
Context Aware Recommender System for Large Scaled Flash Sale Sites

Wanying Ding∗, Ran Xu†, Ying Ding‡, and Yue Zhang§, and Chuanjiang Luo ¶ and Zhendong Yu‖

VIPSHOP(US) Inc., US R & D Center
San Jose, USA

Email: ∗alice.ding@vipshop.com,wanying.alice@gmail.com, †ran.xu01@vipshop.com, ‡ian.ding@vipshop.com,
§yue.zhang07@vipshop.com, ¶larry.luo@vipshop.com,

‖zhendong01.yu@vipshop.com

Abstract—Flash Sale Sites popularize because they save great
money for users. Good recommender systems can further
save users’ time to improve their online shopping experiences.
Although there exsit a lot of studies on recommender system,
very few focus on flash sale sites. Big Data, Context Sensitivity,
and Feature Engineering are three key challenges for one to
build a good recommender system. This paper proposes two
deep learning oriented models: Tensor-AutoRec and Hybrid-
AutoRec to cope with the problems within an industrial context.
First, these two models can handle storage and speed problem
caused by big data. Second, both models incorporate context
information, so they can generate more relevant recommen-
dations by adapting to specific contextual situations. Third,
our deep learning-based models can be trained end-to-end
without tedious feature engineerings. Extensive experiments
with a half year real transcation data demonstrate that our
models can outperform classifcal ones in terms of different
evaluation metrices. Finally, online A/B testing results showed
that our model can improve our old recommendation system
over various online performance indicators.

Keywords-Recommender System;Deep Learning; Big Data;
Representation Learning; Distributed System

I. INTRODUCTION

Flash Sale Site is a type of e-commerce websites featuring
“flash sales” on certain products with heavy discounts for
a short period of time (as shown in Figure 1). Vipshop1,
Groupon2 and Zulily3 are three representations of such
websites. Since they provide users with a way to save money,
flash sale sites have thrown a hit over the internet. Like
many other e-commerce businesses, flash sale sites also need
recommender system to cope with information overload
problem. Although recommender system for e-commerce
has been extensively studied [1]–[3], most exsiting systems
cannot be applied directly to flash sale sites as there are
some new challenges.

Context Sensitivity. Context information, such as Time,
Discount, Aavailable Size etc. (as shown in Figure 1), heav-
ily impacts consumers’ purchase decisions. Many existing
recommender systems do not consider it and are not suitable
for recommendations in flash sale sites. For example, it is

1https://us.vip.com/
2https://www.groupon.com/
3https://www.zulily.com/

Figure 1. Demo of Flash Sale Sites

not very meaningful to recommend a LV bag with 10%
discount to a user who normally purchase luxury bags with
90% discount.

Feature Engineering and Data Sparsity. Feature En-
gineering always plays a critical role in machine learning.
Wrong or missing features will dramatically harm a model’s
performance. Feature selection and interactions are also
critical but require human labors. In addition, data sparsity is
often quite serious when training recommender systems. It is
challenging to find a computation and memory-efficient way
to build an effective recommender system in this situation.

Big Data. Big Data makes many theoretically successful
recommender systems fail in practice. We tested the most
widely used Collaborative Filtering [4] on our transaction
datasets. With millions of users × millions of items, it failed
to load the whole dataset into memory. Large scale dataset
can make the training process dramatically long as it cannot
converge quickly. We tested a two-layer neural network and
found it needs at least three days to converge when trained
on one day’s purchase data on a standalone machine. It is
unpractical to use such a long time for training.

To alleviate the problems above, we proposed two deep
learning oriented models, Tensor-AutoRec and Hybrid-
AutoRec. Our main contributions are:

• We designed two context-aware recommender systems,
Tensor-AutoRec and Hybrid-AutoRec.

• We proposed a distributed computation workflow to

2018 IEEE International Conference on Big Data (Big Data)

978-1-5386-5035-6/18/$31.00 ©2018 IEEE 993

deal with large scale input data.
• We conducted extensive experiments using large scale

real transaction data. We compared our models with
several classifcal recommendation models offline and
also tested their performances online with A/B testing.

II. RELATED WORK

Our work is closely related to hybird recommender sys-
tem, context-aware recommender system and deep learning-
based recommendation systems. in this section, we will give
an overview of the related work along directions.

