
Under review as a conference paper at ICLR 2020

UNIFIED RECURRENT NEURAL NETWORK FOR MANY
FEATURE TYPES

Anonymous authors
Paper under double-blind review

ABSTRACT

There are time series that are amenable to recurrent neural network (RNN) solu-
tions when treated as sequences, but some series, e.g. asynchronous time series,
provide a richer variation of feature types than current RNN cells take into ac-
count. In order to address such situations, we introduce a unified RNN that han-
dles five different feature types, each in a different manner. Our RNN framework
separates sequential features into two groups dependent on their frequency, which
we call sparse and dense features, and which affect cell updates differently. Fur-
ther, we also incorporate time features at the sequential level that relate to the time
between specified events in the sequence and are used to modify the cell’s mem-
ory state. We also include two types of static (whole sequence level) features, one
related to time and one not, which are combined with the encoder output. The ex-
periments show that the proposed modeling framework does increase performance
compared to standard cells.

1 INTRODUCTION

The study of time series has a long history and the literature for it covers many different methods
(Hamilton (1994)). The study of asynchronous time series is an important subset of this. Asyn-
chronous time series are series for which features are sampled at irregular time intervals, and at any
given time step new values of any subset of features may be present. When a feature does not change
values often it can be treated as being present only at times of change. For example, in industrial
IoT several sensors can be monitored, each one with its own sampling rate. We can have a feature
that corresponds to the production rate that seldom changes and it impacts predictions. This clearly
presents difficulties from both a modeling and data input perspective. Fixed sampling, repeating
missing values, and other types of data imputation have all been used to varying degrees of success.
More recent attempts using machine learning for asynchronous time series use Gaussian processes
(Cunningham et al. (2012); Li & Marlin (2016)), which are hard to scale in the presence of many
features.

Deep learning is a much more recent development, and it is achieving great success in many fields,
e.g. machine vision (Krizhevsky et al. (2012); Szegedy et al. (2015); He et al. (2016)) and natural
language processing (Wu et al. (2016); Yin et al. (2017)). Recurrent neural networks (RNNs) are
a type of a neural network that use shared weights applied to sequences. These types of networks
achieve state of the art performance for sequential data. Time series can be thought of as sequences
in the RNN context, and thus they are amenable to RNN-based solutions (Malhotra et al. (2015);
Che et al. (2018); Längkvist et al. (2014)). However, many of the most widely used RNN cells,
e.g. the Long Short Term Memory (LSTM) cell (Hochreiter & Schmidhuber (1997)), are built for
problems where time either does not matter or there is a constant time step size.

The adaptation of these cells for asynchronous sequences is a more recent development, varying
from combining traditional methods with deep learning (Binkowski et al. (2018); Wen et al. (2017))
to pure neural network approaches (Neil et al. (2016); Baytas et al. (2017)). These attempts may take
into account time between samples and the patterns of missing values, but they do not fundamentally
treat features that are present with varying levels of frequency any differently. Thus, a feature that
occurs at every time step and a feature that almost never occurs at any given time step update the
cell in the same manner.

1



Under review as a conference paper at ICLR 2020

We address this shortcoming by introducing a new recurrent cell that uses features that are present
frequently, called dense features, differently from features that are rarely present, termed sparse
features, when updating the cell’s hidden and memory states. In particular, our cell’s hidden state is
split into two parts, one part for dense features and one part for sparse features. Additionally, each
sparse feature maintains its own hidden and memory state that are updated only at time steps when
that feature is present. Thus, the update for the sparse part of the overall hidden state depends on the
subset of sparse features present at any given time step, while the update for the dense part of the
overall hidden state happens in the standard LSTM manner.

