learning
benchmark MNIST1, where the task is to classify images of handwritten digits. Also, we test our
method on training a neural network on the CIFAR-10 dataset (Krizhevsky, 2009).

In our experiments we compare against relevant state-of-the-art methods. All experiments were run
on a MacBook Pro 2.8GHz laptop with 16GB of RAM using Matlab 2018b. All routines where
programmed in C and compiled via Matlab’s mex command and linked against Matlab’s Level-1,2
BLAS libraries. More details about the experiments are available in Appendix D. The source code
used to produce the results will be made freely available.

5.1 LOGISTIC LOSS AND A 2-NORM REGULARISER

The task here is to solve eight different empirical risk minimisation problems using a logistic loss
function with an L2 regulariser (two are shown here and all eight are profiled in Appendix D).

1yann.lecun.com/exdb/mnist/

7

yann.lecun.com/exdb/mnist/


Under review as a conference paper at ICLR 2019

(a) covtype (b) spam (c) CIFAR (d) MNIST

Figure 1: Performance on two classification tasks using a logistic loss with a two-norm regulariser
((a) and (b)), and two deep convolutional neural networks (CNNs) used for recognising images
of handwritten digits from the MNIST data (c), and classification of the images in the CIFAR-10
data (d). Lighter shaded lines indicate individual runs, whereas the darker shaded line indicates the
average.

The data is taken from Chang & Lin (2011). These problems are commonly used for profiling
optimisation algorithms of the kind introduced in this paper, facilitating comparison with existing
state-of-the-art algorithms. More specifically, we have used a similar set-up as Gower et al. (2016),
which inspired this study. The chosen algorithm parameters for each case is detailed in Appendix D.

We compared our limited memory least-squares approach (denoted as LMLS) against two existing
methods from the literature, namely, the limited memory stochastic BFGS method after Bollapra-
gada et al. (2018) (denoted as LBFGS) and the stochastic variance reduced gradient descent (SVRG)
by Johnson & Zhang (2013) (denoted SVRG). Figures 1a and 1b show the cost versus time for 50
Monte-Carlo experiments.

5.2 DEEP LEARNING

Deep convolutional neural networks (CNNs) with multiple layers of convolution, pooling and non-
linear activation functions are delivering state-of-the-art results on many tasks in computer vision.
We are here borrowing the stochastic optimisation problems arising in using such a deep CNN to
solve the MNIST and CIFAR-10 benchmarks. The particular CNN structure used for the MNIST
example employs 5 × 5 convolution kernels, pooling layers and a fully connected layer at the end.
We made use of the publicly available code provided by Zhang (2016), which contains all the im-
plementation details. For the CIFAR-10 example, the network includes 13-layers with more than
150,000 weights, see Appendix D for details. The MATLAB toolbox MatConvNet (Vedaldi & Lenc,
2015) was used in the implementation. Figures 1c and 1d show the average cost versus time for
10 Monte-Carlo trials with four different algorithms: 1. the method developed here (LMLS), 2.
a stochastic limited memory BFGS method after Bollapragada et al. (2018) (denoted LBFGS), 3.
Adam developed by Kingma & Ba (2015), and 4. stochastic gradient (denoted SG). Note that all
algorithms make use of the same gradient code.

6 CONCLUSION AND FUTURE WORK

In this work we have presented a least-squares based limited memory optimisation routine that ben-
efits from second order information by approximating the inverse Hessian matrix. The procedure
is conceptually similar to quasi-Newton methods, although we do not explicitly enforce symmetry
or satisfaction of the secant condition. By regularising with respect to an inverse Hessian prior, we
allow for an adaptive aggressiveness in the search direction update. We have shown that the com-
putations can be made robust and efficient using tailored Cholesky decompositions, with a cost that
scales linearly in the problem dimension. Our method is designed for stochastic problems through
a line search that repeatedly decreases the step length so as to satisfy the first Wolfe condition in
expectation. Theoretical results have been established that support the proposed procedure. The
method shows improved convergence properties over existing algorithms when applied to bench-
mark problems of various size and complexity.

8



Under review as a conference paper at ICLR 2019

REFERENCES

L. Armijo. Minimization of functions having Lipschitz continuous first partial derivatives. Pacific
Journal of Mathematics, 16(1):1–3, 1966.