A. Hybrid Recommender System

Technically, recommender models can be classified into
three categories: Collaborative Filtering [5], [6], Content
Based Model [7], [8] and Hybrid Model [9], [10].

Collaborative Filtering tries to find users in a community
that share similar interests via their historical transactions.
Collaborative Filtering has achieved great success but also
suffers from cold start [11] and sparsity problem [12].
Content-based models, contrast to collaborative filtering, can
deal with cold start and sparsity problem better. However, it
always faces missing or wrong data problems.

Hybrid models aggregate collaborative filtering and
content-based model to improve recommendation accuracy.
Recent research has proved that a hybrid approach could
be more effective in some cases. Therefore, we design two
hybrid models: Tensor-AutoRec and Hybrid-AutoRec, to
guarantee reliable recommender results.

B. Context Sensitive Recommendation System

Context-aware recommender systems (CARS) can gen-
erate more relevant recommendations by adapting recom-
mendations to specific contextual situations. A context-
aware recommender system deals with data records of the
form < user, item, context, rating >, where each specific
record includes not only how much a user like an item, but
also the contextual information. Formally, CARS problem
can be represented as Equation (1) [1]:

fR : User × Item×
c∏
i

Context→ Relevance (1)

Context information can be either concatenated with other
features [13] or decomposed from a tensor factorization
[14]. Our proposed Tensor-AutoRec and Hybrid-AutoRec try
these two methods respectively. Considering most existing
models usually consider just one type of context factors,
or model different factors independently, our models take
multiple contextual factors as well as their correlations into
consideration.

C. Deep Learning Oriented Recommendation System

. Recent studies demonstrate deep learning’s effectiveness
in recommender systems. CNN [15], AutoEncoder [16],
[17], RNN [18], DSSM [19] and GAN [20] have been
applied to recommender systems. Among these models,
CNN requires the input to be a matrix, RNN usually works
on sequential data, and DSSM or GAN usually deal with
search system. To deal with classical transaction data, we
apply AutoEncoder as our framework.

There exist several studies using AutoEncoder for rec-
ommender system. Collaborative Deep Learning (CDL)
[16] integrates Stack Denoising Autoencoder (SDAE) with
collaborative filtering for content based recommendation.
AutoRec [17] applies a purchase matrix to control the
construction of user partial vectors r(u) and item partial
vectors r(i) . Collaborative Filtering Neural Network (CFN)
[5] extends AutoRec by incorporating side information, such
as user profiles and item description, to mitigate the sparsity
and cold start influence.

However, all the models mentioned about are not context-
aware. Our Tensor-AutoRec and Hybrid-AutoRec model can
incorporate context information into deep learning oriented
recommender systems and achieve more reliable context
sensitive recommendations.

III. METHOGOLOGY

The main goal of our model is to predict the unknown
user-item relationship Rc

u,i from user u to item i in a certain
context c. Rc

u,i represents users’ click or purchase informa-
tion (also referred as Implicit Feedback). One major problem
associated with implicit feedback is that all our observed
Rc

u,i are 1, but we don’t have any negative samples with
Rc

u,i = 0. This is defined as One Class Classification (OCC)
problem by previous work [21]. Although there are many
methods [22] to generate negative samples, most of them
are too complicated for large scale data. Thus, we simply
corrupt some features to generate negative samples. From a
record like “one user purchases a floral dress in August with
40% discount”, we generate one negative sample as “the
user doesn’t purchase the floral dress in December with 20%
discount” by corrupting the “Time” and “Discount” feature.
We also set a negative loss weight wl to lower the risk that
it may generate a sample like “the user doesn’t purchase the
floral dress in July when it is 60% discounted”, which is
more likely to be a positive sample.

Note our proposed deep learning models aim at learning
suitable representations of entities including users, items
and context. These representations will then be used in
the recommder system of a falsh sales website to make
recommendations. Towards this end, we will mainly rely
on models that can naturally learn entities representations
and seamlessly encode users’ peferences over items under
variaous contexts. In the next subsection, we will first
introduce denoising stacked autoencoder as our models are

994

Figure 2. Demonstraction of AutoEncoders

designed on top of it . We will then explain our proposed
models in detail.

