
Published as a conference paper at ICLR 2017

INTROSPECTION:ACCELERATING NEURAL NETWORK
TRAINING BY LEARNING WEIGHT EVOLUTION

Abhishek Sinha∗
Department of Electronics and Electrical Comm. Engg.
IIT Kharagpur
West Bengal, India
abhishek.sinha94 at gmail dot com

Mausoom Sarkar
Adobe Systems Inc, Noida
Uttar Pradesh,India
msarkar at adobe dot com

Aahitagni Mukherjee∗
Department of Computer Science
IIT Kanpur
Uttar Pradesh, India
ahitagnimukherjeeam at gmail dot com

Balaji Krishnamurthy
Adobe Systems Inc, Noida
Uttar Pradesh,India
kbalaji at adobe dot com

ABSTRACT

Neural Networks are function approximators that have achieved state-of-the-art
accuracy in numerous machine learning tasks. In spite of their great success
in terms of accuracy, their large training time makes it difficult to use them for
various tasks. In this paper, we explore the idea of learning weight evolution
pattern from a simple network for accelerating training of novel neural networks.

We use a neural network to learn the training pattern from MNIST classifi-
cation and utilize it to accelerate training of neural networks used for CIFAR-10
and ImageNet classification. Our method has a low memory footprint and is
computationally efficient. This method can also be used with other optimizers
to give faster convergence. The results indicate a general trend in the weight
evolution during training of neural networks.

1 INTRODUCTION

Deep neural networks have been very successful in modeling high-level abstractions in data. How-
ever, training a deep neural network for any AI task is a time-consuming process. This is because a
large number of parameters need to be learnt using training examples. Most of the deeper networks
can take days to get trained even on GPU thus making it a major bottleneck in the large-scale appli-
cation of deep networks. Reduction of training time through an efficient optimizer is essential for
fast design and testing of deep neural nets.

In the context of neural networks, an optimization algorithm iteratively updates the parameters
(weights) of a network based on a batch of training examples, to minimize an objective function.
The most widely used optimization algorithm is Stochastic Gradient Descent. Even with the advent
of newer and faster optimization algorithms like Adagrad, Adadelta, RMSProp and Adam there is
still a need for achieving faster convergence.

In this work we apply neural network to predict weights of other in-training neural networks to
accelerate their convergence. Our method has a very low memory footprint and is computationally
efficient. Another aspect of this method is that we can update the weights of all the layers in parallel.

∗This work was done as part of an internship at Adobe Systems, Noida

1

Published as a conference paper at ICLR 2017

2 RELATED WORK

Several extensions of Stochastic Gradient Descent have been proposed for faster training of neural
networks. Some of them are Momentum (Rumelhart et al., 1986), AdaGrad (Duchy et al., 2011),
AdaDelta (Zeiler, 2012), RMSProp (Hinton et al., 2012) and Adam (Kingma & Ba, 2014). All of
them reduce the convergence time by suitably altering the learning rate during training. Our method
can be used along with any of the above-mentioned methods to further improve convergence time.

In the above approaches, the weight update is always a product of the gradient and the modi-
fied/unmodified learning rate. More recent approaches (Andrychowicz et al., 2016) have tried to
learn the function that takes as input the gradient and outputs the appropriate weight update. This
exhibited a faster convergence compared to a simpler multiplication operation between the learning
rate and gradient. Our approach is different from this, because our forecasting Network does not
use the current gradient for weight update, but rather uses the weight history to predict its future
value many time steps ahead where network would exhibit better convergence. Our approach
generalizes better between different architectures and datasets without additional retraining. Further
our approach has far lesser memory footprint as compared to (Andrychowicz et al., 2016). Also our
approach need not be involved at every weight update and hence can be invoked asynchronously
which makes it computationally efficient.

Another recent approach, called Q-gradient descent (Fu et al., 2016), uses a reinforcement learning
framework to tune the hyperparameters of the optimization algorithm as the training progresses.
The Deep-Q Network used for tuning the hyperparameters itself needs to be trained with data from
any specific network N to be able to optimize the training of N . Our approach is different because
we use a pre-trained forecasting Network that can optimize any network N without training itself
by data from N .

Finally the recent approach by (Jaderberg et al., 2016) to predict synthetic gradients is similar to our
work, in the sense that the weights are updates independently, but it still relies on an estimation of
the gradient, while our update method does not.

Our method is distinct from all the above approaches because it uses information obtained from the
training process of existing neural nets to accelerate the training of novel neural nets.

3 PATTERNS IN WEIGHT EVOLUTION

The evolution of weights of neural networks being trained on different classification tasks such as
on MNIST and CIFAR-10 datasets and over different network architectures (weights from different
layers of fully connected as well as convolutional architectures) as well as different optimization
rules were analyzed. It was observed that the evolution followed a general trend independent of the
task the model was performing or the layer to which the parameters belonged to. A major proportion
of the weights did not undergo any significant change. Two metrics were used to quantify weight
changes:

• Difference between the final and initial values of a weight scalar: This is a measure of how
much a weight scalar has deviated from its initial value after training.In figure 4 we show
the frequency histogram plot of the weight changes in a convolutional network trained for
MNIST image classification task, which indicates that most of the weight values do not
undergo a significant change in magnitude. Similar plots for a fully connected network
trained on MNIST dataset (figure 6) and a convolutional network trained on CIFAR-10
dataset (figure 8) present similar observations.

