
Under review as a conference paper at ICLR 2020

TOWARDS PHYSICS-INFORMED DEEP LEARNING FOR
TURBULENT FLOW PREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

While deep learning has shown tremendous success in a wide range of domains, it
remains a grand challenge to incorporate physical principles in a systematic man-
ner to the design, training and inference of such models. In this paper, we aim to
predict turbulent flow by learning its highly nonlinear dynamics from spatiotem-
poral velocity fields of large-scale fluid flow simulations of relevance to turbulence
modeling and climate modeling. We adopt a hybrid approach by marrying two
well-established turbulent flow simulation techniques with deep learning. Specif-
ically, we introduce trainable spectral filters in a coupled model of Reynolds-
averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES), followed by
a specialized U-net for prediction. Our approach, which we call Turbulent-Flow
Net (TF-Net), is grounded in a principled physics model, yet offers the flexibility
of learned representations. We compare our model, TF-Net, with state-of-the-
art baselines and observe significant reductions in error for predictions 60 frames
ahead. Most importantly, our method predicts physical fields that obey desirable
physical characteristics, such as conservation of mass, whilst faithfully emulat-
ing the turbulent kinetic energy field and spectrum, which are critical for accurate
prediction of turbulent flows.

1 INTRODUCTION

Modeling the dynamics of physical processes that evolve over space and time and vary over a wide
range of spatial and temporal scales is a fundamental task in science. Computational fluid dynam-
ics (CFD) is at the heart of climate modeling and has direct implications for understanding and
predicting climate change. However, the current paradigm in atmospheric CFD is purely physics-
driven: known physical laws encoded in systems of coupled partial differential equations (PDEs)
are solved over space and time via numerical differentiation and integration schemes. These meth-
ods are tremendously computationally-intensive, requiring significant computational resources and
expertise. Recently, data-driven methods, including deep learning, have demonstrated great success
in the automation, acceleration, and streamlining of highly compute-intensive workflows for science
(Reichstein et al., 2019). But existing deep learning methods are mainly statistical with little or no
underlying physical knowledge incorporated, and are yet to be proven to be successful in capturing
and predicting accurately the properties of complex physical systems.

Developing deep learning methods that can incorporate physical laws in a systematic manner is a key
element in advancing AI for physical sciences (Steven Brunton, 2019). Towards this goal, we inves-
tigate the challenging problem of predicting a turbulent flow, governed by the high-dimensional non-
linear Navier-Stokes equations. Recently, several studies have attempted incorporating knowledge
about a physical system into deep learning. For example, Emmanuel de Bezenac (2018) proposed
a warping scheme to predict the sea surface temperature, but only considered the linear advection-
diffusion equation. Xie et al. (2018) and Jonathan Tompson (2017) developed deep learning models
in the context of fluid flow animation, where physical consistency is less critical. Wu et al. (2019)
and Tom Beucler (2019) introduced statistical and physical constraints in the loss function to regu-
larize the predictions of the model. However, their studies only focused on spatial modeling without
temporal dynamics, besides regularization being ad-hoc and difficult to tune the hyper-parameters.

In this work, we propose a hybrid learning paradigm that unifies turbulence modeling and deep repre-
sentation learning. We develop a novel deep learning model, Turbulent-Flow Net (TF-Net), that en-
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hances the capability of predicting complex turbulent flows with deep neural networks. TF-Net ap-
plies scale separation to model different ranges of scales of the turbulent flow individually. Building
upon a promising and popular CFD technique, the RANS-LES coupling approach (E. Labourasse,
2004), our model replaces a priori spectral filters with trainable convolutional layers. We decom-
pose the turbulent flow into three components, each of which is approximated by a specialized U-net
to preserve invariance properties. To the best of our knowledge, this is the first hybrid framework
of its kind for predicting turbulent flow. We compare our method with state-of-the-art baselines for
forecasting velocity fields up to 60 steps ahead given the history. We observe that TF-Net is capa-
ble of generating accurate and physically meaningful predictions that preserve critical quantities of
relevance. In summary, our contributions are as follows:

1. We study the challenging task of turbulent flow prediction as a test bed to investigate incor-
porating physics knowledge into deep learning in a principled fashion.

