
A Unified Approximate Nearest Neighbor Search Scheme by
Combining Data Structure and Hashing

Debing Zhang Genmao Yang Yao Hu Zhongming Jin Deng Cai Xiaofei He
State Key Lab of CAD&CG, College of Computer Science,

Zhejiang University, Hangzhou 310058, China.
{debingzhangchina, oliver.ygm, huyao001, zhongmingjin888, dengcai, xiaofeihe}@gmail.com

Abstract
Nowadays, Nearest Neighbor Search becomes
more and more important when facing the chal-
lenge of big data. Traditionally, to solve this prob-
lem, researchers mainly focus on building effective
data structures such as hierarchical k-means tree
or using hashing methods to accelerate the query
process. In this paper, we propose a novel uni-
fied approximate nearest neighbor search scheme
to combine the advantages of both the effective data
structure and the fast Hamming distance computa-
tion in hashing methods. In this way, the search-
ing procedure can be further accelerated. Compu-
tational complexity analysis and extensive experi-
ments have demonstrated the effectiveness of our
proposed scheme.

1 Introduction
The increasing interest in social network and multimedia
has led an explosive growth of data. The problem of k
Nearest Neighbor (kNN) search becomes one of the most
fundamental issues when facing the challenge of Big Data
for many applications such as large scale image and video
retrieval [Gong and Lazebnik, 2011; Wang et al., 2012;
Song et al., 2011], object classification [Sengupta, 2012] and
large scale image clustering [Shindler et al., 2011]. Formally,
given a data set X = [x1, x2, . . . , xN] ⊂ Rd containing N
points and a query point q ∈ Rd, k Nearest Neighbor search
aims to find the k nearest points of q under some distance
measure such as Euclidean distance.

The exact nearest neighbors can be found by linear search
method with a computational cost of O(Nd) , which is pro-
hibitively expensive for large scale data set. Some Approxi-
mate Nearest Neighbor (ANN) methods have been explored
by sacrificing some precision to gain more efficiency. Cur-
rently, most ANN methods can be classified into two cat-
egories: data structure based methods and hashing based
methods. Data structure based methods usually build space-
partitioning index structures (such as hierarchical k-means
tree [Nister and Stewenius, 2006], kd-trees [Friedman et al.,
1977], R-tree [Cheung and Fu, 1998] and kNN graph [Hajebi
et al., 2011]) for similarity search, while hashing based meth-
ods project the data into a low dimensional Hamming space

and the efficient Hamming distance is utilized to approximate
the similarity.

Data structure based methods can reduce the number of
data points that need to be searched by pruning the search
space, thus improves the query efficiency. But when comput-
ing the similarity between the query and the candidate data
points, traditional data structure based methods simply cal-
culate the exact Euclidean distance which is still very time
consuming. Euclidean distance computations can become
the bottleneck when dealing with large scale and high dimen-
sional data.

Hashing based methods try to solve the ANN problem in
high dimensional data space by encoding the data into binary
codes. Given a binary code of query point q, hashing based
methods firstly find all the points falling into a ball centered at
the query q with Hamming radius r, then a linear scan search
is performed over these points to return the required nearest
neighbors. Supposing the bit length is n, O(

∑r
i=0 C

i
n) oper-

ations are needed to find all the candidates in the Hamming
ball [Norouzi et al., 2012]. Thus, it is impossible for hashing
based methods with long binary codes to be directly used in
real applications. Based on this fact, most of current hashing
methods aim to derive compact hash codes to avoid this dif-
ficulty. However, the accuracy is hard to be further improved
since the limited representative ability of compact codes.