• Square root of 2nd moment of the values a weight scalar takes during training: Through
this measure we wish to quantify the oscillation of weight values. This moment has been
taken about the initial value of the weight. In figure 5, we show the frequency histogram
plot of the second moment of weight changes in a convolutional network trained for the
MNIST digit classification task, which indicates that most of the weight values do not
undergo a significant oscillations in value during the training. Similar plots for a fully

2

Published as a conference paper at ICLR 2017

connected network trained on MNIST (figure 7) and a convolutional network trained on
CIFAR-10 (figure 9) dataset present similar observations.

A very small subset of the all the weights undergo massive changes compared to the rest.

The few that did change significantly were observed to be following a predictable trend, where
they would keep on increasing or decreasing with the progress of training in a predictable fashion.
In figures 1, 2 and 3 we show the evolution history of a few weights randomly sampled from the
weight change histogram bins of figures 4,6 and 8 respectively, which illustrates our observation.

0 10000 20000 30000 40000 50000
Training steps

0.010

0.005

0.000

0.005

0.010

0.015

Di
ffe

re
nc

e
of

 w
ei

gh
t v

al
ue

 fr
om

 in
iti

al
iz

ed
 v

al
ue

Figure 1: Deviation of weight values from initialized values as a convolutional network gets trained
on MNIST dataset using SGD optimizer.

0 20000 40000 60000 80000 100000
Training steps

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Di
ffe

re
nc
e
of
 w
ei
gh

t
al
ue

 fr
om

 in
iti
al
iz
ed

al
ue

De iation of weight alue from initialization with training
 fully connected network on MNIST

Figure 2: Deviation of weight values from
initialized values as a fully-connected net-
work gets trained on MNIST dataset using
Adam optimizer..

0 10000 20000 30000 40000 50000
Training s eps

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

Di
ffe

re
nc

e
of

 w
ei

gh
 v

al
ue

 fr
om

 in
i i

al
iz

ed
 v

al
ue

Devia ion of weigh values from ini ialized values
 when raining a convolu ional ne work on CIFAR-10

Figure 3: Deviation of weight values from
initialized values as CNN gets trained on
CIFAR-10 dataset using SGD optimizer.

3.1 WEIGHT PREDICTION

We collect the weight evolution trends of a network that is being trained and use the collected data
to train a neural network I to forecast the future values of each weight based on its values in the
previous time steps. The trained network I is then used to predict the weight values of an unseen
network N during its training which move N to a state that enables a faster convergence. The
time taken for the forecast is significantly smaller compared to the time a standard optimizer (e.g.
SGD) would have taken to achieve the same accuracy. This leads to a reduction in the total training

3

Published as a conference paper at ICLR 2017

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Deviation of Weight Value

100

101

102

103

104

105

106

Fr
eq

ue
nc
y

log-Frequency Distribution of
 deviation of weight value from initialization

Figure 4: log-Frequency distribution of dif-
ference between weight values before and
after training for a network N0 trained on
MNIST dataset using SGD optimizer.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Square root of 2nd moment about initialized value

100

101

102

103

104

105

Fr
eq

ue
nc
y

log-Frequency Distribution of
 square root of 2nd moment about initialized value of weights

Figure 5: log-Frequency distribution of
square root of 2nd moment of a weight
value(about initial value) along its training
history. The weight values are taken from a
network N0 trained on MNIST dataset using
SGD optimizer.

time. The predictor I that is used for forecasting weights is a comparatively smaller neural network,
whose inference time is negligible compared to the training time of the network that needs to be
trained(N). We call this predictor I Introspection network because it looks at the weight evolution
during training.

The forecasting network I is a simple 1-layered feedforward neuralnet. The input layer consists of
four neurons that take four samples from the training history of a weight. The hidden layer consists
of 40 neurons, fully connected to the input layer, with ReLU activation. The output layer is a single
neuron that outputs the predicted future value of the weight. In our experiments four was minimum
numbers of samples for which the training of Introspection Network I converged.

The figure 10 below shows a comparison of the weight evolution for a single scalar weight value
with and without using the introspection network I . The vertical green bars indicate the points at
which the introspection network was used to predict the future values. Post prediction, the network
continues to get trained normally by SGD, until the introspection network I is used once again to
jump to a new weight value.