2. We propose a novel hybrid learning framework, TF-Net, that unifies a popular CFD tech-
nique, RANS-LES coupling, with custom-designed deep neural networks.

3. When evaluated on turbulence simulations, TF-Net achieves 11.1% reduction in predic-
tion RMSE, 30.1% improvement in the energy spectrum, 21% turbulence kinetic energy
RMSEs and 64.2% reduction of flow divergence in difference from the target, compared to
the best baseline.

2 BACKGROUND IN TURBULENCE MODELING

Most fluid flows in nature are turbulent, but theoretical understanding of solutions to the governing
equations, the Navier–Stokes equations, is incomplete. Turbulent fluctuations occur over a wide
range of length and time scales with high correlations between these scales. Turbulent flows are
characterized by chaotic motions and intermittency, which are difficult to predict.

Figure 1: A snapshot of the Rayleigh-Bénard convection flow, the velocity fields along x direction
(top) and y direction (bottom) (Chirila, 2018). The spatial resolution is 1792 x 256 pixels.

The physical system we investigate is two-dimensional Rayleigh-Bénard convection (RBC), a model
for turbulent convection, with a horizontal layer of fluid heated from below so that the lower surface
is at a higher temperature than the upper surface. Turbulent convection is a major feature of the
dynamics of the oceans, the atmosphere, as well as engineering and industrial processes, which has
motivated numerous experimental and theoretical studies for many years. The RBC system serves
as an idealized model for turbulent convection that exhibits the full range of dynamics of turbulent
convection for sufficiently large temperature gradients.

Let w be the vector velocity field of the flow with two components (u; v), velocities along x and y
directions, the governing equations for this physical system are:

r �w = 0 Continuity Equation
@w

@t
+ (w � r)w = � 1

�0
rp+ �r2w + f Momentum Equation

@T

@t
+ (w � r)T = �r2T Temperature Equation (1)

where p and T are pressure and temperature respectively, � is the coefficient of heat conductivity,
�0 is density at temperature at the beginning, � is the coefficient of thermal expansion, � is the
kinematic viscosity, f the body force that is due to gravity. In this work, we use a particular approach
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to modeling RBC that uses a Boussinesq approximation, resulting in a divergence-free flow, sor�w
should be zero everywhere (Chirila, 2018). Figure 1 shows a snapshot in our RBC flow dataset.

CFD allows simulating complex turbulent flows, however, the wide range of scales makes it very
challenging to accurately resolve all the scales. More precisely, fully resolving a complex turbulent
flow numerically, known as direct numerical simulations – DNS, requires a very fine discretiza-
tion of space-time, which makes the computation prohibitive even with advanced high-performance
computing. Hence most CFD methods, like Reynolds-Averaged Navier-Stokes and Large Eddy
Simulations (McDonough, 2007a; Pierre Sagaut, 2006; McDonough, 2007b), resort to resolving the
large scales whilst modeling the small scales, using various averaging techniques and/or low-pass
filtering of the governing equations (Eqn. 1). However, the unresolved processes and their interac-
tions with the resolved scales are extremely challenging to model. CFD remains computationally
expensive despite decades of advancements in turbulence modeling and HPC.

Deep learning (DL) is poised to accelerate and improve turbulent flow simulations because well-
trained DL models can generate realistic instantaneous flow fields with physically accurate spa-
tiotemporal coherence, without solving the complex nonlinear coupled PDEs that govern the system
(Tompson et al., 2017; Maziar Raissi, 2019; 2018). However, DL models are hard to train and are
often used as "black boxes" in physical science as they lack knowledge of the underlying physics
and are very hard to interpret. While these DL models may achieve low prediction errors they often
lack scientific consistency and do not respect the physics of the systems they model. Therefore, it is
critical to infusing known physics and design efficient turbulent flow prediction DL models that are
not only accurate but also physically meaningful.

3 TURBULENT-FLOW NET

Inspired by techniques used in CFD to separate scales of this multi-scale system, the global idea
behind TF-Net is to decompose the flow into three components of different scales with trainable
modules for simulating each component. First, we provide a brief introduction of the CFD tech-
niques which are built on this basic idea.