In this paper, we are primarily interested in how to take
full use of the hamming distance computation to accelerate
the query process. We emphasize that the hamming distance
computation is extremely fast on modern CPUs. As is shown
in Table 1, 50∼100 speedup can be achieved if we calculate
the similarity by hamming distance instead of Euclidean dis-
tance. We also notice that, when calculating hamming dis-
tance with different bits, the computational time varies lit-
tle when the bit length is smaller or equal to 128. And long
binary codes have better represent the original data. Moti-
vated by these facts, we propose a novel unified approximate
nearest neighbor search scheme by integrating the fast ham-
ming distance computation into some data structures such
as hierarchical k-means tree. In this way, we can solve the
time consuming Euclidean distance computation problem in
data structure based methods, and data structure based prun-
ing can also be used to tackle the difficulty of exhaustive
search in hamming space. Further more, long binary codes
are used in our scheme to better approximate the original

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

681

Dim Euclidean Distance Hamming Distance Speedup
64 1.29 0.02 64.5
128 2.43 0.02 121.5
256 4.9 0.07 70
512 9.62 0.22 43.7

Table 1: The speedup of Hamming distance compared with
Euclidean distance under different dimensions. This table
shows the total time cost (s) of 25,000,000 tests.

data while the limitation of hashing methods with long binary
codes is avoided. Extensive experimental results on SIFT and
GIST data sets demonstrate the effectiveness of our proposed
scheme in comparison with the state-of-the-art ANN search
approaches.

The rest of the paper is organized as follows. In section 2,
we briefly review the related work of Approximate Nearest
Neighbor search. And in Section 3, we take hierarchical k-
means as an example to show how data structures and hash
methods can be unified to improve ANN search, and give
some computational analysis. In Section 4, we demonstrate
the effectiveness and efficiency of our proposed unified ANN
search scheme.

2 Related Work
In the following two subsections, we briefly introduce two
popular Approximate Nearest Neighbor search approaches.

2.1 Hashing
Locality Sensitive Hashing (LSH) is a widely used hash-
ing technique [Gionis et al., 1999; Andoni and Indyk, 2008]
based on random linear projection. Considering the possible
low dimensional embedding of the original data, Kulis et al.
propose to generalize the traditional LSH to nonlinear case
by incorporating arbitrary kernel functions into hash function
[Kulis and Grauman, 2009]. Other hashing methods include
SPH[Heo et al., 2012], AGH [Me et al., 2011], ITQ [Gong
and Lazebnik, 2011], SIKH [Raginsky and Lazebnik, 2009]
and so on.

2.2 Data Structure based Methods
Traditional kd-tree methods retrieve the nearest neighbors for
a given query by simple back tracking. To accelerate the
search, Best Bin First heuristic is proposed by maintaining
a priority queue of nodes that have been revisited [Lowe,
2004]. Forests of randomized kd-trees [Silpa-Anan and Hart-
ley, 2008] is proposed, and multiple kd-trees are generated
and queried instead of a single tree. Further more, by incor-
porating tree structure and k-means clustering method, Nister
et al describe hierarchical k-means (HKM) clustering as an
ANN method [Nister and Stewenius, 2006].
K-means neighbor graph based approaches are another

popular topic for approximate nearest neighbor search [Ha-
jebi et al., 2011; Paredes and Chávez, 2005]. These algo-
rithms build a nearest neighbor graph in an offline phase and
the retrieval is conducted by performing hill climbing on the
obtained graph. In this way, points far away from the query

p2∈H
ď

n2∈H
ď

p1∈R
d

n1∈R
d

Figure 1: An example of hierarchical k-means tree with struct
nodes. A solid dot represents a data point, while a hollow el-
lipse represents a data cluster which is a node in HKM tree.
Each point has two representations: p1 and p2, p1 stands for
the representation in original data space Rd and p2 stands
for its representation in Hamming space Hd′ . Similarly, each
node also has two representations: n1 ∈ Rd and n2 ∈ Hd′ .

can be eliminated to avoid unnecessary exhaustive search on
the remaining data set.

3 A Unified ANN Search Scheme
Our idea is to build a more efficient ANN search scheme by
combining data structure and hashing. On one side, we use
data structure to take full advantage of hashing methods with
long bit length which can get high accuracy. Well designed
data structures can greatly prune the search space, thus ex-
haustive linear search of hash codes can be avoided. On
the other side, we accelerate traditional data structure based
methods by greatly reducing the proportion of high dimen-
sional floating-point vector distance computation.