4 EXPERIMENTS

4.1 TRAINING OF INTROSPECTION NETWORK

The introspection network I is trained on the training history of the weights of a network N0 which
was trained on MNIST dataset.The network N0 consisted of 3 convolutional layers and two fully
connected layers, with ReLU activation and deploying Adam optimiser. Max pooling(2X2 pool
size and a 2X2 stride) was applied after the conv layers along with dropout applied after the first fc
layer. The shapes of the conv layer filters were [5, 5, 1, 8] , [5, 5, 8, 16] and [5, 5, 16, 32] respectively
whereas of the fc layer weight were [512, 1024] and [1024, 10] respectively.The network N0 was
trained with a learning rate of 1e − 4 and batch size of 50. The training set of I is prepared as
follows. A random training step t is selected for each weight of N0 selected as a training sample
and the following 4 values are given as inputs for training I:

1. value of the weight at step t

2. value of the weight at step 7t/10

3. value of the weight at step 4t/10

4. at step 0 (i.e. the initialized value)

4

Published as a conference paper at ICLR 2017

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Deviation of Weight Value

100

101

102

103

104

105

Fr
eq

ue
nc

y

Figure 6: log-Frequency distribution of dif-
ference between weight values before and
after training for a fully-connected network
trained on MNIST dataset using Adam opti-
mizer.

0 1 2 3 4 5
Square root of 2nd moment about initialized value

100

101

102

103

104

105

Fr
eq

ue
nc

y

Figure 7: log-Frequency distribution of
square root of 2nd moment of a weight
value(about initial value) along its training
history. The weight values are taken from a
fully-connected network trained on MNIST
dataset using Adam Optimizer.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Deviation of Weight Value

100

101

102

103

104

105

106

Fr
eq
ue
nc
y

log-Frequency Distribution of
 deviation of weight value from initialization

Figure 8: log-Frequency distribution of dif-
ference between weight values before and af-
ter training for a CNN trained on CIFAR-10
dataset using SGD optimizer.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Square root of 2nd moment about initialized value

100

101

102

103

104

105

106
Fr
eq

ue
nc
y

log-Frequency Distribution of
 square root of 2nd moment about initialized value of weights

Figure 9: log-Frequency distribution of
square root of 2nd moment of a weight
value(about initial value) along its training
history. The weight values are taken from
a CNN trained on CIFAR-10 dataset using
SGD Optimizer.

Since a large proportion of weights remain nearly constant throughout the training, a preprocessing
step is done before getting the training data for I. The large number of weight histories collected are
sorted in decreasing order on the basis of their variations in values from time step 0 to time step t.
We choose 50% of the training data from the top 50th percentile of the sorted weights, 25% from
the next 25th percentile(between 50 to 75th percentile of the sorted weights) and the remaining 25%
from the rest (75th to 100th percentile). Approximately 0.8 million examples of weight history are
used to train I . As the weight values are very small fractions they are further multiplied by 1000
before being input to the network I. The expected output of I , which is used for training I using
backpropagation, is a single scalar the value of the same weight at step 2t. This is an empirical
choice. For example, any step kt with k > 1 can be chosen instead of 2t. In our experiments
with varying the value of k, we found that the value of k = 2.2 reached a slightly better validation
accuracy than k = 2.0 on MNIST dataset (see figure 15) but, on the whole the value of k = 2.0 was
a lot more consistent in its out-performance at various points in its history. All the results reported
here are with respect to the I trained to predict weight values at 2t.

5

Published as a conference paper at ICLR 2017

Figure 10: Example of weight update using Introspection Network.

Adam optimizer was used for the training of the introspection network with a mini-batch size of
20.The training was carried out for 30k steps. The learning rate used was 5e-4 which decreased
gradually after every 8k training steps. L1- error was used as the loss function for training . We
experimented with both L2 error and percentage error but found that L1 error gave the best result
over the validation set. The final training loss obtained was 3.1 and the validation loss of the final
trained model was 3.4. These correspond to average L1 weight prediction error of 0.0031 and 0.0034
in the training and validation set respectively as the weight values are multiplied by 1000 before they
are input to I .

4.2 USING PRE-TRAINED INTROSPECTION NETWORK TO TRAIN UNSEEN NETWORKS

The introspection network once trained can be then used to guide the training of other networks. We
illustrate our method by using it to accelerate the training of several deep neural nets with varying
architectures on 3 different datasets, namely MNIST, CIFAR-10 and ImageNet. We note that the
same introspection network I , trained on the weight evolutions of the MNIST network N0 was used
in all these different cases.

All the networks have been trained using either Stochastic Gradient Descent, or ADAM and the
network I is used at a few intermediate steps to propel the network to a state with higher accuracy.We
refer to the time step at which the introspection network I is applied to update all the weights as a
”jump point”.

The selection of the steps at which I is to be used is dependent on the distribution of the training
step t used for training I . We show the effect of varying the timing of the initial jump and the time
interval between jump points in section 4.2.2. It has been observed that I gives a better increase in
accuracy when it is used in later training steps rather than in the earlier ones.

All the networks trained using I required comparatively less time to reach the same accuracy as
normal SGD training. Also, when the same network was trained for the same time with and without
updates by I , the former is observed to have better accuracy. These results show that there is a
remarkable similarity in the weight evolution trajectories across network architectures,tasks and
datasets.