In addition to handling these two feature types, our cell also accounts for the irregular time between
time steps, expanding on the work of Baytas et al. (2017) by allowing more flexibility for ingesting
time features. Specifically, we modify the decay function to handle an arbitrary number of decay
features, not just the time elapsed since the last time step. The model also permits sequence level
features, distinguishing time related features, called static decay features, which are handled in the
same manner as within the recurrent cell, from the non-time related features, called static standard
features, which are embedded and concatenated with the sequence output in the standard manner.
Overall, we support five feature types.

The main contributions of this work are as follows. First, the introduction of a new recurrent cell that
accounts for asynchronous feature sampling and treats features in a variable manner dependent on
the frequency with which their values are present. Second, an expansion of the time-aware LSTM
(TLSTM) to handle multiple time features, and the extension of this method applied to the output
of the recurrent cell itself. Third and finally, a general recurrent framework to incorporate the five
aforementioned feature types.

2 RELATED WORK

When dealing with an irregularly sampled multivariate sequence, one can consider the variables
not present at any given time step to be missing. Prior work done on recurrent networks with
missing data includes (Bengio & Gingras (1996); Tresp & Briegel (1998)). Lipton et al. (2016) test
the performance of different types of imputation and missing value indicator input features. This
work inputs the missing values patterns into the recurrent network by concatenating with the feature
vectors while using a standard LSTM network. They find zero filling missing features and using
indicator features outperforms data imputation, which may actually interfere with the network’s
ability to pick out missing values.

Che et al. (2018) investigate a similar approach and improve upon this by modifying a GRU (Cho
et al. (2014)) cell to separately incorporate the missing value patterns as well as the time between
successive measurements for each feature. It does this by introducing two decay mechanisms. The
first decay acts to bring a missing value toward the baseline mean value from its last measured value
so the old value is not input repeatedly. This work treats all features in the same manner, regardless
of the frequency a missing value is present for any given feature. The work in Che et al. (2018)
does not differentiate between features that never have missing values and features where almost all
values are missing. The second decay mechanism uses the time feature to decay the hidden state
before calculating the new hidden state. We note that missing data at a time is not the same as
features not being present (sampled) or a feature rarely changing value. We focus on the latter while
Che et al. (2018); Bengio & Gingras (1996); Tresp & Briegel (1998) focus on the former.

Baytas et al. (2017) incorporate the time between events for event based sequences with irregular
intervals in a similar fashion to the second decay mechanism in Che et al. (2018). This is done by
decomposing the memory state into short and long term components, and then multiplying the short
term component by a decay factor that decreases as the time between events increases. We use this
in our own recurrent cell, and also expand upon the idea by incorporating multiple time features,
not just limited to the time between adjacent events. We also use the same decomposition and decay
method outside of our recurrent cell since the prediction time occurs some time after the final event.
Their work does not consider sparse features.

Neil et al. (2016) modify the standard LSTM cell to address its issues with asynchronous time series.
They do this by incorporating a time gate into the network that controls when and to what extent the
hidden and memory states can be updated. This means that there are time steps where no updates are

2



Under review as a conference paper at ICLR 2020

made, and so the network accumulates changes in the feature vector before updating the hidden and
memory states. While the time gate has learnable parameters, they still do not differentiate between
features that occur at every time step versus those that rarely occur in the cell updates.

In summary, there is no prior work that considers the notion of sparse features and a single model
for all five feature types.

3 MODELS

The main contribution of this paper is the development of a recurrent cell which handles five distinct
feature types. The following subsections review each of the feature types and describes how they
are handled in the Sparse Time LSTM (STLSTM model). The five types are referred to as the
following: dense features, sparse features, decay features, static standard features, and static decay
features. The dense features are the standard RNN sequence input, such as the embedding of an
event type or the sequence state features at a given time step, and are present at any given time in a
sequence. The sparse features change values infrequently, and thus they can be considered as being
present only at select times. Stating that the value is not present means the feature value has not
changed from the previous time. A further assumption is that these feature values do not decay with
time. The decay features must be related to time measured with respect to some condition, such
as time since the previous event in an event driven sequence. These features are particularly useful
when events in the sequence are clustered, meaning that we observe many events in close proximity
alternating with long gaps. Both the static standard and the static decay features give information
about the sequence as a whole, rather than being tied to a specific time step. Static standard features
are time invariant, e.g. the gender of a sequence’s object, whereas static decay features are time
related, e.g. the time since last event in the sequence was observed. Figure 1 depicts these concepts.