In the following subsections, we take hierarchical k-means
tree as an example to show how our proposed scheme works.

3.1 Algorithm
Building the Data Structure
Given a data set which contains N data points in Rd, we first
build a hierarchical k-means tree with L levels to index all the
N data points. Generally, we assume in the l-th level, each
node is split into cl+1 (l = 0, 1, 2, ..., L − 1) small clusters
which are the nodes in the (l + 1)-th level. Figure 1 shows
an example with N = 27, L = 2, c1 = 3, c2 = 3. For each
node which is also a cluster, we calculate the center of all the
points that belong to this cluster as its first representation in
the original space Rd. Then, we can adopt an arbitrary hash-
ing method such as LSH and KLSH to map each node’s first
representation to a d′ dimensional Hamming space, where
each node has the new d′ dimensional binary code represen-
tation as its second representation. So the main difference of
the new data structure from traditional HKM is that each node
is a struct consisting of two representations: the first one is ac-
curate and the second is approximate. This new data structure
provides more flexibility, and Hamming distance can be used
as an optional distance metric when calculating the similarity.

682

……

Level i

Level i+1

Query

Step (a)

Step (b)

Figure 2: Example of the query procedure. The solid dot on
the up-left corner is a query point. And suppose we are in
the i-th level of the HKM tree, we have six nodes which are
expanded by the nodes in the (i − 1)-th level to search, and
we need to keep si = 2 nearest nodes of the query in this
level. We first use a fast coarse ranking algorithm based on
comparing Hamming distance which is shown in step (a) to
select ri = 4 (ri ≥ si) candidate nodes. Then an accurate
ranking on the selected ri = 4 nodes is adopted in step (b)
based on the exact distance measure of the original space to
select the final si = 2 nodes. The selected two nodes will be
expanded in the (i+ 1)-th level. In this example we can save
6 − 4 = 2 Euclidean distance computations by the two step
ranking and the high accuracy is also kept at the same time.

Querying
When given a query which has only the first representation,
we adopt the same hashing method used in building the data
structure to compute its second representation. Then we
search it in the HKM tree from the top level to the bottom
level. In each level, only a small part of nodes that are nearest
to the query will be kept to be further searched in the next
level. Suppose we keep sl nodes in the l-th level. Clearly, if
we keep 10% nodes in each level, the number of data points
that need to be finally searched will be exponentially reduced
to (0.1)LN , and the query time can be greatly saved. Tra-
ditionally, to decide which sl nodes in the l-th level are the
nearest ones to the query point, people have to exhaustively
compute the Euclidean distance from the query to the candi-
date nodes in the l-th level, since each node has only one rep-
resentation in original data space. The number of candidate
nodes in the l-th level is sl−1cl, which are expanded from
the sl−1 nodes of the above level. While in our new HKM

data structure, we can easily accelerate this process by a two
step ranking. Firstly, a coarse ranking in Hamming space is
adopted to get rl (rl ≥ sl) nearest nodes by using each node’s
second representation. Then in order to compensate the accu-
racy loss, we rerank the rl nodes by using their first repre-
sentations which are accurate. In this way, we can get high
accuracy and achieve low query time simultaneously. Finally,
we can get sL nearest nodes and the data points contained in
them. Then a similar coarse ranking which finds the top rp
(rp ≥ k) data points will be done first, and the last step, a
fine reranking to the rp points is used to give the final k near-
est neighbors of the query. We illustrate the query process in
Figure 2.

3.2 Complexity Analysis
In this subsection, We give some complexity analysis of both
the offline HKM building and the online querying.