4.2.1 MNIST

Four different neural networks were trained using I on MNIST dataset:

1. A convolutional neural network MNIST1 with 2 convolutional layer and 2 fully con-
nected layers(dropout layer after 1st fc layer is also present)with ReLU acitvations for

6

Published as a conference paper at ICLR 2017

classification task on MNIST image dataset.Max pooling(2X2 pool size and a 2X2 stride)
was applied after every conv layer. The CNN layer weights were of shape [5, 5, 1, 8] and
[5, 5, 32, 64] respectively and the fc layer were of sizes [3136, 1024] and [1024, 10].The
weights were initialised from a truncated normal distribution with a mean of 0 and std of
0.01. The network was trained using SGD with a learning rate of 1e−2 and batch size of 50.
It takes approximately 20,000 steps for convergence via SGD optimiser. For MNIST1, I
was used to update all weights at training step 3000, 4000, and 5000.

2. A convolutional network MNIST2 with 2 convolutional layer and 2 fully connected layers
with ReLU acitvations. Max pooling(2X2 pool size and a 2X2 stride) was applied after ev-
ery conv layer. The two fc layer were of sizes [800, 500] and [500, 10] whereas the two conv
layers were of shape [5, 5, 1, 20] and [5, 5, 20, 50] respectively. The weight initialisations
were done via xavier intialisation. The initial learning rate was 0.01 which was decayed
via the inv policy with gamma and power being 1e − 4 and 0.75 respectively. Batch size
of 64 was used for the training.It takes approximately 10,000 steps for convergence . The
network I was used to update weights at training step 2500 and 3000.

3. A fully connected network MNIST3 with 2 hidden layers each consisting of 256 hidden
units and having ReLU acitvations. The network was trained using SGD with a learning
rate of 5e − 3 and a batch size of 100. The initial weights were drawn out from a normal
distribution having mean 0 and std as 1.0. For this network the weight updations were
carried out at steps 6000, 8000 and 10000.

4. A RNN MNIST4 used to classify MNIST having a LSTM cell of hidden size of 128
followed by a fc layer of shape [128, 10] for classification. The RNN was trained on Adam
optimizer with a learning rate of 5e− 4 and a batch size of 128. The weight updations for
this network were done at steps 2000,3000 and 4000. Since the LSTM cell uses sigmoid
and tanh activations, the RNN MNIST4 allows us to explore if the introspection network,
trained on ReLU can generalize to networks using different activation functions.

A comparison of the validation accuracy with and without updates by I is shown in figures 11, 12
,13 and 14. The green lines indicate the steps at which the introspection network I is used. For the
MNIST1 network with the application of the introspection network I at three points, we found that
it took 251 seconds and 20000 SGD steps to reach a validation accuracy of 98.22%. In the same
number of SGD steps, normal training was able to reach a validation accuracy of only 97.22%. In
the same amount of time (251 seconds), normal training only reached 97.92%. Hence the gain in
accuracy with the application of introspection network translates to real gains in training times.

For the MNIST2 network, the figure 12 shows that to reach an accuracy of 99.11%, the number
of iterations required by normal SGD was 6000, whereas with the application of the introspection
network I , the number of iterations needed was only 3500, which represents a significant savings in
time and computational effort.

2000 4000 6000 8000 10000 12000 14000 16000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

training steps

T
e

s
t

a
c
c
u

ra
c
y

With introspection network

Without introspection network

Figure 11: Validation accuracy plot for
MNIST1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Training steps

0.972

0.974

0.976

0.978

0.98

0.982

0.984

0.986

0.988

0.99

0.992

A
c
c
u
ra

c
y

Plot of accuracy vs training steps for Mnist

normal training
Introspection network applied

Figure 12: Validation accuracy plot for
MNIST2

The initial drop in accuracy seen after a jump in MNIST2 figure 12 can be attributed to the fact that
each weight scalar is predicted independently, and the interrelationship between the weight scalars
in a layer or across different layers is not taken into consideration. This interrelationship is soon
reestablished after few SGD steps. This phenomenon is noticed in the CIFAR and ImageNet cases
too.

7

Published as a conference paper at ICLR 2017

2000 4000 6000 8000 10000 12000 14000
0.86

0.88

0.9

0.92

0.94

0.96

0.98

training steps

T
e

s
t

lo
s
s

With introspection network

Without introspection network

Figure 13: Validation accuracy plot for
MNIST3

1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000
0.965

0.97

0.975

0.98

0.985

0.99

training steps

T
e
s
t
a
c
c
u
ra

c
y

With introspection network

Without introspection network

Figure 14: Validation accuracy plot for
MNIST4 Which is an RNN

For MNIST3 after 15000 steps of training,the max accuracy achieved by normal training of net-
work via Adam optimizer was 95.71% whereas with introspection network applied the max accuracy
was 96.89%. To reach the max accuracy reached by normal training , the modified network(weights
updated by I) took only 8300 steps.