A. Denoising Stacked AutoEncoder

Our proposed models are based on the AutoEncoder
framework. An AutoEncoder is a neural network that is
trained to reconsturct the input data through a decoder-
encoder framework. Figure 2(a) demonstrates the most basic
AutoEncoder. In our models, we only use two-layer decoder
and encoder for the sake of model complexity and training
and inference time. As shown in Figure 2, the input X0 is
first transformed to a hidden state X1 through an activation
function F1:

X1 = F1(W0X0 + b0) (2)

Similarly, we further transform X1 into a hidden vector
X2 through an activation function F2:

X2 = F2(W1X1 + b1) (3)

For the decoding step, the vector X2 is first transformer
to X3 thtough the first reconstruction layer with activation
function F3, and X3 is further mapped into X4 with another
activaiton function F4.

X3 = F3(W2X2 + b2) (4)
X4 = F4(W3X3 + b3) (5)

Here, F1, F2, F3 and F4 are all non-linear activiation
functions, such as sigmoid, tanh or relu. W0, W1, W2

and W3 are weight matrices and b0, b1, b2, b3 are bias
vectors. The final reconstruction weight matrix X4 should
have the same shape as input vecotr X1. By minimizing
the reconstruction error (shown as Equation 6, in which n
is the input dimension), we can learn a vector X2, which
has a much lower dimension than X0, as the representation
vector of X0.

La rec(X0,X4) =
1

n

n∑
i

||X0 −X4|| (6)

To learn more robust representations, we usually train
the autoencoder to reconstruct the input from a corrupted
version of it. There are usaually two ways to do corruption:
(1)mask some dimension to zero or (2)add Gaussian noise.

We choose the second method since we already have many
zero values in our input data.

Although many successful models combine autoencoder
with Collaborative Filtering, how to apply it to a context-
aware recommendation problem was rarely discussed. To
answer this question, we proposed two models. Tensor-
AutoRec (as shown in Figure 3(a)) and Hybrid-AutoRec (as
shown in Figure 3(b)) and explain them in the next two
subsections.

B. Tensor-AutoRec

The most straightforward method to incorporate context
into a recommender system is to use another AutoEncoder
to embed context information, and use a tensor decomposi-
tion model to combine user, item and context information
together. Thus, we first propose a Tensor-AutoRec model (as
shown in Figure 3(a)).

We create three independent denoising autoencoders to
encode User xi, Item yj , and Context zk. In this way, user
input xi can be encoded into ui, Item yj can be encoded into
ij , and context zk can be encoded into ck. Then, we combine
these three vectors together through a Tucker Decomposition
[23] model.

Tucker Decomposition, which is also known as Higher-
Order SVD (HOSVD), can be treated as a stable way of
extending SVD to a higher order case [24]. It decomposes
an N -th order tensor into a single core tensor multiplied by
N component matrices (i.e. a matrix for each dimension
of the tensor). The core tensor acts as a scaling factor,
which depicts the relationships between the component
matrices, just like the singular values in SVD. For a tensor
R ∈ RI×J×K the prediction of a rating r̂ijk is calculated
as Equation 7:

r̂ijk =

P∑
p=1

Q∑
q=1

R∑
r=1

gpqruipijqckr (7)

Here, g ∈ RP×Q×R is the core tensor and parameters P ,Q,
and R represent vector length of u, i and c resprectively.

In this way,the loss fnction of Tensor-AutoRec model con-
sists two parts:(1) Reconstruction Loss coming from entity
embedding (shown as Equation 6) and (2) Prediction Loss
coming from tensor decomposition. As we have mentioned
before, our negative samples are artifically created and we
need to take advantage of wl to lower the effect coming
from fake negative samples. Thus, the prediction loss can
be formulated as :

Lpre =
1

n

n∑
i=1

(ri − r̂i) + wl · 1
m

m∑
j=1

(rj − r̂j) (8)

where n is the number of positive samples, and m is the
number of negative samples. wl is the negative weight
ranging in [0, 1]. In our experiments, we set it to 0.5.

995

Figure 3. Brief View of Two Models

Thus the whole loss function for Tennsor-AutoRec can be
formulated as Equation 9

Loss =λuLa rec(x, x̂) + λiLa rec(y, ŷ) + λcLa rec(z, ẑ)

+ λrLpre(r, r̂)
(9)

where the λs are the weights of different loss compositions.

