
Under review as a conference paper at ICLR 2020

Neural Reverse Engineering of Stripped Binaries

Anonymous authors
Paper under double-blind review

Abstract

We address the problem of reverse engineering of stripped executables which
contain no debug information. This is a challenging problem because of the low
amount of syntactic information available in stripped executables, and due to the
diverse assembly code patterns arising from compiler optimizations. We present
a novel approach for predicting procedure names in stripped executables. Our
approach combines static analysis with encoder-decoder-based models. The main
idea is to use static analysis to obtain enriched representations of API call sites;
encode a set of sequences of these call sites by traversing the Control-Flow Graph;
and finally, attend to the encoded sequences while decoding the target name. Our
evaluation shows that our model performs predictions that are difficult and time
consuming for humans, while improving on the state-of-the-art by 20%.

1 Introduction

Reverse Engineering (RE) of compiled binary executables has a variety of applications. Furthermore,
it is crucial for analyzing malware and finding vulnerabilities. Unfortunately, it is a tedious and time
consuming task, which is usually performed manually. A human reverse-engineer has to guess the
procedures to begin with; follow the flow in these procedures; find connections between procedures;
and finally piece all these together to develop a global understanding of the purpose and usage of the
inspected executable.

Recently, there has been a lot of work on analysis of source code using learned models (Raychev
et al., 2015; Bielik et al., 2016; Allamanis et al., 2018; Alon et al., 2019a; Murali et al., 2017;
Brockschmidt et al., 2019; Yin and Neubig, 2017; Chen et al., 2018). However, all of these address
high-level and syntactically rich programming languages such as Java, C# and Python, and none of
them address the unique challenges residing in executables. He et al. (2018) proposed a non-neural
model for reasoning about binaries, but the model suffered from inherent sparsity.

We present a novel approach for reasoning about compiled assembly code. Specifically, we use
static analysis to locate and analyze external API calls; we traverse the Control-Flow Graph (CFG) to
approximate the dynamic runtime order of the calls; and finally, we decode the caller procedure name
while attending to potential runtime sequences. Our approach provides an interesting and powerful
balance between the program analysis effort required to obtain the representation from executables
and the effectiveness of the learning model. To the best of our knowledge, this is the first work to
leverage deep learning for recovering procedure names in binary code.

We compare our approach empirically with previous work which used shallow static analysis with
non-neural models. We show that training Neural Machine Translation (NMT) baselines on the
flat assembly code performs poorly – this necessitates leveraging semantic analysis to learn from
executables. We ablate our model to demonstrate the importance of the different components of our
analysis to the quality of the representation. We show that our combined approach of static analysis
to enrich neural representations yields more accurate results than previous work and presents a major
step in the field of neural reverse engineering.

1



Under review as a conference paper at ICLR 2020

Figure 1: (a) Given assembly code of an executable, (b) we reconstruct calls to external APIs and
deduce their argument kinds; (c) these external calls are placed in the reconstructed Control-Flow
Graph which approximates their runtime call order; (d) our model learns all potential runtime call
orders; and (e) the decoder generates the target name while attending to all potential call orders.

2 Enriched Representations for Binary Call Sites

2.1 Task: Reverse Engineering as Generation of Binary Procedure Names

Assembly code from a stripped (containing no debug information) executable is a sequence of
instructions lacking variable names (see, for example, the disassembled block in Figure 1(a)).
Learning such a low-level stripped representation is a challenging task. A naïve approach where the
sequence of instructions is fed into a seq2seq architecture (Luong et al., 2015; Sutskever et al., 2014;
Cho et al., 2014) yields hopelessly imprecise results (as we show in Section 5).

Given a nameless assembly procedure X residing in a stripped executable, our goal is to predict a
likely and descriptive nameY = y1..., ym, where y1..., ym are the subtokens composingY. Thus, our
goal is tomodel P (Y | X). For example, for the nameY = create_server_socket, the subtokens
y1..., ym that we aim to predict are create, server and socket, respectively (Figure 1(e)).

2.2 Overview

We draw our initial intuition from the way a human reverse engineer skims the code of an unknown
procedure P, stripped from debug symbols. Disassembling the code of P from hexadecimal values
into assembly instructions results in a flow of instructions such as the ones shown in Figure 1(a). To
understand what an assembly code snippet does, the most informative pieces of information are calls
to procedures that were dynamically linked to the examined executable, e.g., call getaddrinfo
(line 8) and call setsockopt (line 17) in Figure 1(a). The API names getaddrinfo and
setsockopt cannot be stripped without breaking the loading process; stripping them would leave
the executable unusable. While some malware may obfuscate the API names, the values for the
arguments passed when calling these external procedures must remain intact. Similarly, if the
examined executable is a library, procedures exported by the library cannot be stripped either.