Figure 2: Turbulent Flow Net: three identical encoders to learn the transformations of the three
components of different scales, and one shared decoder that learns the interactions among these three
components to generate the predicted 2D velocity field at the next instant. Each encoder-decoder
pair can be viewed as a U-net and the aggregation is weighted summation.
Reynolds-averaged Navier–Stokes (RANS) decomposes the turbulent floww into two separable
time scales: a time-averaged mean flow w̄ and a fluctuating quantity w0. The resulting RANS
equations contain a closure term, the Reynolds stresses, that require modeling, the classic closure
problem of turbulence modeling. While this approach is a good first approximation to solving a
turbulent flow, RANS does not account for broadband unsteadiness and intermittency, characteristic
of most turbulent flows. Further, closure models for the unresolved scales are often inadequate,
making RANS solutions to be less accurate. T here is the moving average window size.

w(x; t) = �w(x; t) +w0(x; t); where �w(x; t) =
1

T

Z t

t�T

G(s)w(x; s)ds (2)
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Large Eddy Simulation (LES) is an alternative approach based on low-pass �ltering of the
Navier-Stokes equations that solves a part of the multi-scale turbulent �ow corresponding to the
most energetic scales. In LES, the large scales are a spatially �ltered variable~w , which is usu-
ally expressed as a convolution product by the �lter kernelG. The kernelG is often taken to be a
Gaussian kernel.
 i is a subdomain of the solution and depends on the �lter size (Sagaut, 2001).

w (x ; t) = ~w(x ; t) + w 0(x ; t); where ~w(x ; t) =
Z


 i

G(x j� )w (� ; t)d� (3)

The key difference between RANS and LES is that RANS is based on time averaging, leading to
simpler steady equations, whereas LES is based on a spatial �ltering process which is more accurate
but also computationally more expensive.

Figure 3: Three level spectral
decomposition of velocityw ,
E(k) is the energy spectrum
andk is wavenumber.

Hybrid RANS-LES Coupling combines both RANS and LES
approaches in order to be able to take advantage of both methods
(E. Labourasse, 2004; Chaoua, 2017). It decomposes the �ow vari-
ables into three parts: mean �ow, resolved �uctuations and unre-
solved (subgrid) �uctuations. RANS-LES coupling applies the spa-
tial �ltering operatorG1 and the temporal average operatorG2 se-
quentially. We can de�ne�w in discrete form with usingw � as an
intermediate term,

w � (x; t ) = G1(w ) =
X

�

G1(x j� )w (� ; t) (4)

�w (x; t ) = G2(w � ) =
1
T

tX

s= t � T

G2(s)w � (x ; s) (5)

then ~w can be de�ned as the difference betweenw � and �w :
~w = w � � �w ; w 0 = w � w � (6)

Finally we can have the three-level decomposition of the velocity �eld.

w = �w + ~w + w
0

(7)
Figure 3 shows this three-level decomposition in wavenumber space (E. Labourasse, 2004).k is the
wavenumber, the spatial frequency in the Fourier domain.E (k) is the energy spectrum describing
how much kinetic energy is contained in eddies with wavenumberk. Smallk corresponds to large
eddies that contain most of the energy. The slope of the spectrum is negative and indicates the
transfer of energy from large scales of motion to the small scales. This hybrid approach combines the
ease and computational ef�ciency of RANS with the resolving power of LES to provide a technique
that is less expensive and more tractable than pure LES.

Turbulent Flow Net We describeTF-Net , a hybrid deep learning framework based on the multi-
level spectral decomposition of hybrid RANS-LES Coupling method. We decompose the velocity
�eld into three components of different scales using two scale separation operators, the spatial �lter
G1 and the temporal �lterG2. In traditional CFD, these �lters are usually pre-de�ned, such as the
Gaussian spatial �lter. In our model, both �lters are trainable neural networks. The spatial �ltering
process is realized by applying one convolutional layer with a single 5� 5 �lter to each input image.
The temporal �lter is implemented as a convolutional layer with a single 1� 1 �lter applied to every
T images. The motivation for this design is to explicitly guide the DL model to learn the non-linear
dynamics of both large and small eddies as relevant to the task of spatio-temporal prediction.