R. Bollapragada, D. Mudigere, J. Nocedal, H.-J. M. Shi, and P. T. P. Tang. A progressive batching
L-BFGS method for machine learning. In Proceedings of the 35th International Conference on
Machine Learning (ICML), Stockholm, Sweden, 2018.

A. Bordes, L. Bottou, and P. Gallinari. SGD-QN: Careful quasi-Newton stochastic gradient descent.
Journal of Machine Learning Research (JMLR), 10:1737–1754, 2009.

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning.
SIAM Review, 60(2):223–311, 2018.

C. G. Broyden. Quasi-Newton methods and their application to function minimization. Mathematics
of Computation, 21:368–381, 1967.

C. G. Broyden. The convergence of a class of double-rank minimization algorithms. Journal of the
Institute of Mathematics and Its Applications, 6(1):76–90, 1970.

R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer. A stochastic quasi-Newton method for large-
scale optimization. SIAM Journal on Optimization, 26(2):1008–1031, 2016.

C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2(3):27:1–27:27, 2011.

A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: a fast incremental gradient method with support
for non-strongly convex composite objectives. In Advances in Neural Information Processing
Systems (NIPS), Montréal, Canada, 2014.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research (JMLR), 12:2121–2159, 2011.

R. Fletcher. A new approach to variable metric algorithms. The computer journal, 13(3):317–322,
1970.

R. Fletcher. Practical methods of optimization. John Wiley & Sons, Chichester, UK, second edition,
1987.

D. Goldfarb. A family of variable metric updates derived by variational means. Mathematics of
Computation, 24(109):23–26, 1970.

G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins University Press, Baltimore,
fourth edition, 2012.

R. M. Gower, D. Goldfarb, and P. Richtarik. Stochastic block BFGS: squeezing more curvature out
of data. In Proceedings of the 33rd International Conference on Machine Learning (ICML), New
York, NY, USA, 2016.

P. Hennig. Probabilistic interpretation of linear solvers. SIAM Journal on Optimization, 25(1):
234–260, 2015.

R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance re-
duction. In Advances in Neural Information Processing Systems (NIPS), Lake Tahoe, NV, USA,
2013.

D. P. Kingma and J. Ba. Adam: a method for stochastic optimization. In Proceedings of the 3rd
international conference on learning representations (ICLR), San Diego, CA, USA, 2015.

J. Konečný and P. Richtárik. Semi-stochastic gradient descent methods. Frontiers in Applied Math-
ematics and Statistics, 3(9), 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

9



Under review as a conference paper at ICLR 2019

D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical Programming, 45(3):503–528, 1989.

M. Mahsereci and P. Hennig. Probabilistic line searches for stochastic optimization. Journal of
Machine Learning Research (JMLR), 18(119):1–59, 2017.

A. Mokhtari and A. Ribeiro. RES: regularized stochastic BFGS algorithm. IEEE Transactions on
Signal Processing, 62(23):6089–6104, 2014.

A. Mokhtari and A. Ribeiro. Global convergence of online limited memory BFGS. Journal of
Machine Learning Research (JMLR), 16:3151–3181, 2015.

P. Moritz, R. Nishihara, and M. I. Jordan. A linearly-convergent stochastic L-BFGS algorithm.
In The 19th International Conference on Artificial Intelligence and Statistics (AISTATS), Cadiz,
Spain, 2016.

J. Nocedal. Updating quasi-Newton matrices with limited storage. Mathematics of Computation, 35
(151):773–782, 1980.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations Research.
Springer, New York, USA, second edition, 2006.

H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical Statistics,
22(3):400–407, 1951.

M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average gradient.
Technical Report arXiv:1309.2388, arXiv preprint, 2013.

N. N. Schraudolph, J. Yu, and S. Günter. A stochastic quasi-Newton method for online convex
optimization. In Proceedings of the 11th international conference on Artificial Intelligence and
Statistics (AISTATS), 2007.

D. F. Shanno. Conditioning of quasi-Newton methods for function minimization. Mathematics of
Computation, 24(111):647–656, 1970.

A. Vedaldi and K. Lenc. Matconvnet – convolutional neural networks for matlab. In Proceeding of
the ACM Int. Conf. on Multimedia, 2015.

X. Wang, S. Ma, D. Goldfarb, and W. Liu. Stochastic quasi-Newton methods for nonconvex stochas-
tic optimization. SIAM Journal on Optimization, 27(2):927–956, 2017.