C. Hybrid-AutoRec

Inspired by Amiri and Resnik’s work [13], we create
another model Hybrid-AutoRec (show in Figure 3(b)) to
incorporate context information into our recommender sys-
tem. First, we learn a context embedding hc with basic
AutoEncoder from context information. Then we combine
hc with raw input X0 to generate X1. This process can be
formulized as

hc = Fc(Wcc+ bc) (10)

X1 = F1(Wx1X0 +Vc1hc + bx1) (11)

In a similar way, we can embed X1 and hc into X2,
which we think contains both input information X0 and
context information C. The we decode X2 into X3 and
hc, and further decode X3 to X4 and hc. X4 should have
the sample shape with X1 . In this model, the reconstruction
loss can be written as:

Lh rec(X0,X4) =
1

n

n∑
i

||X0 −X4||+

λc
1

L/2

1

S

L/2∑
l=1

S∑
k=1

||hc − ĥc||
(12)

where L is the number of layers, and L/2 indicate the
decode layers. S is the hc dimension length. n is nput
dimension length. λ is the loss weight.

Our Hybrid-AutoRec can combine two Hybrid AutoEn-
coders: one is for user encoding and the other one is for item
encoding. In this model, we first embed context information
as ck with basic autoencoder via Equation 10, and then
combine ck with each layer of user input and item input.
Since the user embeding ui and item embeding ij already
encod context information, we can use the basic idea of
matrix factorization to model ratings.

r̂ij = gijuiik (13)

We combine all the loss function together, and get the
overall objective function for our Hybrid-AutoRec Model as
Equation 14. Lpre in Equation 14 is the same as Equation
8

Loss = λuLh rec(x, x̂) + λiLh rec(y, ŷ) + λrLpre(r, r̂)
(14)

IV. EXPERIMENTS AND EVALUATION

A. Distributed System Overview

To deal with large scale dataset, we developed a dis-
tributed computation platform (as shown in Figure 4). Our
system consists fof two main components: Data ETL (ex-
tract, transform and load) and model training/ testing.

Data Extract, Transform and Load (ETL): Users’ click
and purchase data are collected and stored in Hive data ware-
house. We implement SparkSQL to transform the data into
TFRecords, which is a standard data format for Tensorflow4,
an open-source deep learning library provided by Google.

Distributed Model Training: We have also built a
distributed Tensorflow cluster for model training and testing.
Within a Tensorflow sever cluster, machines are divided
into two parts: Workers and Parameter Severs. Within the
cluster, all model parameters are shared across workers

4https://www.tensorflow.org/

996

Figure 4. Distributed System Overview

while parallelizing data and gradient updates. With multiple
workers, several batches are processed at the same time.
Once all the workers are done, all gradients will be averaged,
and a single update will be sent to the parameter server.

After one model has been well trained, we test the model’s
performance with our testing data.

B. Offline Evaluation

1) Datasets: Since Click Through Rate (CTR) and
Conversion Rate(CVR) are two essential concepts for e-
commerce websites, we collect these two types of datasets
for our experiments: Brand Click and Item Order as our
datasets for evaluaton.

(1) Brand Click Dataset. Brand Click Data is collected
from January 2018 to July 2018. For each month, we
randomly sample of 50 million entries. 10% of the dataset
is randomly sampled as the testing dataset and the left is
used for training. Each brand click record includes user
information, brand information, and the context, e.g., time,
discount, in which the user clicks the brand.

(2) Item Purchase Dataset. Item purchase data is also
collected from Jan. 2018 to July 2018. We also ramdomly
sample 50 milllion entries in each month and use 10% of the
whole dataset for testing. Each item order record includes
user information, item information, and the context, e.g.,
time, discount, in which the user buy the item.

2) Measurement Methods: We apply four metrics over
our datasets to compare the performances among different
methods.

1) Root Mean Square Error(RMSE). RMSE measures the
deviation between the predicted value ŷ and the truth

value y.It can be calculated as Equation 15

RMSE =

√∑n
i=1(ŷi − yi)2)

n
(15)

2) Average Cross Entropy(ACE). Cross entropy measures
the difference among two probability distribution:
truth and prediction. It is also a common metrics to
evaluate whether a classification is good enough. It
can be calculated as Equation 16

ACE =
−
∑n

i yilogŷi −
∑n

i (1− yi)log(1− ŷi)
n

(16)
3) Area Under ROC Curve (AUC). The ROC curve is

created by plotting the true positive rate(TPR) against
false positive rate(FPR) at various threshold settings.
A larger AUC indicates the model can distinguish
positive samples and negative samples better.