To reason about compiled binaries, we need to: (i) encode each API call while capturing as much
semantic information as available; and (ii) learn all API calls in a way that reflects the relationship
between them. To encode API calls ((i)), we perform a static analysis that reconstructs information
regarding the values, types and origin of the argument passed to the called API (Figure 1(b)). To
learn the relationship between multiple encoded API calls ((ii)), we reconstruct and traverse the
Control-Flow Graph (CFG) of the procedure (Figure 1(c)). Reconstruction of CFG allows to observe
the potential chronological order in which the APIs are used, rather than the random order in which
they appear in the executable. By observing the API calls in the order they appear in the CFG,
we approximate the order in which the APIs may be used in runtime, without actually running the
procedure. The alternative of observing the calls in the order they appear in the assembly loses their
functional order, because the assembly order is arbitrary. Finally, our decoder generates the target
procedure name while attending to all potential runtime call orders (Figure 1(d)). In this example,
our model predicted the name create server socket (Figure 1(e)).

2



Under review as a conference paper at ICLR 2020

2.3 Extracting Call Sites from Binaries

Reconstructing Call Sites First, we analyze each external call instruction to gather all available
semantic information. We examine debug symbols for libraries used by the given executable to
retrieve the number of arguments passed to each procedure. We map each argument to the register
used to pass it, and construct a call site that is very similar to a call site in higher-level languages, as
shown in Fig. 1(b).

Using Pointer-Aware Slicing to Determine KindsWhile the reconstructed call site structure is useful,
we strive to gather information about the value each register holds when the call is made. Obtaining
this information requires analyzing the calls in the context of the entire procedure. To do so, we
compute a static slice of each register at the call location in the procedure. A slice of a program
(Weiser, 1984) at a specific location for a specific value is a subset of the instructions in the program
necessary to create the value at this specific location. As some arguments are pointers, we perform
a pointer-aware static program slice, adapting the definition of Lyle and Binkley (1993) to assembly
instructions. We generate slice information according to the specifications of the CPU manufacturer,
e.g., Intel x64.

Each register of a call site in Figure 1(b) is connected by an arrow to the slice of P used to create its
value: for example, the value of rsi for the setsockopt call 1O was created by an assignment of a
constant value of 1. In other cases, the value of a specific register is unknown. One such case is the
value of rdi passed to setsockopt 2O, which is the result of call to the socket procedure. Another
such case is that of the values of rdx and rcx used in getaddrinfo 3O which are just pointers to
structures allocated on the stack.

We divide these cases into one of the following categories: value received as argument (ARG), locally
created value (VAL), global value (GLOBAL), and unknown constant value (CONST). When a specific
value can be extracted, e.g., the number “1”, it is used as-is without a category. Generally we call
these argument kinds.

Example Marking argument kinds for the two procedure calls in Figure 1(b) results in
getaddrinfo(ARG,ARG,CONST,CONST) and setsockopt(VAL,1,2,CONST,4).

This representation makes it easier to reason about the procedure for both the model and a human
reverse engineer. As kinds provide the model with more information about how an API is used, as
shown in Section 5.3, they improve the results of our model by 4% relative over the alternative of
using only the name of the external API. Moreover, as shown in Table 1, kinds allows the model to
make predictions even when API names are obfuscated.

3 Representing Binary Procedures as Sets of Call Site Sequences

A key observation in this work is that focusing on call sites is useful for representing binary
procedures. However, using the arbitrary order of calls in which they appear in the binary fails
to capture their regularity. After reconstructing call sites, we examine the order these calls are
used. Figure 1(c) shows the CFG containing only the call sites. This CFG contains four top-down
sequences, with edges marked as: (1,2), (1,3,4), (1,3,5,6), and (1,3,5,7,8). Figure 1(d) shows these
sequences separately.

Analyzing the CFG of the procedure Given a binary procedure, P, we construct its CFG, we
denote GP . GP is a directed graph comprised of nodes which correspond to the basic blocks in P.
These nodes are connected by edges according to control-flow instructions, i.e., jumps between basic
blocks. To simplify, we: (i) add an entry node Entry and connect it to the original entry block; and,
(ii) connect all exit nodes to a sink node Sink.

We wish to represent P as a set of all potential runtime call sequences, such as the ones shown in
Figure 1(d). We take all sequences of instructions along simple paths from Entry to Sink and denote
them as PathsEntry→Sink . For each path p ∈ PathsEntry→Sink , we use instructions(p) to denote
the sequence of instructions executed along p:

[P] = {instructions(p) | p ∈ PathsEntry→Sink}

3



Under review as a conference paper at ICLR 2020

6: call listen
call gai_strerror

3: call socket
call freeaddrinfo
call errno_location
call strerror

2: call getaddrinfo
call close

5: call bind
call close

4: call setsocketopt
call errno_location
call strerror

1: call memset

Figure 2: Typical call instructions for starting a
server in order of appearance in the binary code.

1: call memset
2: call getaddrinfo
3: call socket
4: call setsocketopt
5: call bind
6: call listen

Figure 3: Typical call instructions for starting a
server, in their correct call order, automatically
filtered from error handling calls. This order and
filtering could be obtained only by analyzing call
paths the Control-Flow Graph.

We map each sequence of instructions instSeq ∈ [P] to a sequence of call sites: we take only the
“call” instructions in instSeq, e.g., call getaddrinfo, and reconstruct the argument kinds for
each such call as explained in Section 2.3: getaddrinfo(ARG,ARG,CONST,CONST).