Building HKM Complexity
As is known, if we cluster n data points of Rd into c clusters
by k-means clustering, the complexity is O(ndcm), where m
is the number of iterations needed for k-means to converge.
Since m could be set to be a constant number such as 20 in
real applications, we will omit it below. For the complexity
of HKM, it’s clear that the building of HKM contains many
small k-means clusterings on different sizes of data set. In the
(l − 1)-th level of HKM, there are Cl−1 =

∏l−1
i=1 ci nodes,

each containing approximately Nl−1 = N
Cl−1

data points.
To build the l-th level, we need to execute Cl−1 times k-
means clusterings, each of which clusters Nl−1 data points
into cl clusters, and the complexity is O(Cl−1Nl−1cld) =
O(Ncld). So by adding each level’s building complexity to-
gether, we get the complexity of building the whole HKM,
which is O(N(

∑L
i=1 ci)d). In a common HKM structure

where ci = c, i = 1, 2, ..., L, the complexity is O(NdLc).
Similarly, we give the complexity of calculating the first

representation of each node as O(NdL), and the complex-
ity of calculating the second representation of each node as
O(Ndd′).

Thus, the total complexity of building the proposed HKM
data structure is O(Nd(Lc + L + d′)). This complexity is
similar with that of traditional HKM tree.

Query Complexity
Based on the query algorithm, in the l-th level, we analyze the
complexity of the coarse ranking and the fine reranking sepa-
rately. For the coarse ranking, we first need to select the near-
est rl nodes of the query from sl−1cl nodes expanded by the
sl−1 nodes in the (l− 1)-th level by Hamming distance mea-
sure. We calculate the sl−1cl Hamming distances, and the
complexity is O(sl−1cl) since Hamming distance calculation
is near O(1). Then we partially sort all the sl−1cl distances to
get the top rl nodes, and the complexity is O(sl−1cl log rl).
For the fine reranking, similarly, we have a complexity of
O(rld) in Euclidean distances computation and a complexity
of O(rl log sl) in partially sorting. Clearly, the complexity in
the l-th level is O(sl−1cl + sl−1cl log rl + rld + rl log sl).
For the final step, each of the sL nodes has approximately
N
CL

data points, thus the complexity of the final step is

683

0 5 10
0.2

0.4

0.6

0.8

1
1NN on SIFT−1M

M
ea

n
P

re
ci

si
on

Time Cost (ms)

1 tree
2 trees
4 trees
8 trees
16 trees

0 5 10 15
0

0.2

0.4

0.6

0.8

1
1NN on GIST−1M

M
ea

n
P

re
ci

si
on

Time Cost (ms)

1 tree
2 trees
4 trees
8 trees
16 trees

Figure 3: kd-trees with 1, 2, 4, 8 and 16 trees are compared,
the mean precision and time cost per query are obtained by
varying the number of check nodes.

0 1 2 3
0.4

0.6

0.8

1
1NN on SIFT−1M

M
ea

n
P

re
ci

si
on

Time Cost (ms)

1 tree
2 trees
4 trees
8 trees
16 trees

0 5 10 15
0.2

0.4

0.6

0.8

1
1NN on GIST−1M

M
ea

n
P

re
ci

si
on

Time Cost (ms)

1 tree
2 trees
4 trees
8 trees
16 trees

Figure 4: HKM with 1, 2, 4, 8 and 16 trees are compared,
the mean precision and time cost per query are obtained by
varying the number of check nodes.

O(N
CL

+ N
CL

log rp+rpd+rp log k). So, totally the complexity

of the proposed scheme is O(
∑L

l=1(sl−1cl + sl−1cl log rl +

rld+ rl log sl) +
N
CL

+ N
CL

log rp + rpd+ rp log k).
Note that for high dimensional data set where d is

very large, the main part of query complexity is O(rpd +∑L
l=1 rld), corresponding to the complexity of Euclidean dis-

tance computation. And from the experimental results in the
following section, we can see that rp +

∑L
l=1 rl in our pro-

posed scheme is much smaller than that in traditional data
structured based ANN search methods such as HKM trees
and kd-trees for a given accuracy.

4 Experiments
kd-trees and HKM trees
In this section, we compare our unified ANN search scheme
with several state-of-the-art ANN search techniques includ-
ing both data structure based methods and hashing based
methods on several data sets.

4.1 Data sets
The experiments are carried out on real-world publicly avail-
able image data sets

• SIFT-1M: It contains one million SIFT descriptors and
each descriptor is represented by a 128-dim vector. This
data set has been used in [Wang et al., 2012; Jun Wang,
2010; Joly and Buisson, 2011].