For MNIST4 after 7000 steps of training, the max accuracy achieved by normal training of network
was 98.65% achieved after 6500 steps whereas after modification by I it was 98.85% achieved after
5300 steps. The modified network(weights updated by I) reached the max accuracy achieved by
normal network after only 4200 steps. It is notable that the introspection network I trained on
weight evolutions with ReLU activations was able to help accelerate the convergence of an RNN
network which uses sigmoid and tanh activations.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0.978

0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

training steps

T
e

s
t

a
c
c
u

ra
c
y

Jump(*2.2)

Jump(*2)

Jump(*1.5)

Jump(*1.3)

Figure 15: Comparison of introspection networks trained with different jump ratios on MNIST1

network with Adam optimizer.Jump of 2.0 has a more consistent out performance compared to a
jump value of 2.2 even though it reaches a slightly higher accuracy

4.2.2 CIFAR-10

We applied our introspection network I on a CNN CIFAR1 for classifying images in the CIFAR10
(Krizhevsky, 2009) dataset. It has 2 convolutional layers, 2 fully connected layer and a final soft-
max layer with ReLU activation function. Max pooling (3X3 pool size and a 2X2 stride) and batch
normalization has been applied after each convolutional layer. The two conv layer filter weights
were of shape [5, 5, 3, 64] and [5, 5, 64, 64] respectively whereas the two fc layers and final softmax
layer were of shape [2304, 384],[384, 192] and [192, 10] respectively. The weights were initialized
from a zero mean normal distribution with std of 1e − 4 for conv layers,0.04 for the two fc layers
and 1/192.0 for the final layer. The initial learning rate used is 0.1 which is decayed by a factor of
0.1 after every 350 epochs. Batch size of 128 was used for training of the model which was trained
via the SGD optimizer. It takes approximately 40,000 steps for convergence. The experiments on

8

Published as a conference paper at ICLR 2017

CIFAR1 were done to investigate two issues. The first was to investigate if the introspection net-
work trained on MNIST weight evolutions is able to generalize to a different network and different
dataset. The second was to investigate the effect of varying the timing of the initial jump, the inter-
val between successive jumps and the number of jumps. To investigate these issues, four separate
training instances were performed with 4 different set of jump points:

1. Set1 : Weight updates were carried out at training steps 12000 and 17000.
2. Set2 : Weight updates at steps 15000 and 18000 .
3. Set3 : Weight updates at steps 12000 , 15000 and 19000 .
4. Set4 : Weight updates at steps 14000 , 17000 and 20000 .

We observed that for the CIFAR1 network that in order to reach a validation accuracy of 85.7%,
we need 40,000 iterations with normal SGD without any intervention with the introspection network
I . In all the four sets where the introspection network was used, the target accuracy of 85.7%
was reached in approximately 28,000 steps. This shows that the introspection network is able to
successfully generalize to a new dataset and new architecture and show significant gains in training
time.

On CIFAR1, the time taken by I for prediction is negligible compared to the time required for
SGD. So the training times in the above cases on CIFAR1 can be assumed to be proportional to
the number of SGD steps required.

A comparison of the validation accuracy with and without updates by I at the four different sets of
jump points are shown in figures 16, 17, 18 and 19. The results show that the while choice of jump
points have some effect on the final result, the effects are not very huge. In general, we notice that
better accuracy is reached when the jumps take place in later training steps.

0.5 1 1.5 2 2.5 3 3.5 4

Training steps
×10

4

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

A
c
c
u

ra
c
y

Plot of accuracy vs training steps for cifar-10

normal training
Introspection network applied

Figure 16: Validation accuracy plot for
CIFAR1 with jumps at Set1

0.5 1 1.5 2 2.5 3 3.5 4

Training steps
×10

4

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

A
c
c
u

ra
c
y

Plot of accuracy vs training steps for cifar-10

normal training
Introspection network applied

Figure 17: Validation accuracy plot for
CIFAR1 with jumps at Set2

0.5 1 1.5 2 2.5 3 3.5 4

Training steps
×10

4

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

A
c
c
u
ra

c
y

Plot of accuracy vs training steps for cifar-10

normal training
Introspection network applied

Figure 18: Validation accuracy plot for
CIFAR1 with jumps at Set3

0.5 1 1.5 2 2.5 3 3.5 4

Training steps
×10

4

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

A
c
c
u

ra
c
y

Plot of accuracy vs training steps for cifar-10

normal training
Introspection network applied

Figure 19: Validation accuracy plot for
CIFAR1 with jumps at Set4

4.2.3 IMAGENET

To investigate the practical feasibility and generalization ability of our introspection network, we
applied it in training AlexNet(Krizhevsky et al., 2012) (AlexNet1) on the ImageNet (Russakovsky

9

Published as a conference paper at ICLR 2017

et al., 2015) dataset. It has 5 conv layers and 3 fully connected layers . Max pooling and local
response normalization have been used after the two starting conv layers and the pooling layer is
there after the fifth conv layer as well. We use SGD with momentum of 0.9 to train this network,
starting from a learning rate of 0.01. The learning rate was decreased by one tenth every 100, 000
iterations. The mini-batch size was 128. It takes approximately 300,000 steps for convergence. The
weight updates were carried out at training steps 120, 000 , 130, 000 , 144, 000 and 160, 000 .