P. Wolfe. Convergence conditions for ascent methods. SIAM Review, 11(2):226–235, 1969.

P. Wolfe. Convergence conditions for ascent methods II: some corrections. SIAM Review, 13(2):
185–188, 1971.

Z. Zhang. Derivation of backpropagation in convolutional neural networks (CNN). github.com/
ZZUTK/An-Example-of-CNN-on-MNIST-dataset, 2016.

10

github.com/ZZUTK/An-Example-of-CNN-on-MNIST-dataset
github.com/ZZUTK/An-Example-of-CNN-on-MNIST-dataset


Under review as a conference paper at ICLR 2019

A PROOFS OF THE LEMMAS

A.1 THE FIRST STOCHASTIC WOLFE CONDITION

In the interest of a simple notation we note that we can drop the sub-index k from all variables since
all reasoning in this proof is for iteration k. We also drop x from the arguments and write f rather
than f(x), etc. However, we do make the randomness explicit, since this is crucial for arriving at the
correct answer. For example we write f̂z to indicate that the random variable z was used in comput-
ing the estimate of the function value at the iterate xk. This means that the noise contaminating the
measurement corresponds to the realisation of z.

Consider the stochastic version of the Wolfe condition

Ez,z′
[
f̂z′(x+ αp̂z)− f̂z(x)− cαp̂Tz ĝz

]
≤ 0, (36)

where the expected value is w.r.t. the randomness used in computing the required estimators as
indicated by z and z′. Using Taylor series we can for small step lengths α express f̂z′(x + αp̂z)
according to

f̂z′(x+ αp̂z) ≈ f̂z′ + αp̂Tz ĝz′ . (37)

Here it is crucial to note that the randomness in the above estimate stem from two different sources.
The search direction p̂z enters in the argument of the Taylor expansion which is why it has to be
computed before actually performing the Taylor expansion, implying that the randomness is due to
z and not z′ for the search direction. Based on equation 36 we have the following expression for the
stochastic Wolfe condition

Ez,z′
[
f̂z′ − f̂z − αp̂Tz ĝz′ + cαp̂Tz ĝz

]
≤ 0. (38)

Let b denote a possible bias in the cost function estimator, then we have that Ez′
[
f̂z′
]

= f + b and

Ez

[
f̂z

]
= f + b. Hence, the first two terms in equation 38 cancel and we have

c ≤
Ez,z′

[
p̂Tz ĝz′

]
Ez,z′ [p̂Tz ĝz]

=
Ez
[
p̂Tz
]

Ez′ [ĝz′ ]

Ez [p̂Tz ĝz]
=

pTg

Ez [p̂Tz ĝz]
. (39)

The denominator can be written as

Ez
[
p̂Tz ĝz

]
= Ez

[
−ĝTzHĝz

]
= −Ez

[
Tr
(
Hĝz ĝ

T
z

)]
= −Tr

(
H Ez

[
ĝz ĝ

T
z

])
. (40)

Using the definition of covariance we have that

Ez
[
ĝz ĝ

T
z

]
= Ez [ĝz] Ez

[
ĝTz
]

+ Covĝ = ggT + σ2
gI, (41)

where we in the last equality made use of the assumption that the gradients are unbiased and that
Covĝ = σgI . Summarising we have that

Ez
[
p̂Tz ĝz

]
= −Tr

(
HggT

)
− σ2

g Tr (H) = pTg − σ2
g Tr (H) , (42)

and hence we get

c ≤ pTg

pTg − σ2
g Tr (H)

. (43)

Recalling the assurance given in lemma 3 with the associated proof in Appendix A.3, we can always
modify p to guarantee that this bound is positive.

A.2 REDUCTION IN COST FUNCTION

In this section we show that there exists an α > 0 such that

Ez′
[
f̂z′(x+ αp)

]
< Ez

[
f̂z(x)

]
. (44)

11



Under review as a conference paper at ICLR 2019

We do this by studying the difference

Ez′
[
f̂z′(x+ αp)

]
− Ez

[
f̂z(x)

]
= Ez,z′

[
f̂z′(x+ αp)− f̂z(x)

]
, (45)

in which the first term can be expressed using a Taylor series according to

f̂z′(x+ αp̂z) = f̂z′ + αp̂Tz ĝz′ +O(α‖p̂z‖2). (46)

For small values of α we can discard the termO(α‖p̂z‖2) from this expression. Hence we have that

Ez,z′
[
f̂z′ + αp̂Tz ĝz′ − f̂z

]
= αEz,z′

[
p̂Tz ĝz′

]
= αEz

[
p̂Tz
]

Ez′ [ĝz′ ] = αpTg. (47)

Following from Section 4 we can ensure pTg to be negative, and hence equation 44 holds as long as
α is chosen small enough for the Taylor expansion to be a valid approximation.