Data Set Bit Length Method MP Time Cost

SIFT-1M
256 LSH 0.864 4.83+32.2

KLSH 0.870 4.86+30.6

512 LSH 0.989 13.0+32.3
KLSH 0.974 13.0+31.7

GIST-1M
256 LSH 0.604 4.69+32.0

KLSH 0.836 4.77+31.8

512 LSH 0.745 13.2+33.4
KLSH 0.879 12.9+32.0

Table 2: Mean precision and time cost of LSH and KLSH on
1NN search. An exhaustively linear scan is adopted to obtain
the results. The time cost consists of computing and sorting
the Hamming distances, which are the bottlenecks of tradi-
tional hashing methods especially when dealing with large
scale data set.

0 0.5 1 1.5
0.2

0.4

0.6

0.8

1
1NN on SIFT−1M

M
ea

n
P

re
ci

si
on

Time Cost (ms)

HKM+LSH
HKM+KLSH

0 1 2 3 4
0.2

0.4

0.6

0.8

1
1NN on GIST−1M

M
ea

n
P

re
ci

si
on

Time Cost (ms)

HKM+LSH
HKM+KLSH

Figure 5: Our scheme’s performance with LSH and KLSH.
On SIFT data set, the code length is set to 512. On GIST data
set, the code length is set to 256.

• GIST-1M: It contains one million GIST descriptors and
each descriptor is represented by a 960-dim vector. This
data set is publicly available1 and has been used in
[Wang et al., 2012; Heo et al., 2012; Liu et al., 2012].

4.2 Compared Methods
• Data structure based methods include

– kd-trees: Randomized kd-trees with best-bin-first
search heuristic has been compared. We also notice
that a PCA rotation on the original data will im-
prove the precision of randomized kd-trees method
significantly. So all experimental results of kd-trees
are carried out on the rotated data.

– Hierarchical K-Means trees (HKM): HKM builds
the data structure by clustering the data using hier-
archical k-means algorithm which can significantly
reduce the search space when given a query.

Mujas’ FLANN (Fast Library for Approximate Near-
est Neighbors) library [Muja and Lowe, 2009] has been
used for both the kd-trees and HKM implementations.
The FLANN library is a mature, reasonably optimized
free software package of ANN search algorithms.
• Hashing based methods include

1http://corpus-texmex.irisa.fr/

684

0 1 2 3 4
0.2

0.4

0.6

0.8

1
1NN on GIST−1M

M
ea

n
P

re
ci

si
on

Time Cost (ms)

HKM+KLSH 512 bits
HKM+KLSH 256 bits
HKM+KLSH 128 bits
HKM+KLSH 64 bits

0 0.5 1 1.5
0.2

0.4

0.6

0.8

1
1NN on SIFT−1M

M
ea

n
P

re
ci

si
on

Time Cost (ms)

HKM+KLSH 512 bits
HKM+KLSH 256 bits
HKM+KLSH 128 bits
HKM+KLSH 64 bits

Figure 6: Results of HKM+KLSH with different binary code
lengths (64, 128, 256 and 512).

0 0.5 1 1.5 2 2.5 3

0.4

0.5

0.6

0.7

0.8

0.9

1
1NN on SIFT−1M

M
ea

n
P

re
ci

si
on

Time Cost (ms)

HKM+KLSH 256 bits
kd−trees 16 trees
HKM 8 trees

0 2 4 6 8 10 12
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1NN on GIST−1M

M
ea

n
P

re
ci

si
on

Time Cost (ms)

HKM+KLSH 512 bits
kd−trees 16 trees
HKM 8 trees

Figure 7: 1NN performances on SIFT and GIST.

– Locality Sensitive Hashing (LSH): LSH projects
the original data to Hamming space by random pro-
jections. Then an exhaustively search is used in the
Hamming space.