Figure 1: The framework of the five feature
types.

Figure 2: The memory state is decomposed
into short and long term components, and then
the standard LSTM updates are performed.

We consider a neural network to be a mapping f(X), where f represents the network and X is the
input to the network. We split X first into two parts, X = (xstatic, x) where xstatic represents
the sequence level static features and x represents the sequence features. The static features can
be split into two parts xstatic = (xstatic,s, xstatic,∆), for static standard and static decay features
respectively. The sequence features can further be broken down into three parts, x = (xd, x∆, xsp)
that represent the dense, decay, and sparse features respectively. For notational convenience, each
of these features has a vector at each time step of the sequence (even though in our implementation
the sparse features would be used only when the value changes). The dense features are denoted
as xd = (xd1, x

d
2, ..., x

d
T ) for a sequence with T time steps. The decay features are represented

as x∆ = (x∆
1 , x

∆
2 , ..., x

∆
T ).The sparse features, however, are represented slightly differently than

the previous two types of features, because their changes are not always present. We use the term
present for a sparse feature when its value changes. A single sparse feature k can be represented as
a sequence of tuples, xspk = ((m1k, x

sv
1k), ..., (mTk, x

sv
Tk)), where mtk ∈ {0, 1} is a mask value that

is 1 when the feature is present and 0 if the feature is missing. If mtk = 1, then xsvtk is the actual
new feature value, and otherwise the value of xsvtk does not impact the feed forward computation. If
a sparse feature is present at a time, then this input is passed into and used in the cell updates. If
there is no sparse input at a given time step, the sparse part of the cell is untouched at that time step.

Our recurrent cell is built off of the commonly used LSTM Hochreiter & Schmidhuber (1997),
as well as its time-aware variant (TLSTM) Baytas et al. (2017). For LSTM-type cells, there is a
memory state, C, and a hidden state, h, which pass from the cell at the previous time step and into
the cell along with the features at the current time step. The memory state boosts performance for

3



Under review as a conference paper at ICLR 2020

long term dependencies, and the gate structure of the LSTM allows selective parts of the memory
to be forgotten and updated. The standard LSTM architecture does not address irregularly sampled
events, however, and the TLSTM variant addresses this by using the time elapsed between events to
modify the memory state.

In the TLSTM cell, at each time step, first a fully connected layer is used to decompose the cell’s
memory state into short and long term components. The time elapsed is passed as the input to a
non-increasing decay function that maps to a scalar decay factor. The short term component of the
memory state is multiplied by the decay factor that decreases as more time passes. The equations
for a single decay feature x∆

t for this process are below on the left, where g is a decay function, x∆
t

is the decay input, and Ct−1 is the previous cell memory state.

After the memory state is modified, the cell update is performed in the standard LSTM manner,
with the exception that the modified cell memory state calculated in Equation 1 is used to update the
current memory state. The equations are as follows on the right where xdt is the feature vector to the
current time step. A diagram of this base cell is given in Figure 2.

CSt−1 = tanh
(
W∆Ct−1 + b∆

)
ĈSt−1 = CSt−1 · g

(
x∆
t

)
CLt−1 = Ct−1 − CSt−1

C∗
t−1 = CLt−1 + ĈSt−1,

fdt = σ(W d
fhht−1 +W d

fxx
d
t + bdf )

idt = σ(W d
ihht−1 +W d

ixx
d
t + bdi )

C̃dt = σ(W d
Chht−1 +W d

Cxx
d
t + bdC)

Cdt = fdt ∗ C∗
t−1 + idt ∗ C̃dt ,

odt = σ(W d
ohht−1 +W d

oxx
d
t + bdo)

hdt = odt ∗ tanh(Cdt )

3.1 DENSE FEATURES

The dense features are the standard features used for recurrent models. It is assumed that the features
are not time decay related, e.g. they encode attributes of events, but not times between events. At
each time step, the hidden state from the previous time step, the memory vector, and the feature
vector for the current time step are input into the cell, and the hidden state and memory vector are
updated for the next time step.