We find that in order to achieve a top-5 accuracy of 72%, the number of iterations required in the
normal case was 196,000. When the introspection network was used, number of iterations required
to reach the same accuracy was 179,000. Again the time taken by I for prediction is negligible
compared to the time required for SGD. A comparison of the validation accuracy with and without
updates by I is shown in figure 20. The green lines indicate the steps at which the introspection
network I is used. The corresponding plot of loss function against training steps has been shown in
figure 21.

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Training steps
×10

5

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

A
c
c
u
ra

c
y

Plot of accuracy vs training steps for imageNet

normal training
Introspection network applied

Figure 20: Validation accuracy plot for
AlexNet1 on ImageNet

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

x 10
5

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Training steps

T
ra

in
in

g
 l
o

s
s

normal training

Introspection network applied

Figure 21: Plot of loss function vs training
steps for AlexNet1 on ImageNet

The results on Alexnet1 show that our approach has a small memory footprint and computationally
efficient to be able to scale to training practical large scale networks.

4.3 COMPARISON WITH BASELINE TECHNIQUES

In this section we provide a comparison with other optimizers and simple heuristics which can be
used to update the weights at different training steps instead of updations by introspection network.

4.4 COMPARISON WITH ADAM OPTIMIZER

We applied the introspection network on MNIST1 and MNIST3 networks being trained with
Adam optimizer with learning rates of 1e − 4 and 1e − 3. The results in figure 22 and figure
23 show that while Adam outperforms normal SGD and SGD with introspection, we were able to
successfully apply the introspection network on Adam optimizer and accelerate it.

For MNIST1 the max accuracy achieved by Adam with introspection was 99.34%, by normal
Adam was 99.3%, by SGD with introspection was 99.21% and by normal SGD was 99.08% . With
introspection applied on Adam the model reaches the max accuracy as achieved by normal Adam
after only 7200 steps whereas the normal training required 10000 steps.

For MNIST3 the max accuracy achieved by Adam with introspection was 96.9%, by normal Adam
was 95.7%, by SGD with introspection was 94.47% and by normal SGD was 93.39% . With intro-
spection applied on Adam the model reaches the max accuracy as achieved by normal Adam after
only 8800 steps whereas the normal training required 15000 steps.

10

Published as a conference paper at ICLR 2017

3000 4000 5000 6000 7000 8000 9000 10000
0.97

0.975

0.98

0.985

0.99

training steps

T
e

s
t

a
c
c
u

ra
c
y

Introspection on adam

Introspection on Sgd

Normal Adam

Normal Sgd

Figure 22: Test accuracy comparison for
MNIST1 for SGD and Adam optimiser in
the presence and absence of introspection.

2000 4000 6000 8000 10000 12000 14000
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

training steps

T
e

s
t

a
c
c
u

ra
c
y

Introspection on adam

Introspection on Sgd

Normal Adam

Normal Sgd

Figure 23: Test accuracy comparison for
MNIST3 for SGD and Adam optimiser in
the presence and absence of introspection.

4.4.1 FITTING QUADRATIC CURVE

A separate quadratic curve was fit to each of the weight values of the model on the basis of the
4 past weight values chosen from history.The weight values chosen from history were at the same
steps as they were for updations by I . The new updated weight would be the value of the quadratic
curve at some future time step.For MNIST1 , experiments were performed by updating the weights
to the value predicted by the quadratic function at a future timestep which was one of 1.25,1.3 or
1.4 times the current time step. For other higher jump ratios the updates would cause the model to
diverge, and lower jump ratios did not show much improvement in performance. The plot showing
the comparison in validation accuracy have been shown below in figure 24.

2000 4000 6000 8000 10000 12000 14000 16000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

training steps

T
e

s
t

a
c
c
u

ra
c
y

With introspection network

Normal SGD

QuadraticFit(*1.4)

Quadratic fit(*1.3)

Quadratic Fit(*1.25)

Figure 24: Comparison of test accuracy for
MNIST1 with weight updations by Intro-
spection and quadratic fit.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

x 10
4

0.8

0.81

0.82

0.83

0.84

0.85

training steps

T
e

s
t

a
c
c
u

ra
c
y

With introspection network

Normal SGD

QuadraticFit(*1.25)

Figure 25: Comparison of test accuracy for
CIFAR-10 with weight updations by Intro-
spection and quadratic fit.

The max accuracy achieved with introspection applied was 99.21% whereas with quadratic fit it was
99.19%. We note that even though the best performing quadratic fit eventually almost reaches the
same max accuracy than that achieved with introspection network, it required considerable exper-
imentation to find the right jump ratio.A unique observation for the quadratic fit baseline was that
it would take the accuracy down dramatically, upto 9.8%, from which the training often never re-
covers. Sometimes,the optimizers (SGD or Adam) would recover the accuracy, as seen in figure 24.
Moreover, the quadratic fit baseline was not able to generalize to other datasets and tasks. The best
performing jump ratio of 1.25 was not able to outperform Introspection on the CIFAR-10 dataset, as
seen in figure 25.