– Kernelized Locality Sensitive Hashing (KLSH):
KLSH [Kulis and Grauman, 2009] formulates the
random projection used by LSH in arbitrary ker-
nel space. KLSH with a Gaussian RBF kernel has
been used in our experiment. KLSH may outper-
form LSH especially when the data dimensionality
is high, as is shown in Table 2.

• For the proposed unified ANN search scheme, we show
two examples including

– HKM+LSH: A unified search technique by com-
bining HKM and LSH.

– HKM+KLSH: A unified search technique by com-
bining HKM and KLSH.

In our scheme, we build hierarchical k-means trees for SIFT
and GIST data sets similarly. Both trees have two levels
where c1 = c2 = 100, which means the data points are firstly
grouped into 100 clusters, then each cluster is divided again
into 100 smaller clusters each containing approximately 100
data points. For the query process, to simplify the problem of
choosing search parameters, we set 1 6 s1 = s2 6 16 and
r1 = 100 = c1 while r2 is adjusted from 100 to 800 and rp
is adjusted from 100 to 2500 corresponding to the different
choices of s1.

4.3 Evaluation
For each data set, we randomly select 1000 data points as the
queries and use the remaining 999,000 data points to form

0 1 2 3 4 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50NN on SIFT−1M

M
ea

n
P

re
ci

si
on

Time Cost (ms)

HKM+KLSH 256 bits
kd−trees 16 trees
HKM 8 trees

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
50NN on GIST−1M

M
ea

n
P

re
ci

si
on

Time Cost (ms)

HKM+KLSH 512 bits
kd−trees 16 trees
HKM 8 trees

Figure 8: 50NN performances on SIFT and GIST.

the database. Following the similar work in [Heo et al., 2012;
Joly and Buisson, 2011], a retrieved point is considered to be
a true neighbor if it is among the k nearest neighbors (mea-
sured by the Euclidian distance in the original space) of the
query. Mean Precision (MP) is used throughout the paper as
a main criteria and is defined as follows

Mean Precision =

q∑
i=1

k∑
j=1

pi,j
kq

(1)

Here q is the sum of query, pi,j is set to be 1 if the j-th re-
trieved point of the i-th query lies in the k nearest neighbors,
otherwise pi,j is set to be 0.

The experiments are carried out on a computer with an In-
tel(R) Core(TM) i7-3770 3.40GHz CPU and 8GB memory.
And all methods are tested in a single thread mode.

4.4 Parameter Selection
kd-trees and HKM
Although the building time of both kd-trees and HKM in-
creases with the number of trees, both methods are likely to
obtain better precision with more trees. We exhaustively tried
kd-trees and HKM trees with different number of trees (1, 2,

685

Data Set Mean Precision Method Time (ms)

SIFT-1M

80%
HKM+KLSH 0.18

HKM 0.51
kd-trees 0.92

90%
HKM+KLSH 0.42

HKM 0.78
kd-trees 2.2

GIST-1M

80%
HKM+KLSH 1.8

HKM 6.7
kd-trees 4.2

90%
HKM+KLSH 4.2

HKM 12.2
kd-trees 9.3

Table 3: 1NN results of all ANN methods.

4, 8 and 16), and the results are shown in Figure 3 and Figure
4. We find that kd-trees with 16 trees and HKM with 8 trees
are the best.

LSH and KLSH
We then briefly compare the performances of two hashing
methods, and the results are shown in Table 2. Obviously,
KLSH performs better than LSH under different bit lengths
on GIST, while on SIFT data set the performances of both
methods are similar. And we note that when the bit length
is short, hashing based methods can not achieve good re-
sults. But when the bit length is long, traditionally, people
have to search exhaustively over all hash codes which is very
time consuming. Hashing methods based on linear search are
about 10 times slower than methods that based on tree struc-
tures, and this gap will be more obvious with the increasing
scale of data set. Thus, hashing methods won’t be further
compared in the following experiments.

Our Scheme
We first test the performances of different combinations:
HKM with LSH and HKM with KLSH. Figure 5 shows the
comparisons on SIFT and GIST data sets. For SIFT data set,
the performances of the two combinations are similar, and
for GIST data set, HKM with KLSH achieves higher preci-
sion compared with HKM with LSH. This is reasonable since
KLSH performs better than LSH on high dimensional data set
which is shown in Table 2. So we adopt HKM with KLSH as
a better scheme.