A.3 ENSURING A DESCENT DIRECTION

Note that

Ez
[
(p̂z − βĝz)Tĝz

]
= Ez

[
p̂Tz ĝz

]
− β Ez

[
ĝTz ĝz

]
= Ez

[
−ĝTzHĝz

]
− β Ez

[
ĝTz ĝz

]
. (48)

Using equation 42 we have

Ez
[
−ĝTzHĝz

]
= −Tr

(
HggT

)
− σ2

g Tr (H) = pTg − σ2
g Tr (H) , (49)

and it directly follows from this that

Ez
[
ĝTz ĝz

]
= Ez

[
−ĝTz Iĝz

]
= gTg + dσ2

g . (50)

Hence

Ez
[
(p̂z − βĝz)Tĝz

]
= pTg − σ2

g Tr (H)− β
(
gTg + dσ2

g

)
, (51)

and we see that

Ez
[
(p̂z − βĝz)Tĝz

]
< 0⇔ β >

pTg − σ2
g Tr (H)

gTg + dσ2
g

. (52)

B QUASI-NEWTON METHODS

The historically most popular quasi-Newton method is given by the BFGS algorithm (Broyden,
1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970)

Hk+1 =

(
I − sky

T
k

yTk sk

)
Hk

(
I − yks

T
k

yTk sk

)
+
sks

T
k

yTk sk
. (53)

A closely related version is obtained if the optimisation in equation 11 is done with respect to the
Hessian matrix rather than to its inverse. This results in the so-called DFP formula

Hk+1 = Hk −
Hkyky

T
kHk

yTkHkyk
+
sks

T
k

yTk sk
. (54)

Both of these are rank 2 updates that ensure Hk to be positive definite, an attractive feature in the
sense that it guarantees a descent direction. However, it may cause problems in regions where the
true inverse Hessian is indefinite. Another well-known alternative is the symmetric rank 1 (SR1)
method

Hk = Hk−1 +
(sk −Hk−1yk)(sk −Hk−1yk)T

(sk −Hk−1yk)Tyk
. (55)

Apart from BFGS and DFP above, this is a rank 1 update that in general does not preserve positive
definiteness. For this reason it has received a particular interest within the so-called trust-region
framework, where its ability of producing indefinite inverse Hessian approximations is being re-
garded as a major strength (Nocedal & Wright, 2006).

12



Under review as a conference paper at ICLR 2019

A main drawback of quasi-Newton methods is that they scale poorly to large problems, since the
number of elements in Hk equals the square of the input dimension d. This has resulted in devel-
opments of so-called limited memory algorithms, which rely upon the idea of forming the search
direction pk directly without the need of storing the full matrix Hk. To that end a number m << d
of past differences y and s are being stored in memory. A notable member of this family is the
L-BFGS algorithm (Nocedal, 1980), which has been widely within large-scale optimisation. During
recent years, not at least due to the growing number of deep learning applications, there has been
an increasing interest in adapting deterministic limited memory methods to the stochastic setting
(Wang et al., 2017; Moritz et al., 2016; Gower et al., 2016; Schraudolph et al., 2007; Bordes et al.,
2009; Mokhtari & Ribeiro, 2015; Byrd et al., 2016; Bollapragada et al., 2018).

C RESULTING ALGORITHM

We summarise our ideas from Section 3 and 4 in Algorithm 2. The if-statement on line 5 is included
to provide a safe-guard against numerical instability.

D EXPERIMENT DETAILS

Details for the datasets used in Section 5 are listed in Table 1, including the parameter choices we
made in our algorithm. Here, b denotes the mini-batch size. The results of all logistic regression
experiments are collected in Figure 2 (including those already shown in Figure 1), and the neural
network results in Figures 1d and 1c are provided in a more readable size in Figure 3a and 3b.
Detailed information of the network structure in the CIFAR experiment is provided in the printout
shown in Figure 4.