Example Consider the “call” instructions of Figure 2. These calls are listed in the arbitrary order
they were written by the compiler, which does not reflect any logical or chronological order. The
path π =memset→getaddrinfo→socket→setsockopt→bind→listen is interleaved with
error handling calls such as close and strerror. Additionally, the calls of this path themselves
are randomly shuffled in the assembly, i.e., listen appears before bind. By analyzing the CFG and
extracting only possible runtime paths, we approximate all potential call sequences. Figure 3 shows
how the path π is easily reordered and filtered from other calls thanks to the graph representation.
This analysis detects also paths that end in error handling calls, i.e., memset→stderror, as these
might also be executed at runtime (if memset failed).

Combined Example Correctly ordered reconstructed call sites creates a powerful building block
for representing binary procedures. Consider the longest path of Figure 1(d) – with edges
marked as (1,3,5,7,8): (i) memset(CONST,0,48) initializes a 48-byte memory space with zeroes;
(ii) getaddrinfo(ARG,ARG,CONST,CONST) uses two of P′s arguments to search for a specific interface to
be used later. (iii) socket(CONST, CONST,CONST) and setsocketopt(VAL,1,2,CONST,4) create a socket
and configure it to be a TCP socket by passing the value 1; and (iv) bind and listen determine
that this procedure is part of a server listening to incoming connections. The rest of the calls handle
errors (strerror) and free created resources (close and freeaddrinfo).

While not all the information regarding the connections between these calls is represented explicitly,
the argument kinds capture important parts of it, e.g., /Applications/that the socket was created
*inside this procedure*, as marked by kind “VAL”, contributing to the model choosing the subtoken
“create” in the decoding steps.

Finally, we represent P in the learning model as the set of all potential reconstructed call site
sequences, including paths that end in calls to error handling procedures.

4 Model

The key idea in this work is to represent a binary procedure as a set of call site sequences. We follow
the general encoder-decoder paradigm (Cho et al., 2014; Sutskever et al., 2014) with attention (Luong
et al., 2015; Bahdanau et al., 2014) for sequence-to-sequence (seq2seq) models, with the difference
that the input is not the standard single sequence of symbols, but a set of call site sequences. We
learn a call site sequence as a sequence of encoded call sites; finally, we decode the target procedure
name word-by-word while considering a dynamic weighted average of call site vectors at each step.
We note that the main focus of our work is the novel synergy between program analysis of binaries
and neural models, rather than the specific neural architecture. To demonstrate this approach, our
model is a simple extension of attention encoder-decoder models (Luong et al., 2015; Bahdanau
et al., 2014) that encodes a set of input sequences, but the same approach can be used with more
expressive architectures.

4



Under review as a conference paper at ICLR 2020

Overview Encoder-decoder attention models map a sequence of input symbols x = (x1, ..., xn) to a
sequence of latent vector representations z = (z1, ..., zn). Given z, the decoder predicts a sequence of
output symbols y = (y1, ..., yn), thus modeling the conditional probability: p (y1, ..., ym | x1, ..., xn).
At each decoding time step, auto-regressive models predict the next symbol conditioned on the
previously predicted symbol, hence the probability of the target sequence can be factorized as:

p (y1, ..., ym | x1, ..., xn) =
m∏
j=1

p
(
yj | y< j, z1, ..., zn

)
We employ a similar architecture to the standard attention encoder-decoder, with the following
differences: (i) each vector in z = (z1, ..., zn) is an encoded call site sequence with its arguments;
(ii) the encoder learns a set of call site sequences, rather than a single input sequence; and (iii) there
is no positional relation between the encoded sequences z = (z1, ..., zn) = {z1, ..., zn}. We thus refer
to the representation as a set of sequences.

Call site sequence encoder We define a vocabulary of learned embeddings Enames . This vocabulary
assigns a vector for every subtoken of API name which was observed in the training corpus. For
example, if the training corpus contains a call to open_file, each of open and file is assigned
a vector in Enames . Additionally, we define a learned embedding for each argument kind, e.g.,
ARG, VAL, CONST or GLOBAL (Section 2), and for every actual value (e.g., the number “1”) that
occurred in training data. We denote the matrix containing these vectors as Ekinds . We represent a
call site by summing the embeddings of its API subtokens, and concatenating with up to kargs of
argument kind embeddings:

encode_callsite
(
w1...wks , kind1, ..., kindkargs

)
=

[(
ks∑
i

Enames
wi

)
; Ekinds

kind1
; ... ; Ekinds

kindkargs

]
We pad the remaining kind slots with an additional no-arg symbol. Next, we learn a call site
sequence using a bidirectional LSTM. We represent each call site sequence by concatenating the last
states of forward and backward LSTMs:

h1, ..., hl = LST M (callsite1, ..., callsitel)

z =
[
h→l ; h←l

]
Where l is the maximal length of a call site sequence. In our experiments, we used l = 60. Finally,
given a set of call site sequences, we represent the entire procedure as a set of its encoded call site
sequences: {z1, z2, ..., zn}

DecoderOur decoder operates much like decoders of contemporary auto-regressive attention models
such as Luong et al. (2015). Given a set of encoded call site sequences z = (z1, ..., zn), the decoder
predicts the next output symbol, i.e., procedure name subtoken, while attending over z. By attending
over the call site sequences z, the decoder selects the relevant call site sequences for each decoding
step. As the initial state of the decoder, we average the encoded call site sequences: hdec

0 = 1
n

∑n
i=1 zi

5 Evaluation

We implemented our approach in a model called Nero, for NEural Reverse engineering Of stripped
binaries.