Next, we test the performance of HKM with KLSH un-
der different bit lengths. Long bits are accurate but may
take more time. In Figure 6, we can see that on SIFT data
set whose dimensionality is not very high, 256 bits is good
enough for HKM with KLSH, and on GIST data set whose
dimensionality is much higher, HKM with KLSH needs more
bits, 512 bits is the best choice.

4.5 Results
In this subsection, we show the comparisons of all these ANN
search methods with their own best parameters. Figure 7
shows the detailed results of nearest neighbor search (1NN)
on SIFT and GIST data sets. HKM with KLSH as an com-
bination of data structure and hashing method shows its great

Data Set Mean Precision Method Time (ms)

SIFT-1M

80%
HKM+KLSH 0.59

HKM 4.0
kd-trees 1.0

90%
HKM+KLSH 1.3

HKM 9.5
kd-trees 1.9

GIST-1M

70%
HKM+KLSH 1.0

HKM 7.5
kd-trees 7.5

80%
HKM+KLSH 1.8

HKM 12
kd-trees 13

Table 4: 50NN results of all ANN methods.

advantage. The time costs to reach 80% and 90% mean preci-
sion on both data set are shown in Table 3. On SIFT data set,
to reach the 90% precision, for each query, HKM with KLSH
only needs 0.42ms, while HKM trees needs 0.78ms and kd-
trees needs 2.2ms. On GIST data set, to reach the 90% pre-
cision, for each query, HKM with KLSH only needs 4.2ms,
while HKM trees needs 12.2ms and kd-trees needs 9.3ms. So
the results show the great power of HKM with KLSH when
dealing with high dimensional problems.

50NN search experiments are also conducted, and results
are shown in Figure 8. Generally, it takes longer time to
achieve a high precision in 50NN search problem. But HKM
with KLSH still performs the best, and the results are most
encouraging when dealing with 50NN search task on GIST
data set. To achieve the precision of 80%, HKM with KLSH
can be more than 6 times faster compared with kd-trees and
HKM trees, as is shown in Table 4.

5 Conclusion and Future Work
In this paper, we propose a novel unified approximate nearest
neighbor search scheme by combining data structures with
hashing methods. We introduce how the proposed scheme
works by taking the hierarchical k-means tree as an exam-
ple. Each node of traditional HKM has been extended to a
struct which consists of two representations: one is the ac-
curate representation in original space and the other is the
approximate representation in Hamming space. In this way,
traditional search strategy which is purely based on the time
consuming Euclidean distance computation now can be ap-
proximated and accelerated by Hamming distance computa-
tion which only takes O(1) time in modern CPUs’ architec-
ture.

For future work, similar changes to HKM can also be
adopted in the k nearest neighbor graph. When choosing the
direction of hill climbing, the two step ranking procedure may
also be helpful. And extending the unified scheme to multi
data structures such as multi trees and multi graphs may im-
prove the ANN search performance further.

6 Acknowledgements
This work is supported by National Basic Research Program
of China (973 Program) under Grant 2012CB316400 and

686

National Natural Science Foundation of China (Grant No:
61125203, 61222207, 61233011, 90920303).

References
[Andoni and Indyk, 2008] Alexandr Andoni and Piotr Indyk.

Near-optimal hashing algorithms for approximate near-
est neighbor in high dimensions. Communications of the
ACM, 51(1):117–122, 2008.

[Cheung and Fu, 1998] King Lum Cheung and Ada Wai-
Chee Fu. Enhanced nearest neighbour search on the r-tree.
ACM SIGMOD Record, 27(3):16–21, 1998.

[Friedman et al., 1977] Jerome H. Friedman, Jon Louis
Bentley, and Raphael Ari Finkel. An algorithm for finding
best matches in logarithmic expected time. ACM Transac-
tions on Mathematical Software, 3(3):209–226, 1977.