4) Average Precision Score(APS). APS summerizes a
precision-recall curve as the weighted mean of preci-
sion achieived at each threshold. with the increased in
recall from the previous threshold used as the weight.
It can be calculated via Equation17

APS =
∑
n

(Rn −Rn−1)Pn (17)

where Pn and Rn are the precision and recall at the
nth thrshold.

3) Comparison with Baselines: Since the most widely
used models in the industry for recommender systems are
Logistic Regression and Factorization Machine. We choose
these two models as our baselines for comparison.

Logistic Regression: Logistic Regression(LR) is the
most popular model for the online recommendation system.
Given feature list X, the probability P (r = 1) can be
calculated as Equation 18

P (r = 1|θ) = 1

1 + e−(WX+b)
(18)

Factorization Machine: Factorization Machine(FM)
models are a combination of linear regression and matrix
factorization taht models feature intreactions but in linear
time. It takes inspiration from matrix factorization, and
models the feature interactions like using latent vectors. As
a result, every feature fi has a corresponding latent vector
vi. And two features’s interactions are modeled as vi · vj .
FM can be calculated as Equation 19.

r̂ = w0 +

n∑
i=1

wixi +

n∑
i=1

n∑
j=i+1

< vi,vj > xixj (19)

The evaluation result is shown as Figure 5. Figure 5(a)
shows the evaluation results over item order dataset. It
clearly shows that LR has the worst performance since it
has higher error and entropy but lower AUC and precision.
In comparison, FM and two autoencoder models have much

997

Figure 5. Evaluation Results

better performance. All of these three models have very high
AUC and APS, indicating they all give positive samples
with high scores and negative samples with lower scores.
However, with respect to MSE and ACE, FM performs a
little worse since it has higher MSE and ACE values. We
can take a brief overview of the predict results from FM,
Tensor-AutoRec, and Hybrid-AutoRec.

Truth: [1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0]
FM Prediction: [0.513, 0.257, 0.385, 0.583, 0.238,
0.379, 0.167, 0.01, 0.01, 0.641]
Tensor Prediction: [0.948,1.12e-28, 0.992,0.934,2.81e-
5,0.902,5.92e-15,2.55e-10,2.36e-14,0.996]
Hybrid Prediction:[0.997,8.085e-4,0.988,0.999,6.89e-
6, 0.821,0.0302,0.0113,0.00144,0.865]

It is easy to note that predictions of positive samples by
FM are close to 0.5. We suspect this is why FM can achieve
high AUC and APS score but performs poorly on MSE and
ACE.

We get similar results from the brand click dataset; all FM,
Hybrid-AutoRec, and Hybrid-AutoRec have outperformed
the LR model. However, FM has much worse performance
compared to it does on item order dataset. The only reason
we can come is that brand dataset has much fewer features,
and FM can infer robust results well from limited features.

4) The Importance of Incorporating Context: As we
mentioned in the very beginning, one key feature that
distinguishes flash sale sites from traditional e-commerce
websites is that flash sale sites are more context sensitive.To
confirm this hypothesis, we compare our proposed Hybrid-
AutoRec model and vanilla auto-encoder, which does not in-

corporate context informaiton. Considering the Tensor model
has achieved better performance over the Hybrid model
(according to Figure 5) if the Hybrid model can outperform
Raw-AutoRec, Tensor-Model will definite outperform it.

The comparison results are shown as table I and II. Obvi-
ously, without context embedded, the model’s performance
has significantly dropped in every metrics. Thus, we can
conclude that context information indeed matters for flash
sale sites, and they should be considered seriously.

C. Online Evaluation (A/B Testing)

In industry, hundred times of offline evaluation is no
match for one time online testing. Considering the stringent
response time requirement, we could not put our model
online as an end-to-end recommender system in the current
stage. Thus, we submit our embedded vectors as features
to support the current online recommender system to in-
vestigate whether our embedded features can improve the
current models’ performance. We submitted our user vector
and tested our result from Jan. 2nd 2018 to Jan. 28th 2018.
We use the following four online preformance indicators to
measure the performance and show the results in Figure 6.