5.1 Experimental Setup

Dataset We collected a dataset of code packages from the GNU code repository containing a variety
of applications such as networking, administration tools and libraries. We focus our evaluation on
Intel 64-bit executables running on Linux, but the same process can be applied to other architectures
and operating systems. The compiled executables, amounts to 13,826 procedures.

We extract procedure names to use as labels, and then create two datasets by: (i) stripping, and (ii)
stripping and obfuscating API names for each executable. Stripping is performed to conform to the
way executables are usually distributed, and API calls obfuscation is sometimes done in malware.

5



Under review as a conference paper at ICLR 2020

We split both datasets into the same training-validation-test sets using a (8 : 1 : 1) ratio. Each dataset
contains 2.49 (±0.01) target symbols per example. There are 829.38 (±13.28) assembly code tokens
per procedure, which our analysis reduces to 10.05 (±0.08) call sites and 12.6 (±0.23) paths per
procedure1; the average path is 7.5 (±0.01) call sites long. We make this dataset publicly available.

To avoid dealing with mixed naming schemes, we removed all packages containing a mix of pro-
gramming languages, e.g., a Python package containing partial C implementations. We filtered out
wrapper procedures because they are usually very easy to both reverse-engineer and predict, thus
falsely improve the scores.

Avoiding Duplicates Following Lopes et al. (2017) and Allamanis (2018) who pointed out the
existence of code duplication in open-source datasets and its adverse effects, we created the train,
validation, and test sets from completely separate projects and packages. Additionally, we put a lot
of effort, both manual and automatic, into filtering duplicates from our dataset. To filter duplicates,
we filtered out the following:

1. Different versions of the same package – for example, “wget-1.7” and “wget-1.20”.

2. C++ code – C++ code regularly contains overloaded procedures; further, class methods
start with the class name as a prefix. To avoid duplication and name leakage, we filtered out
all C++ executables entirely.

3. Tests – all executables suspected as being tests or examples were filtered out.

4. Static linking – we took only packages that could compile without static linking. This
ensures that dependencies are not compiled into the dependent executable.

Training We trained our model using a single Tesla V100 GPU. We used embeddings of size
128 for target subtokens and API subtokens; to encode call site sequences we use bidirectional
LSTMs with 128 units each; the decoder LSTM had 512 units. We used dropout (Srivastava et al.,
2014) of 0.5 on the API embeddings and the LSTMs. We used the Adam (Kingma and Ba, 2014)
optimization algorithm. We trained the network end-to-end using the cross-entropy loss. We tuned
hyperparameters on the validation set, and evaluated the final model on the test set.

Metrics At test and validation time, we adopted the measure used by previous work (Allamanis et al.,
2016; Alon et al., 2019a; Fernandes et al., 2019), and measured precision, recall and F1 score over
the target subtokens, case insensitive and ignoring non-alphabetical characters. For example, for a
true reference of open file: a prediction of open is given full precision and 50% recall; and a
prediction of open input file is given 67% precision and full recall.

Baselines We compare our model to Debin (He et al., 2018), by training and testing their model on
our dataset2. This is a non-neural baseline based on Conditional Random Fields (CRFs). As far
as we are aware, this is the only other work attempting to perform a similar task to ours. We note
that Debin was designed for a slightly different task of predicting names for both local variables and
procedure names; nevertheless, we focus on the more difficult task of predicting procedure names
and use only these to compute their score. Other straightforward baselines are Transformer-text and
LSTM-text in which we do not perform any program analysis, and instead just apply standard NMT
architectures directly on the assembly code: one is the Transformer (Vaswani et al., 2017), and the
other has two bidirectional LSTMs as the encoder, two decoder layers and attention.

To provide further insight into our approach we implemented our approach in two models:
Nero-LSTM encodes the control-flow sequences using bidirectional LSTMs and decodes with an-
other LSTM; and Nero-Transformer encodes these sequences and decodes using a Transformer
(Vaswani et al., 2017).

To evaluate the main novelties of our approach, which are learning from enriched APIs and learning
Control-Flow paths – we perform a thorough ablation study, as detailed in Section 5.3.

1The average number of paths (12.6) is greater than the average number of call sites (10.05) because each
call site may participate in multiple possible call sequences in the CFG.

2The dataset of He et al. (2018) is not publicly available. We make our dataset public.