We design three identical encoders to encode the three scale components separately. We use a shared
decoder to learn the interactions among these three components and generate the �nal prediction.
Each encoder and the decoder can be viewed as a U-net without duplicate layers and middle layer in
the original architecture (Olaf Ronneberger, 2015). The encoder consists of four convolutional layers
with double the number of feature channels of the previous layer and stride 2 for down-sampling.
The decoder consists of one output layer and four deconvolutional layers with summation of the
corresponding feature channels from the three encoders and the output of the previous layer as input.
Figure 2 shows the overall architecture of our hybrid modelTF-Net . To generate multiple time-
step forecasts, we perform one-step ahead prediction and roll out autoregressively. Furthermore,
since the turbulent �ow under investigation has zero divergence (r � w should be zero everywhere),
we includejjr � w jj2 as a regularizer to constrain the predictions, leading toCon TF-Net .
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4 RELATED WORK

Turbulence Modeling Recently, machine learning models, especially DL models have been used
to accelerate and improve the simulation of turbulent �ows. For example, Ling et al. (2016); Fang
et al. (2018) studied tensor invariant neural networks to learn the Reynolds stress tensor while pre-
serving Galilean invariance, but Galilean invariance only applies to �ows without external forces.
In our case, RBC �ow has gravity as an external force. Most recently, Kim & Lee (2019) studied
unsupervised generative modeling of turbulent �ows but the model is not able to make real time
future predictions given the historic data. Raissi et al. (2017) applied a Galerkin �nite element
method with deep neural networks to solve PDEs automatically, what they call “Physics-informed
deep learning”. Though these methods have shown the ability of deep learning in solving PDEs di-
rectly and deriving generalizable solutions, the key limitation of these approaches is that they require
explicitly inputs of boundary conditions during inference, which are generally not available in real-
time. Arvind Mohan (2019) proposed a purely data-driven DL model for turbulence, compressed
convolutional LSTM, but the model lacks physical constraints and interpretability. Wu et al. (2019)
and Tom Beucler (2019) introduced statistical and physical constraints in the loss function to regu-
larize the predictions of the model. However, their studies only focused on spatial modeling without
temporal dynamics, besides regularization being ad-hoc and dif�cult to tune the hyper-parameters.

Fluid Animation In parallel, the computer graphics community has also investigated using deep
learning to speed up numerical simulations for generating realistic animations of �uids such as water
and smoke. For example, Tompson et al. (2017) used an incompressible Euler's equation with a cus-
tomized Convolutional Neural Network (CNN) to predict velocity update within a �nite difference
method solver. Chu & Thuerey (2017) propose double CNN networks to synthesize high-resolution
�ow simulation based on reusable space-time regions. Xie et al. (2018) and Jonathan Tompson
(2017) developed deep learning models in the context of �uid �ow animation, where physical con-
sistency is less critical. Steffen Wiewel (2019) proposed a method for the data-driven inference of
temporal evolutions of physical functions with deep learning. However, �uid animation emphases
on the realism of the simulation rather than the physical consistency of the predictions or physics
metrics and diagnostics of relevance to scientists.

Video Prediction Our work is also related to future video prediction. Conditioning on the ob-
served frames, video prediction models are trained to predict future frames, e.g., Mathieu et al.
(2015); Finn et al. (2016); Xue et al. (2016); Villegas et al. (2017); Chelsea Finn (2016). Many of
these models are trained on natural videos with complex noisy data from unknown physical pro-
cesses. Therefore, it is dif�cult to explicitly incorporate physical principles into the model. The
turbulent �ow problem studied in this work is substantially different from natural video prediction
because it does not attempt to predict object or camera motions. Instead, our approach aims to em-
ulate numerical simulations given noiseless observations from known governing equations. Hence,
some of these techniques are perhaps under-suited for our application.

5 EXPERIMENTS

5.1 DATASET

The dataset for our experiments comes from two dimensional turbulent �ow simulated using the
Lattice Boltzmann Method (Chirila, 2018). We use only the velocity vector �elds, where the spatial
resolution of each image is 1792 x 256. Each image has two channels, one is the turbulent �ow
velocity alongx direction and the other one is the velocity alongy direction. The physics parameters
relevant to this numerical simulation are: Prandtl number= 0 :71, Rayleigh number= 2 :5� 108 and
the maximum Mach number= 0.1. We use 1500 images (snapshots in time) for our experiments.
The task is to predict the spatiotemporal velocity �elds up to60steps ahead given10 initial frames.