1) Per Customer Transaction.It indicates the average am-
mount of money per transaction in the correponding
day.

2) Per Item Transaction. It indicates the amount of money
every item has been spent on each of transaction.

3) Per Person Consumption. It indicates the amount of
money that a user spends on his/her every visiting.

4) Conversion Rate(CVR). Percentage of purchase
against click.

998

Table I
CONTEXT IMPORTANCE TEST OVER ITEM ORDER DATA

Date RMS ACE AUC APS
With Context Without Context With Context Without Context With Context Without Context With Context Without Context

201801 0.277 0.634 0.0327 1.712 0.984 0.528 0.986 0.560
201802 0.297 0.677 0.101 3.798 0.960 0.508 0.948 0.569
201803 0.305 0.651 0.132 1.874 0.993 0.523 0.992 0.565
201804 0.147 0.618 0.110 1.802 0.999 0.570 0.999 0.658
201805 0.220 0.670 0.0907 2.892 0.997 0.515 0.998 0.596
201806 0.125 0.637 0.0581 1.592 0.998 0.534 0.997 0.616
201807 0.219 0.617 0.0684 1.651 0.992 0.553 0.991 0.639

Table II
CONTEXT IMPORTANCE TEST OVER BRAND CLICK DATA

Date RMS ACE AUC APS
With Context Without Context With Context Without Context With Context Without Context With Context Without Context

201801 0.499 0.705 0.693 6.283 0.890 0.500 0.869 0.501
201802 0.403 0.700 0.671 6.111 0.939 0.503 0.916 0.505
201803 0.451 0.586 0.763 5.208 0.947 0.634 0.867 0.645
201804 0.480 0.700 0.587 5.759 0.945 0.528 0.853 0.543
201805 0.449 0.683 0.585 5.156 0.899 0.520 0.883 0.524
201806 0.355 0.643 0.573 4.789 0.932 0.608 0.930 0.654
201807 0.453 0.703 0.653 6.776 0.938 0.502 0.931 0.501

Figure 6. Online A/B Testing Result

Figure 6 shows that recommendations incorporating embed-
dings learnt by our models get improvement on all four
online performance indicators most of the time. This is be-
cause the embeddins learnt by our models can embedd users’
profile information and pereferences. They can provide more
meaningful input to our recommendation system.

D. Serve as Entity Embedding

To evaluate our results qualitatively, we visualize our
embedding vectors. Intuitively, a good embedding should
be able to group similar entities. We use a K-Means model
to label similar users and visualize them. Taking user data

Figure 7. Visualization of Embeddings

as an example, before we embed them, every user record
is of high dimension. It is hard to measure their similarity,
and all data is scattered in the space(shown as the left part
in Figure 7). After embedding, we find that similar users
are easier to be grouped (shown as the right part in Figure
7). Thus our vectors can be used in many other applications
instead of the original long user records.

V. CONCLUSION

In this work, we proposed two context-aware recom-
mender systems, Tensor-AutoRec and Hybrid-AutoRec,
for flash sale sites. Compared with existing work on rec-
ommender systems, our main contributions are: (1) Our
proposed models can take context information into consid-
eration, which makes it particually suitble for online flash
sales. (2) Our deep learning framework does not require
tedious feature engineering that are necessary to tranditional
recommendation algorithms. But they can still achieve better

999

performances. (3) We have designed a distributed pipeline
for data ETL and model training/ testing, to cope with big
data problem. (4) We conducted A/B testings and proved
that our proposed models can improve the current system in
real industrial applications.

REFERENCES

[1] G. Adomavicius and A. Tuzhilin, “Context-aware rec-
ommender systems,” in Recommender systems handbook.
Springer, 2015, pp. 191–226.

[2] Y. Xia, G. Di Fabbrizio, S. Vaibhav, and A. Datta, “A
content-based recommender system for e-commerce o ers and
coupons,” 2017.

[3] M. Azizi and H. Do, “A collaborative filtering recommender
system for test case prioritization in web applications,” arXiv
preprint arXiv:1801.06605, 2018.

[4] Y. Koren and R. Bell, “Advances in collaborative filtering,”
in Recommender systems handbook. Springer, 2015, pp. 77–
118.