6



Under review as a conference paper at ICLR 2020

Stripped Stripped & Obfuscated API calls

Model Prec Rec F1 Prec Rec F1
Debin (He et al., 2018) 34.86 32.54 33.66 32.10 28.76 30.09
LSTM-text 22.32 21.16 21.72 15.46 14.00 14.70
Transformer-text 25.45 15.97 19.64 18.41 12.24 14.70
Nero-LSTM 45.82 36.40 40.57 39.12 31.40 34.83
Nero-Transformer 41.54 38.64 40.04 36.50 32.25 34.24

Table 1: Our model outperforms previous work by a relative improvement of 20%.

5.2 Results

The left side of Table 1 shows the results of the comparison to He et al. (2018), LSTM-text, and
Transformer-text on the stripped dataset. Overall, our models show a 20% relative improvement over
the model of He et al. (2018) and 86% over LSTM-text. Nero-Transformer performs similarly to
Nero-LSTM, scoring an F1 score of 40.04, outperforming Nero-LSTM on recall but trailing in the
precision and F1 score. This demonstrates the usefulness of our representation used with different
learning architectures.

The right side of Table 1 shows the same models on the stripped and API-obfuscated dataset.
Obfuscation degrades the results of all models, yet still our models perform significantly better than
the model of He et al. (2018) and the textual baselines. This result depicts the importance of kinds in
our representation. We note that overall, in both datasets, our models perform best on both precision
and recall.

Comparison to He et al. (2018) Conceptually, our model is much more powerful because it is able to
decode out-of-vocabulary procedure names from subtokens, while the CRF of He et al. (2018) uses a
closed vocabulary that can only predict already-seen procedure names. At the binary code side, since
our model is neural, at test time it can utilize unseen call site sequences while their CRF can only
use observed relationships between elements. Furthermore, their representation performs a shallow
translation from binary instruction to connections between symbols, while our representation is based
on a deeper data-flow-based analysis to find values of registers arguments of imported procedures.

Comparison to LSTM-text and Transformer-text The comparison to the NMT baselines shows that
learning directly from the assembly code performs significantly worse than leveraging semantic
knowledge and static analysis of binaries. We hypothesize that the reasons are the high variability
in the assembly data, which results in a low signal-to-noise ratio. This comparison necessitates the
need of an informative static analysis to represent and learn from executables.

Examples Table 3 shows a few examples for predictions made by the different models. Additional
examples can be found in Appendix A.

5.3 Ablation study

To evaluate the contribution of our representation, we compare our model in several the following
configurations:

Nero-LSTM no kinds - uses only the CFG analysis with the called API names, without argument
kinds.

Nero Transformer→LSTM - uses a Transformer to encode the sets of control-flow sequences and
an LSTM to decode the prediction.

BiLSTM call sites - uses the same enriched call sites representation as our model including argument
kinds, with the main difference that the order of the call sites is their order in the assembly code:
there is no analysis of the CFG.

BiLSTM calls - does not use CFG analysis neither argument kinds. Instead, it uses two layers of
bidirectional LSTMs with attention to encode call instructions with only the name of the called
procedure, in the order they appear in the executable.

7



Under review as a conference paper at ICLR 2020

Model Prec Rec F1
BiLSTM calls 35.95 30.36 32.92
BiLSTM call sites 36.05 31.77 33.77
Nero-LSTM no-kinds 43.62 35.25 38.99
Nero Transformer→LSTM 39.93 38.88 39.40
Nero-LSTM 45.82 36.40 40.57
Nero-Transformer 41.54 38.64 40.04

Table 2: Variations on our model, ablating components of our analysis.

Model Prediction

Gold read file check new watcher get user groups install signal handlers

He et al. (2018) bt open read index display signal setup
LSTM-text <unk> check opt close stdin <unk>
Transformer-text ipmi disable coredump <unk> config file ipmi regfree

Nero (this work) vfs read file check file get ip groups install handlers

Table 3: Examples from our test set and predictions made by the different models. More examples
can be found in Appendix A.

ResultsTable 2 shows the performance of the different configurations. Nero-LSTM achieves relatively
4% higher score than Nero-LSTM no-kinds. This shows the contribution of the information stored
in argument kinds and its importance to prediction. BiLSTM call sites and BiLSTM calls relatively
trail 16% and 19% behind Nero-LSTM and Nero-Transformer. These show the importance of
our data-flow-based observation of the data. Nero Transformer→LSTM achieved slightly lower
precision than Nero-LSTM and Nero-Transformer, but the highest recall.

As we discuss in Section 3, our data-flow-based analysis helps filtering and reordering calls in their
approximate chronological runtime order, rather than the arbitrary order of calls as they appear in
the assembly code. BiLSTM call sites performs slightly better than BiLSTM calls due to the use of
argument kinds instead of plain call instructions.

6 Related Work

Machine learning for source code Several works have investigated machine learning approaches for
predicting names in high-level languages. Most works focused on variable names (Alon et al., 2018;
Bavishi et al., 2018), method names (Allamanis et al., 2016; Alon et al., 2019b; Allamanis et al.,
2015) or general properties of code (Raychev et al., 2016b; 2014). Another interesting application
is measuring the likelihood of existing names to detect naming bugs (Pradel and Sen, 2018; Rice
et al., 2017). Most work in this field used either syntax only (Bielik et al., 2016; Raychev et al.,
2016a; Maddison and Tarlow, 2014), semantic analysis (Allamanis et al., 2018) or both (Raychev
et al., 2015; Iyer et al., 2018). Leveraging syntax only may be useful in languages such as Java and
JavaScript that have a rich syntax, which is not available in our difficult scenario of RE of binaries.
In contrast with syntactic-only work such as Alon et al. (2019a;b), working with binaries requires a
deeper semantic analysis in the spirit of Allamanis et al. (2018), which recovers sufficient information
for training the model using semantic analysis.