[Gionis et al., 1999] Aristides Gionis, Piotr Indyk, and Ra-
jeev Motwani. Similarity search in high dimensions via
hashing. In Proceedings of the 25th International Confer-
ence on Very Large Data Bases, 1999.

[Gong and Lazebnik, 2011] Yunchao Gong and S. Lazebnik.
Iterative quantization: A procrustean approach to learning
binary codes. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2011.

[Hajebi et al., 2011] Kiana Hajebi, Yasin Abbasi-Yadkori,
Hossein Shahbazi, and Hong Zhang. Fast approximate
nearest-neighbor search with k-nearest neighbor graph. In
Proceedings of the Twenty-Second international joint con-
ference on Artificial Intelligence, 2011.

[Heo et al., 2012] Jae-Pil Heo, YoungWoon Lee, Junfeng
He, Shih-Fu Chang, and Sung eui Yoon. Spherical hash-
ing. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2012.

[Joly and Buisson, 2011] Alexis Joly and Olivier Buisson.
Random maximum margin hashing. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, 2011.

[Jun Wang, 2010] Shih-Fu Chang Jun Wang, Sanjiv Kumar.
Sequential projection learning for hashing with compact
codes. In Proceedings of the International Conference on
Machine Learning, 2010.

[Kulis and Grauman, 2009] Brian Kulis and Kristen Grau-
man. Kernelized locality-sensitive hashing for scalable
image search. In IEEE International Conference on Com-
puter Vision, 2009.

[Liu et al., 2012] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang
Jiang, and Shih-Fu Chang. Supervised hashing with ker-
nels. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2012.

[Lowe, 2004] David G. Lowe. Distinctive image features
from scale-invariant keypoints. International Journal of
Computer Vision, 60(2):91–110, 2004.

[Me et al., 2011] Wei Me, Jun Wang, Sanjiv Kumar, and
Shih-Fu Chang. Hashing with graphs. In Proceedings of
the International Conference on Machine Learning, 2011.

[Muja and Lowe, 2009] Marius Muja and David G. Lowe.
Fast approximate nearest neighbors with automatic algo-
rithm configuration. In In VISAPP International Confer-
ence on Computer Vision Theory and Applications, 2009.

[Nister and Stewenius, 2006] David Nister and Henrik
Stewenius. Scalable recognition with a vocabulary tree.
In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2006.

[Norouzi et al., 2012] Mohammad Norouzi, Ali Punjani, and
David J. Fleet. Fast search in hamming space with multi-
index hashing. In Proceedings of the IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recog-
nition, 2012.

[Paredes and Chávez, 2005] Rodrigo Paredes and Edgar
Chávez. Using the k-nearest neighbor graph for proximity
searching in metric spaces. In Proceedings of the inter-
national conference on String Processing and Information
Retrieval, 2005.

[Raginsky and Lazebnik, 2009] Maxim Raginsky and Svet-
lana Lazebnik. Locality-sensitive binary codes from shift-
invariant kernels. In Advances in Neural Information Pro-
cessing Systems. 2009.

[Sengupta, 2012] Sunando Sengupta. Efficient discrimina-
tive learning of parametric nearest neighbor classifiers. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2012.

[Shindler et al., 2011] Michael Shindler, Alex Wong, and
Adam W. Meyerson. Fast and accurate k-means for large
datasets. In Advances in Neural Information Processing
Systems 24. 2011.

[Silpa-Anan and Hartley, 2008] Chanop Silpa-Anan and
Richard Hartley. Optimised kd-trees for fast image de-
scriptor matching. In IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2008.

[Song et al., 2011] Jingkuan Song, Yi Yang, Zi Huang,
Heng Tao Shen, and Richang Hong. Multiple feature hash-
ing for real-time large scale near-duplicate video retrieval.
In Proceedings of the ACM international conference on
Multimedia, 2011.

[Wang et al., 2012] Jun Wang, Sanjiv Kumar, and Shih-Fu
Chang. Semi-supervised hashing for large-scale search.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 34(12):2393–2406, 2012.

687