3.2 DECAY FEATURES

Decay features are not relevant or applicable for some RNN applications such as text or video, but
for a sequence with measurements or events that occur with varying frequency, time information can
add predictive power.

In the beginning of this section, a model expressed by Equation 1 is presented that allows a single
decay feature. Here we extend this to multiple decay features. Incorporating multiple decays re-
quires a simple modification to the decay function g. Instead of mapping from a scalar to a scalar, it
maps from a vector to a scalar. The proposed g function is g(x∆

t ) =
1

log(e+αT x∆
t )

, where α ≥ 0 is a

trainable vector.

3.3 SPARSE FEATURES

Sparse features are similar in nature to the dense features, with the exception that their values change
very rarely throughout the sequence. Like the dense features, the sparse features describe the state of
the sequence at a particular time step. However, since they rarely change from one step to another,
when treated in the same manner as dense features, the sparse features would just repeat inputs the
vast majority of time steps. There is no clear cutoff point in new value frequency for which a dense
feature turns into a sparse feature.

We propose a new recurrent cell, called the Sparse Time Long Short Term Memory (STLSTM) cell,
that attempts to more strongly capture the change in sparse features. The STLSTM cell has a hidden
state split into two parts, one corresponding to the dense features, and the other corresponding to
the sparse features, ht = (hdt , h

sp
t ). Further, each sparse feature has its own memory state, and this

memory state is only updated when there is a change in the feature value. At each time step, the

4



Under review as a conference paper at ICLR 2020

dense part of the hidden state is updated based on Equation 1 and Equation 2. For the sparse part
of the hidden state, there is a proposed hidden state from each sparse feature, and these proposed
hidden states are aggregated together.

Let us denote the memory state of sparse feature k as Csptk and the corresponding hidden state as
hsptk . The main idea is to not change Csptk if mtk = 0, i.e. to simply carry it over, and otherwise if
mtk = 1 to use the feature xsvtk within LSTM-like update equations. Formally, if mtk = 0, then
there is no change to the memory state or the hidden state, that is,

Csptk = Cspt−1,k, hsptk = hspt−1,k.

If there is a change in the feature value (mtk = 1), the new memory state is determined by the
following equations:

fsptk = σ(W sp
fhht−1 +W sp

fxx
sv
tk + bspf )

isptk = σ(W sp
ih ht−1 +W sp

ix x
sv
tk + bspi )

C̃sptk = σ(W sp
Chht−1 +W sp

Cxx
sv
tk + bspC )

Csptk = fsptk ∗ C
sp
t−1,k + isptk ∗ C̃

sp
tk .

Once the memory state is calculated, the hidden state parts are calculated using standard output
gates. The equations for this are as follows:

osptk = σ(W sp
ohht−1 +W sp

oxx
sv
tk + bspo )

hsptk = osptk ∗ tanh(C
sp
tk )

ht =
[
hdt ,L(h

sp
t1 , ..., h

sp
tm;Wah)

]
ot =

[
odt ,L(o

sp
t1 , ..., o

sp
tm;Wao)

]
Here L is an aggregation function that yields a vector of the same dimension as hsptk and Wah,Wao

are trainable parameters. For example, L can be simply averaging the hidden state proposals or we
can place a fully connected layer over all of the sparse hidden states, and use this layer to compute
a single hidden state for all sparse features. A diagram for the STLSTM cell is depicted in Figure 3.