Allamanis et al. (2018), Brockschmidt et al. (2019) and Fernandes et al. (2019) further leveraged
semantic analysis with Graph Neural Networks, where edges in the graph were relations found using
syntactic and semantic analysis. Another work (DeFreez et al., 2018) learned embeddings for C
functions based on the CFG. We also use the CFG, but in the more difficult domain of stripped
compiled binaries rather than C code.

Static analysis models for RE He et al. (2018) used static analysis with CRFs to predict various
properties in binaries. As we show in Section 5, our model gains 20% higher scores due to their
sparse model and our deeper data-flow analysis . Katz et al. (2018) showed an approach to infer

8



Under review as a conference paper at ICLR 2020

subclass-superclass relations in stripped binaries. Lee et al. (2011) used static and dynamic analysis
to recover high-level types. In contrast, our approach is purely static. Shin et al. (2015) used RNNs
to identify procedure boundaries inside a stripped binary. David et al. (2017) and Pewny et al. (2015)
addressed the problem of finding similar procedures to a given procedure or executable, which is
useful to detect vulnerabilities.

7 Conclusion

We present a novel approach for predicting procedure names in stripped binaries. The core idea is
to leverage static analysis of binaries to encode rich representations of API call sites; traverse the
Control-FlowGraph to approximate the chronological runtime order of the call sites; and encode these
sequences using two different set-of-seq-to-seq architectures (LSTM-based and Transformer-based).

We evaluated our framework over real-world stripped procedures. Our model achieves a 20% relative
gain over existing non-neural approaches, and over 86% relative gain over the naïve textual baselines
(“LSTM-text” and “Transformer-text”). Our ablation study shows the importance of analyzing
argument kinds and learning from the CFG. To the best of our knowledge, this is the first work to
leverage deep learning for reverse engineering procedure names in binary code.

We believe that the principles presented in this paper can serve as a basis for a wide range of tasks
that involve learning models and RE, such as malware and ransomware detection, executable search,
and neural decompilation. To this end, we make our dataset and trained models publicly available.

References
M. Allamanis. The adverse effects of code duplication in machine learning models of code. arXiv
preprint arXiv:1812.06469, 2018.

M. Allamanis, E. T. Barr, C. Bird, and C. Sutton. Suggesting accurate method and class names. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, pages 38–49, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3675-8. doi: 10.1145/
2786805.2786849. URL http://doi.acm.org/10.1145/2786805.2786849.

M. Allamanis, H. Peng, and C. A. Sutton. A convolutional attention network for extreme sum-
marization of source code. In Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pages 2091–2100, 2016. URL
http://jmlr.org/proceedings/papers/v48/allamanis16.html.

M. Allamanis, M. Brockschmidt, and M. Khademi. Learning to represent programs with graphs. In
ICLR, 2018.

U. Alon, M. Zilberstein, O. Levy, and E. Yahav. A general path-based representation for predicting
program properties. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2018, pages 404–419, New York, NY, USA, 2018.
ACM. ISBN 978-1-4503-5698-5. doi: 10.1145/3192366.3192412. URL http://doi.acm.
org/10.1145/3192366.3192412.

U. Alon, S. Brody, O. Levy, and E. Yahav. code2seq: Generating sequences from structured
representations of code. In International Conference on Learning Representations, 2019a. URL
https://openreview.net/forum?id=H1gKYo09tX.

U. Alon, M. Zilberstein, O. Levy, and E. Yahav. Code2vec: Learning distributed representations
of code. Proc. ACM Program. Lang., 3(POPL):40:1–40:29, Jan. 2019b. ISSN 2475-1421. doi:
10.1145/3290353. URL http://doi.acm.org/10.1145/3290353.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and
translate. CoRR, abs/1409.0473, 2014. URL http://arxiv.org/abs/1409.0473.

R. Bavishi, M. Pradel, and K. Sen. Context2name: A deep learning-based approach to infer natural
variable names from usage contexts. arXiv preprint arXiv:1809.05193, 2018.

9

http://doi.acm.org/10.1145/2786805.2786849
http://jmlr.org/proceedings/papers/v48/allamanis16.html
http://doi.acm.org/10.1145/3192366.3192412
http://doi.acm.org/10.1145/3192366.3192412
https://openreview.net/forum?id=H1gKYo09tX
http://doi.acm.org/10.1145/3290353
http://arxiv.org/abs/1409.0473


Under review as a conference paper at ICLR 2020

P. Bielik, V. Raychev, and M. T. Vechev. PHOG: probabilistic model for code. In Proceedings of the
33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June
19-24, 2016, pages 2933–2942, 2016. URL http://jmlr.org/proceedings/papers/
v48/bielik16.html.