In the CIFAR-10 case, The maximum accuracy achieved via updations by introspection was 85.6
which was achieved after 25500 steps, whereas with updations by quadratic fit, the max accuracy of
85.45 was achieved after 27200 steps.

For the normal training via SGD without any updations after 30000 steps of training, the max ac-
curacy of 85.29 was achieved after 26500 steps, whereas the same accuracy was achieved by intro-
spection after only 21200 steps and after 27000 steps via updation by quadratic.

11

Published as a conference paper at ICLR 2017

4.4.2 FITTING LINEAR CURVE

Instead of fitting a quadratic curve to each of the weights we tried fitting a linear curve. Experiments
were performed on MNIST1 for jump ratios of 1.1 and 1.075 as the higher ratios would cause the
model to diverge after 2 or 3 jumps.The result has been shown below in figure 26.

2000 4000 6000 8000 10000 12000 14000 16000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

training steps

T
e
s
t
a
c
c
u
ra

c
y

With introspection network

Normal SGD

Linear Fit(*1.1)

Linear fit(*1.075)

Figure 26: Comparison of test accuracy for
MNIST1 with weight updations by Intro-
spection and linear fit.

2000 4000 6000 8000 10000 12000 14000
0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

training steps

T
e
s
t
lo

s
s

With introspection network

Normal SGD

LinearIntrospection

Figure 27: Validation accuracy plot for
MNIST1 using an introspection network
without nonlinearity

As no significant improvement in performance was observed the experiment was not repeated over
cifar.

4.5 LINEAR INTROSPECTION NETWORK

We removed the ReLU nonlinearity from the introspection network and used the same training
procedure of the normal introspection network to predict the future values at 2t. We then used this
linear network on the MNIST1 network. We found that it gave some advantage over normal SGD,
but was not as good as the introspection network as shown in figure 27. Hence we did not explore
this baseline for other datasets and networks.

4.5.1 ADDING NOISE

The weight values were updated by adding small gaussian random zero mean noise values . The
experiment was performed over MNIST1 for two different std. value, the results of which have
been shown below in figure 28.

2000 4000 6000 8000 10000 12000 14000 16000
0.96

0.965

0.97

0.975

0.98

0.985

0.99

training steps

T
e

s
t

a
c
c
u

ra
c
y

With introspection network

Normal SGD

Noise(std =0.001)

Noise(std =0.005)

Figure 28: Test accuracy for MNIST1 with weight updations via gaussian noise.

Since no significant improvement was observed for the weight updations via noise for MNIST, the
experiment was not performed over cifar-10.

5 LIMITATIONS AND OPEN QUESTIONS

Some of the open questions to be investigated relate to determination of the optimal jump points and
investigations regarding the generalization capacity of the introspection network to speed up training

12

Published as a conference paper at ICLR 2017

in RNNs and non-image tasks. Also, we noticed that applying the jumps in very early training steps
while training AlexNet1 tended to degrade the final outcomes. This may be due to the fact that our
introspection network is extremely simple and has been trained only on weight evolution data from
MNIST. A combination of a more powerful network and training data derived from a diverse set
may ameliorate this problem.

6 CONCLUSION

We introduced a method to accelerate neural network training. For this purpose, we used a neural
network I that learns a general trend in weight evolution of all neural networks. After learning the
trend from one neural network training, I is used to update weights of many deep neural nets on 3
different tasks - MNIST, CIFAR-10, and ImageNet, with varying network architectures, activations,
optimizers, and normalizing strategies(batch norm,lrn). Using the introspection network I led to
faster convergence compared to existing methods in all the cases. Our method has a small memory
footprint, is computationally efficient and is usable in practical settings. Our method is different
from other existing methods in the aspect that it utilizes the knowledge obtained from weights of
one neural network training to accelerate the training of several unseen networks on new tasks. The
results reported here indicates the existence of a general underlying pattern in the weight evolution
of any neural network.

REFERENCES

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman, David Pfau, Tom
Schaul, and Nando de Frietas. Learning to learn by gradient descent by gradient descent. 2016.
URL https://arxiv.org/pdf/1606.04474v1.pdf.

John Duchy, Elad Hazan, and Yoram Singer. Adaptive Subgradients Method For Online Learning
and Stochastic Optimization. 2011. URL http://www.jmlr.org/papers/volume12/
duchi11a/duchi11a.pdf.

Zie Fu, Zichuan Lin, Danlu Chen, Miau Liu, Nicholas Leonard, Jiashi Feng, and Tat-Seng Chua.
Deep Q-Networks for Accelerating the Training of Deep Neural Networks. 2016. URL https:
//arxiv.org/pdf/1606.01467v3.pdf.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Lecture 6a:Overview of mini-batch gradi-
ent descent. 2012. URL https://class.coursera.org/neuralnets-2012-001/
lecture.