The adaptive procedure of selecting the inverse Hessian prior H̄k did not have much impact in
most of the logistic regression examples, and thus it was kept constant H̄k = γ0I except for in the
covtype and URL problems. In the CIFAR and MNIST problems, however, the procedure was
found to be of significant importance.

Table 1: List of the datasets used in the experiments, where n denotes the size of the dataset (column
2) and d denotes the number of variables in the optimisation problem (column 3). The remaining
columns list our design parameters, including the mini-batch size b.

Problem n d b m λ ξ τ γ0

gisette 6 000 5 000 770 20 10−4 50 10 10
covtype 581 012 54 7 620 55 10−4 100 5 100
HIGGS 11 000 000 28 66 340 28 10−4 20 5 100
SUSY 3 548 466 18 5 000 18 10−4 50 10 100
epsilon 400 000 2 000 1 000 20 10−4 150 1 100
rcv1 20 242 47 236 710 10 10−4 50 10 600
URL 2 396 130 3 231 961 1548 5 10−4 200 50 100
spam 82 970 823 470 2048 2 10−4 150 10 200
MNIST 60 000 3898 1000 50 8 · 10−4 150 50 1
CIFAR 50 000 150 000 200 20 10−2 100 10 0.5

13



Under review as a conference paper at ICLR 2019

Algorithm 2 Stochastic quasi-Newton with line search
Require: An initial estimate x1, a maximum number of iterations kmax, memory limit m, regular-

isation parameter λ, scale factor ρ ∈ (0, 1), reduction limit ξ ≥ 1, backtracking limit τ > 0

1: Set k = 1
2: while k < kmax do
3: Obtain a measurement of the cost function and its gradient

f̂k = f(xk) + ek,

ĝk = gk + vk.

4: Set H̄k = γkI where

γk =

{
κγk−1, if αk−1 = 1,
γk−1/κ, if αk−1 < 1/ρq,
γk−1, otherwise.

5: if ŷTk sk > ε‖sk‖22 then
6: if k > m then
7: Form Yk and Sk by replacing the oldest vector-pairs in Yk−1 and Sk−1 with ŷk and sk
8: else
9: Form Yk and Sk by adding ŷk and sk to Yk−1 and Sk−1

10: end if
11: else
12: Set Yk = Yk−1 and Sk = Sk−1
13: end if
14: Select p̂k as

p̂k = −H̄kzk − λ−1Sk(Y T
k zk),

zk = ĝk − Ykwk,
wk = R−1k

(
R−Tk

(
Y T
k ĝk

))
,

with details provided in Section 4.2.
15: Set p̂k ← p̂k − βkĝk with βk where

βk >
p̂Tk ĝk − σ̂2

g Tr (H)

ĝTk ĝk + dσ̂2
g

.

16: Set αk = min{1, ξ/k}
17: Set i = 1
18: while f̂(xk + αp̂k) > f̂(xk) + cαkĝ

T
k p̂k and i ≤ max{0, τ − k} do

19: Reduce the step length αk ← ραk
20: Set i← i+ 1
21: end while
22: Update xk+1 = xk + αkp̂k
23: Set k ← k + 1
24: end while

14



Under review as a conference paper at ICLR 2019

(a) gisette (b) covtype

(c) HIGGS (d) SUSY

(e) epsilon (f) RCV1

(g) URL (h) spam

Figure 2: Performance on classification tasks using a logistic loss with a two-norm regulariser.

15



Under review as a conference paper at ICLR 2019

(a) MNIST

(b) CIFAR

Figure 3: Solving the optimisation problem used in training a state-of-the-art deep convolutional
neural network (CNN) used for recognising images in the (a) MNIST and (b) CIFAR-10 dataset.
LMLS refers to limited memory least-squares approach developed in this paper, SG refers to basic
stochastic gradient and Adam refers to Kingma & Ba (2015).

16



Under review as a conference paper at ICLR 2019

Figure 4: Detailed network strucure in the CIFAR-10 experiment.

17


	Introduction
	Related work
	Stochastic Line Search
	Computing the search direction
	Quasi-Newton Inverse Hessian Approximations
	Fast and robust inclusion of new measurements
	Selecting k
	Ensuring a descent direction

	Numerical experiments
	Logistic loss and a 2-norm regulariser
	Deep learning

	Conclusion and future work
	Proofs of the lemmas
	The first stochastic Wolfe condition
	Reduction in cost function
	Ensuring a descent direction

	Quasi-Newton methods
	Resulting algorithm
	Experiment details