M. Brockschmidt, M. Allamanis, A. L. Gaunt, and O. Polozov. Generative code modeling with
graphs. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=Bke4KsA5FX.

X. Chen, C. Liu, and D. Song. Tree-to-tree neural networks for program translation. In Advances in
Neural Information Processing Systems, pages 2547–2557, 2018.

K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio.
Learning phrase representations using rnn encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078, 2014.

Y. David, N. Partush, and E. Yahav. Similarity of binaries through re-optimization. In Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, pages 79–94, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4988-8. doi: 10.
1145/3062341.3062387. URL http://doi.acm.org/10.1145/3062341.3062387.

D.DeFreez, A.V. Thakur, andC.Rubio-González. Path-based function embedding and its application
to error-handling specification mining. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2018, pages 423–433, New York, NY, USA, 2018. ACM. ISBN 978-
1-4503-5573-5. doi: 10.1145/3236024.3236059. URL http://doi.acm.org/10.1145/
3236024.3236059.

P. Fernandes,M.Allamanis, andM.Brockschmidt. Structured neural summarization. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=H1ersoRqtm.

J. He, P. Ivanov, P. Tsankov, V. Raychev, and M. Vechev. Debin: Predicting debug information
in stripped binaries. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’18, pages 1667–1680, New York, NY, USA, 2018. ACM. ISBN
978-1-4503-5693-0. doi: 10.1145/3243734.3243866. URL http://doi.acm.org/10.
1145/3243734.3243866.

S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer. Mapping language to code in programmatic
context. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pages 1643–1652, 2018.

O. Katz, N. Rinetzky, and E. Yahav. Statistical reconstruction of class hierarchies in bina-
ries. In Proceedings of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’18, pages 363–376, New York,
NY, USA, 2018. ACM. ISBN 978-1-4503-4911-6. doi: 10.1145/3173162.3173202. URL
http://doi.acm.org/10.1145/3173162.3173202.

D. Kingma and J. Ba. Adam: Amethod for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

J. Lee, T. Avgerinos, and D. Brumley. Tie: Principled reverse engineering of types in binary
programs. 2011.

C. V. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani, and J. Vitek. Déjàvu: a map
of code duplicates on github. Proceedings of the ACM on Programming Languages, 1(OOPSLA):
84, 2017.

T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based neural machine
translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, pages 1412–1421, 2015.
URL http://aclweb.org/anthology/D/D15/D15-1166.pdf.

10

http://jmlr.org/proceedings/papers/v48/bielik16.html
http://jmlr.org/proceedings/papers/v48/bielik16.html
https://openreview.net/forum?id=Bke4KsA5FX
https://openreview.net/forum?id=Bke4KsA5FX
http://doi.acm.org/10.1145/3062341.3062387
http://doi.acm.org/10.1145/3236024.3236059
http://doi.acm.org/10.1145/3236024.3236059
https://openreview.net/forum?id=H1ersoRqtm
https://openreview.net/forum?id=H1ersoRqtm
http://doi.acm.org/10.1145/3243734.3243866
http://doi.acm.org/10.1145/3243734.3243866
http://doi.acm.org/10.1145/3173162.3173202
http://aclweb.org/anthology/D/D15/D15-1166.pdf


Under review as a conference paper at ICLR 2020

J. R. Lyle and D. Binkley. Program slicing in the presence of pointers. In Proceedings of the 1993
Software Engineering Research Forum, pages 255–260. Citeseer, 1993.

C. Maddison and D. Tarlow. Structured generative models of natural source code. In International
Conference on Machine Learning, pages 649–657, 2014.

V. Murali, S. Chaudhuri, and C. Jermaine. Bayesian sketch learning for program synthesis. CoRR,
abs/1703.05698, 2017. URL http://arxiv.org/abs/1703.05698.

J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz. Cross-architecture bug search in binary
executables. In Proceedings of the 2015 IEEE Symposium on Security and Privacy, SP ’15, pages
709–724, Washington, DC, USA, 2015. IEEE Computer Society. ISBN 978-1-4673-6949-7. doi:
10.1109/SP.2015.49. URL https://doi.org/10.1109/SP.2015.49.

M. Pradel and K. Sen. Deepbugs: A learning approach to name-based bug detection. Proc. ACM
Program. Lang., 2(OOPSLA):147:1–147:25, Oct. 2018. ISSN 2475-1421. doi: 10.1145/3276517.
URL http://doi.acm.org/10.1145/3276517.

V. Raychev, M. Vechev, and E. Yahav. Code completion with statistical language models. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’14, pages 419–428, New York, NY, USA, 2014. ACM. ISBN 978-1-
4503-2784-8. doi: 10.1145/2594291.2594321. URL http://doi.acm.org/10.1145/
2594291.2594321.

V. Raychev, M. Vechev, and A. Krause. Predicting program properties from "big code". In Pro-
ceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’15, pages 111–124, NewYork, NY,USA, 2015.ACM. ISBN978-1-4503-3300-
9. doi: 10.1145/2676726.2677009. URL http://doi.acm.org/10.1145/2676726.
2677009.