Max Jaderberg, Wojciech M. Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, and Koray
Kavukcuoglu. Decoupled Neural Interfaces using Synthetic Gradients. 2016. URL https:
//arxiv.org/pdf/1608.05343.pdf.

Diedirik P. Kingma and Jimmy Lei Ba. Adam : A Method For Stochastic Optimization. 2014. URL
https://arxiv.org/pdf/1412.6980v8.pdf.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification with
Deep Convolutional Neural Networks. 2012. URL https://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf.

David Rumelhart, Geoffrey Hinton, and Ronald Williams. Learning representations by back-
propagating errors. 1986. URL http://www.nature.com/nature/journal/v323/
n6088/abs/323533a0.html.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. 2015.

13

https://arxiv.org/pdf/1606.04474v1.pdf
http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://arxiv.org/pdf/1606.01467v3.pdf
https://arxiv.org/pdf/1606.01467v3.pdf
https://class.coursera.org/neuralnets-2012-001/lecture
https://class.coursera.org/neuralnets-2012-001/lecture
https://arxiv.org/pdf/1608.05343.pdf
https://arxiv.org/pdf/1608.05343.pdf
https://arxiv.org/pdf/1412.6980v8.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://www.nature.com/nature/journal/v323/n6088/abs/323533a0.html
http://www.nature.com/nature/journal/v323/n6088/abs/323533a0.html

Published as a conference paper at ICLR 2017

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
2014. URL https://arxiv.org/pdf/1409.4842v1.pdf.

Matthew D. Zeiler. Adadelta:An adaptive learning method. 2012. URL https://arxiv.org/
pdf/1212.5701v1.pdf.

A APPENDIX

In this section, we report some initial results of applying the introspection network I (trained on the
weight evolution of MNIST network N0) to accelerate the training of inception v1 network (Szegedy
et al., 2014). We trained the inception v1 network on imagenet dataset with a mini-batchsize of 128
and a RMS optimizer(decay 0.9, momentum 0.9, epsilon 1.0) starting from a learning rate of 0.01
with a decay of 0.94 after every 2 epochs. The network training is still in progress, and we will
eventually report on the final outcome. However we thought it would be valuable to share the
preliminary results all the same.

We found that applying introspection network seems to be reducing the training time quite signif-
icantly. In Figures 29 and 30, we see that applying the introspection network leads to a gain of
at least 730,000 steps.After training for around 1.5 million steps, the maximum accuracy achieved
by normal training was 68.40%, whereas with introspection applied after every 300k steps the max
accuracy achieved was 69.06%.The network achieved the max accuracy of 68.40% after only 852k
steps. With introspection applied at steps 200k, 400k and 600k the max accuracy achieved was
68.69% and it reached the max accuracy achieved by the normal training of model after only 944k
steps.

However, we also observed that choosing the jump points early in the training does not lead to
eventual gains, even though a significant jump in accuracy is observed initially. Figure 31 shows the
flattening of the test accuracy after a set of early jumps. It remains to be seen if further interventions
later in the training can help maintain the initial accelerated convergence.

2 4 6 8 10 12 14 16

x 10
5

0.4

0.45

0.5

0.55

0.6

0.65

training steps

T
e

s
t

a
c
c
u

ra
c
y

With introspection network(jump step =300k)

With introspection network(jump step =200k)

Without introspection network

Figure 29: Test accuracy plot for Inception
V1 network with weight updates via intro-
spection network at steps 2 × 105, 4 × 105

and 6×105(pink curve) and at steps 3×105,
6× 105 and 9× 105(blue curve)

2 4 6 8 10 12 14 16

x 10
5

0.58

0.6

0.62

0.64

0.66

0.68

training steps

T
e

s
t

a
c
c
u

ra
c
y

With introspection network(jump step =300k)

Without introspection network

Figure 30: Test accuracy plot for Inception
V1 network with weight updates via intro-
spection network at steps 3 × 105, 6 × 105

9× 105

14

https://arxiv.org/pdf/1409.4842v1.pdf
https://arxiv.org/pdf/1212.5701v1.pdf
https://arxiv.org/pdf/1212.5701v1.pdf

Published as a conference paper at ICLR 2017

1 2 3 4 5 6 7 8 9 10

x 10
5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

training steps

T
e

s
t

a
c
c
u

ra
c
y

With introspection network(jump step =300k)

With introspection network(jump step =200k)

With introspection network(early jumps)

Without introspection network

Figure 31: Test accuracy plots for Inception V1 network with
weight updates via introspection network in early training
steps.

15

	Introduction
	Related Work
	Patterns in weight evolution
	Weight Prediction

	Experiments
	Training of Introspection Network
	Using pre-trained Introspection Network to train unseen networks
	MNIST
	CIFAR-10
	ImageNet

	Comparison with baseline techniques
	Comparison with Adam optimizer
	Fitting quadratic curve
	Fitting linear curve

	Linear introspection network
	Adding noise

	Limitations and Open Questions
	Conclusion
	Appendix