We divided each 1792 by 256 image into 7 square sub-regions of size 256 x 256, then downsample
them into 64 x 64 pixels sized images. We use a sliding window approach to generate 9,870 samples
of sequences of velocity �elds: 6,000 training samples, 1,700 validation samples and 2,170 test
samples. The DL model is trained using back-propagation through prediction errors accumulated
over multiple steps. We use a validation set for hyper-parameters tuning based on the average error
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of predictions up to six steps ahead. The hyper-parameters tuning range can be found in Table 2 in
the appendix. All results are averaged over three runs.

5.2 BASELINE

We compare our model with a series of state-of-the-art baselines for turbulent �ow prediction.

� ResNet (Kaiming He, 2015): a 34-layer Residual Network by replacing the �nal dense layer
with a convolutional layer with two output channels.

� ConvLSTM(Xingjian Shi, 2015): a 3-layer Convolutional LSTM model used for spatiotemporal
precipitation nowcasting.

� U-Net (Olaf Ronneberger, 2015): Convolutional neural networks originally developed for image
segmentation, also used for video prediction.

� GAN: U-net trained with a discriminator like the Generative Neural Networks.
� SST(Emmanuel de Bezenac, 2018): hybrid deep learning model using warping scheme for linear

energy equation to predict sea surface temperature, which is also applicable to the linearized
momentum equation that governs the velocity �elds.

� DHPM(Raissi, 2018): Deep Hidden Physics Model is to directly approximate the solution of
partial differential equations with fully connected networks using space and time as inputs. The
model is trained twice on the training set and the test set with boundary conditions.

Here ResNet , ConvLSTM, U-net and GANare pure data-driven spatiotemporal deep learning
models for video predictions.SST andDHPMare hybrid techniques that aim to incorporate prior
physical knowledge into deep learning for �uid simulation.

5.3 EVALUATION METRICS

Even though Root Mean Square Error (RMSE) is a widely accepted metric for quantifying the dif-
ferences between model predictions and the ground truth, it is still insuf�cient to apply the predicted
turbulent �ows with good RMSE to scienti�c �elds. We need to check whether the predictions are
physically meaningful and preserve desired physical quantities, such as Turbulence Kinetic Energy,
Divergence and Energy Spectrum. Therefore, we include a set of additional metrics for evaluation.

Root Mean Square Error We calculate the RMSE of all predicted values from the ground truth for

each pixel,
q P N

i =1 (ŵ i � w i )2=N.

DivergenceSince we investigate incompressible turbulent �ows in this work, which means the
divergence,r � w, at each pixel should be zero, we use the average of absolute divergence over all
pixels at each prediction step as an additional evaluation metric.

Turbulence Kinetic Energy In �uid dynamics, turbulence kinetic energy is the mean kinetic energy
per unit mass associated with eddies in turbulent �ow. Physically, the turbulence kinetic energy is
characterised by measured root mean square velocity �uctuations,((u0)2 + (v0)2)=2, where(u0)2 =
1
T

P T
t =0 (u(t) � �u)2 and t is the time step. We calculate the turbulence kinetic energy for each

predicted sample of 60 velocity �elds.

Energy Spectrum The energy spectrum of turbulence,E(k), is related to the mean turbulence
kinetic energy as

R1
0 E(k)dk = ( (u0)2 + (v0)2)=2. k is the wavenumber, the spatial frequency

in 2D Fourier domain. We calculate the Energy Spectrum on the Fourier transformation of the
Turbulence Kinetic Energy �elds. The large eddies have low wavenumbers and the small eddies
correspond to high wavenumbers. The spectrum tells how much kinetic energy is contained in
eddies with wavenumberk.

6 RESULTS

Figure 4 shows the growth of RMSE with prediction horizon up to60 time steps ahead.TF-Net
consistently outperforms all baselines, and constraining it with divergence free regularizer can fur-
ther improve the performance. We also foundDHPMis able to over�t the training set but performs
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