[5] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua,
“Neural collaborative filtering,” in Proceedings of the 26th
International Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 2017, pp.
173–182.

[6] T. Chen, Y. Sun, Y. Shi, and L. Hong, “On sampling strategies
for neural network-based collaborative filtering,” in Proceed-
ings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2017, pp.
767–776.

[7] J. N. Gross, “Topic based recommender system and method,”
May 9 2017, uS Patent 9,646,109.

[8] M. Scholz, V. Dorner, G. Schryen, and A. Benlian, “A
configuration-based recommender system for supporting e-
commerce decisions,” European Journal of Operational Re-
search, vol. 259, no. 1, pp. 205–215, 2017.

[9] D. Benz, N. M. Ullmann, G. Wetzel, A. Felic, and S. Alex-
akis, “A weighted hybrid recommender system approach for
product configuration,” CERC2017, p. 95, 2017.

[10] J. He, H. H. Zhuo, and J. Law, “Distributed-representation
based hybrid recommender system with short item descrip-
tions,” arXiv preprint arXiv:1703.04854, 2017.

[11] C. C. Aggarwal, “Content-based recommender systems,” in
Recommender Systems. Springer, 2016, pp. 139–166.

[12] Z. Huang, H. Chen, and D. Zeng, “Applying associative
retrieval techniques to alleviate the sparsity problem in collab-
orative filtering,” ACM Transactions on Information Systems
(TOIS), vol. 22, no. 1, pp. 116–142, 2004.

[13] H. Amiri, P. Resnik, J. Boyd-Graber, and H. Daumé III,
“Learning text pair similarity with context-sensitive autoen-
coders,” in Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long
Papers), vol. 1, 2016, pp. 1882–1892.

[14] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver,
“Multiverse recommendation: n-dimensional tensor factoriza-
tion for context-aware collaborative filtering,” in Proceedings
of the fourth ACM conference on Recommender systems.
ACM, 2010, pp. 79–86.

[15] H. T. Nguyen, M. Wistuba, J. Grabocka, L. R. Drumond, and
L. Schmidt-Thieme, “Personalized for tag recommendation,”
in Pacific-Asia Conference on Knowledge Discovery and Data
Mining. Springer, 2017, pp. 186–197.

[16] H. Wang, N. Wang, and D.-Y. Yeung, “Collaborative deep
learning for recommender systems,” in Proceedings of the
21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2015, pp. 1235–1244.

[17] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie, “Autorec:
Autoencoders meet collaborative filtering,” in Proceedings
of the 24th International Conference on World Wide Web.
ACM, 2015, pp. 111–112.

[18] S. Wu, W. Ren, C. Yu, G. Chen, D. Zhang, and J. Zhu, “Per-
sonal recommendation using deep recurrent neural networks
in netease,” in Data Engineering (ICDE), 2016 IEEE 32nd
International Conference on. IEEE, 2016, pp. 1218–1229.

[19] C. Chen, X. Meng, Z. Xu, and T. Lukasiewicz, “Location-
aware personalized news recommendation with deep semantic
analysis,” IEEE Access, vol. 5, pp. 1624–1638, 2017.

[20] J. Wang, L. Yu, W. Zhang, Y. Gong, Y. Xu, B. Wang,
P. Zhang, and D. Zhang, “Irgan: A minimax game for unifying
generative and discriminative information retrieval models,”
in Proceedings of the 40th International ACM SIGIR confer-
ence on Research and Development in Information Retrieval.
ACM, 2017, pp. 515–524.

[21] S. S. Khan and M. G. Madden, “A survey of recent trends
in one class classification,” in Irish conference on artificial
intelligence and cognitive science. Springer, 2009, pp. 188–
197.

[22] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz, and
Q. Yang, “One-class collaborative filtering,” in Data Mining,
2008. ICDM’08. Eighth IEEE International Conference on.
IEEE, 2008, pp. 502–511.

[23] Y.-D. Kim and S. Choi, “Nonnegative tucker decomposition,”
in Computer Vision and Pattern Recognition, 2007. CVPR’07.
IEEE Conference on. IEEE, 2007, pp. 1–8.

[24] E. Frolov and I. Oseledets, “Tensor methods and recom-
mender systems,” Wiley Interdisciplinary Reviews: Data Min-
ing and Knowledge Discovery, vol. 7, no. 3, 2017.

1000