V. Raychev, P. Bielik, andM.Vechev. Probabilisticmodel for codewith decision trees. InProceedings
of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2016, pages 731–747, NewYork, NY, USA, 2016a. ACM.
ISBN 978-1-4503-4444-9. doi: 10.1145/2983990.2984041. URL http://doi.acm.org/
10.1145/2983990.2984041.

V. Raychev, P. Bielik, M. Vechev, and A. Krause. Learning programs from noisy data. In Proceedings
of the 43rdAnnual ACMSIGPLAN-SIGACTSymposiumonPrinciples of ProgrammingLanguages,
POPL ’16, pages 761–774, NewYork, NY,USA, 2016b. ACM. ISBN978-1-4503-3549-2. doi: 10.
1145/2837614.2837671. URL http://doi.acm.org/10.1145/2837614.2837671.

A. Rice, E. Aftandilian, C. Jaspan, E. Johnston, M. Pradel, and Y. Arroyo-Paredes. Detecting
argument selection defects. Proceedings of the ACM on Programming Languages, 1(OOPSLA):
104, 2017.

E. C. R. Shin, D. Song, and R. Moazzezi. Recognizing functions in binaries with neural networks.
In USENIX Security Symposium, pages 611–626, 2015.

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple
way to prevent neural networks from overfitting. Journal of machine learning research, 15(1):
1929–1958, 2014.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In
Advances in neural information processing systems, pages 3104–3112, 2014.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. InAdvances in neural information processing systems, pages 5998–6008,
2017.

M. Weiser. Program Slicing. IEEE Transactions on Software Engineering, SE-10(4):352–357,
jul 1984. ISSN 0098-5589. doi: 10.1109/TSE.1984.5010248. URL http://ieeexplore.
ieee.org/document/5010248/.

P. Yin and G. Neubig. A syntactic neural model for general-purpose code generation. In Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 440–450, 2017.

11

http://arxiv.org/abs/1703.05698
https://doi.org/10.1109/SP.2015.49
http://doi.acm.org/10.1145/3276517
http://doi.acm.org/10.1145/2594291.2594321
http://doi.acm.org/10.1145/2594291.2594321
http://doi.acm.org/10.1145/2676726.2677009
http://doi.acm.org/10.1145/2676726.2677009
http://doi.acm.org/10.1145/2983990.2984041
http://doi.acm.org/10.1145/2983990.2984041
http://doi.acm.org/10.1145/2837614.2837671
http://ieeexplore.ieee.org/document/5010248/
http://ieeexplore.ieee.org/document/5010248/


Under review as a conference paper at ICLR 2020

A Additional Examples

Table 4 contains more examples from our test set, along with the predictions made by our model and
each of the baselines.

Gold He et al. (2018) LSTM-text Transformer-text BiLSTM call-sites Nero-LSTM (this work)

mktime from utc nettle pss ... get boundary <unk> str file mktime
read buffer concat fopen safer mh print fmtspec net read filter read
get widech get byte user mh decode rcpt flag <unk> do tolower
get user groups display close stdin config file ipmi get user groups get ip groups
ftp parse winnt ls uuconf iv ... mktime print status send to file parse form
write init pos allocate pic buf open int <unk> print type cfg init
wait for proc wait subprocess start open mh print fmtspec <unk> strip
read string cmp error check command process io read
get user groups mh alias enumerate hol free fi hostlist string is group groups get user groups
find env find env pos proper name utf close stream read token find env
write calc jacob usage msg update pattern print one paragraph <unk> write
write calc outputs fsquery show debug section cwd advance fd <unk> write
get script line get line make dir hier <unk> read ps line jconfig get
getuser readline stdin read readline rushdb print mh decode rcpt flag write line readline read
set max db age do link set owner make dir hier sparse copy set
write calc deriv orthodox hdy ds symbol close stream fprint entry write type
read file bt open <unk> ... disable coredump <unk> vfs read file
parse options parse options finish mh print fmtspec get options parse args
url free hash rehash hostname destroy setupvariables hol free free dfa content
check new watcher read index check opt <unk> open source check file
open input file get options query in ck rename set delete input
install signal handlers signal setup <unk> regfree <unk> install handlers
write calc jacob put in fp table save game var hostname destroy <unk> write
filename pattern free add char segment free dfa content hostname destroy glob cleanup free exclude segment
read line tartime init all close stdout parse args read
locate unset var is unset url get arg regerror var is var is unset
ftp parse unix ls serv select fn canonicalize <unk> <unk> parse syntax option
free netrc gea compile hostname destroy hostname destroy free ent hol free
string to bool string to bool setnonblock mh decode rcpt flag string to bool parse check line or field

Table 4: Examples from our test set and predictions made by the different models.

12


	Introduction
	Enriched Representations for Binary Call Sites
	Task: Reverse Engineering as Generation of Binary Procedure Names
	Overview
	Extracting Call Sites from Binaries

	Representing Binary Procedures as Sets of Call Site Sequences
	Model
	Evaluation
	Experimental Setup
	Results
	Ablation study

	Related Work
	Conclusion
	Additional Examples