Figure 3: Full wiring for the STLSTM cell. The
sparse feature update follows one of two possible
paths dependent on the masking.

Figure 4: Static features are embedded and
then concatenated to RNN output.

3.4 STATIC STANDARD FEATURES

All previous discussions dealt with features that can be assigned to a specific time step in a sequence,
but we can also have features that are sequence level instead of time step level. These features, which
are not time related, give information about the sequence as a whole, so they should not serve as
inputs to the recursive part.

The incorporation of these features is fairly simple. First the features are passed through a fully
connected layer to get an embedding, and then this embedding is concatenated with the output, hT ,
of the recurrent cell at the final time steps. A diagram of this can be seen in Figure 4.

3.5 STATIC DECAY FEATURES

Similar to the static standard features, the static decay features apply to the sequence as a whole
rather than an individual time step. Their values are related to the time since the last observed event,
e.g. the time between the final time step and the prediction time.

5



Under review as a conference paper at ICLR 2020

These features are used in the same manner as the decay features within the STLSTM cell. The out-
put of the recurrent network, hT , is decomposed into short and long term components, and the decay
factor is applied to the short term component before being added back to the long term component.
Formally, this is given as

hST = tanh
(
W static,∆hT + bstatic,∆

)
ĥST = hST · g

(
xstatic,∆

)
hLT = hT − hST
h∗T = hLT + ĥST

This modified output is then concatenated with the embedding of the static standard features before
input to the decoder.

4 COMPUTATIONAL STUDY

For all experiments in this section we use Keras with a Tensorflow backend on a single GeForce GTX
1080 GPU card. We use ADAM as the optimization algorithm, and keep track of the validation F1
score to control the number of training epochs. If the validation F1 score does not increase for
15 epochs, then training is terminated. We use standard weight initialization, Glorot uniform for
weights connected to the inputs and orthogonal initialization for the recurrent weights. To test out
the STLSTM cell with all five feature types, we use two data sets, one public and one proprietary.

4.1 POWER CONSUMPTION DATA SET

The public data set is a modified version of the UCI household electric power consumption dataset
(Dheeru & Karra Taniskidou (2017)). This data set contains measurements for seven different elec-
trical quantities and sub-metering values with a sampling rate of one minute taken over the course
of nearly four years. All of the features are sampled every minute, except for approximately 1.25%
of the records which have no measurements. We simply fill in these missing values by repeating
the record that immediately precedes it. Since the data set does not have natural sparse and decay
features, we have to artificially create them, which is described in the Appendix.

For the experiments described in this section, we use sequences covering two hours worth of power
data. The recurrent part of our network is composed of two stacked RNN cells. We compare using
two architectures: one has STLSTM at the bottom layer and LSTM at the second layer, and the
other has TLSTM at the bottom layer and LSTM at the second layer. Experiments have shown that
using two layers is optimal. We use a standard LSTM cell as the second layer instead of STLTSM or
TLSTM cells because we assume the time and sparsity information is encoded in the output of the
base layer that is fed into the second layer. These all have a hidden dimension of 64, which is also
the size of the single embedding layer for the static standard features. Using a same hidden layer size
means that STLSTM cells have more parameters than the TLSTM cells, but preliminary experiments
on TLSTM cells showed this is the optimal architecture for performance during inference. For all
results the static features are present, unless it is stated otherwise.

The first metric we investigate is the relative performance of the STLSTM cell versus the standard
TLSTM cell versus sparsity of individual sparse features. For this we use a dense layer as the
aggregation function in the STLSTM cell. For each of the seven features, we set that feature to be
sparse with a sparse ratio ranging from 0.01 to 0.15 and the remaining six to be dense. For the
TLSTM model, the sparse features are input at every time step as dense features. Figure 5 shows
the relative performance on F1 scores between the TLSTM and STLSTM models for both types of
record subsampling, with percentages greater than 0 meaning the STLSTM performs better. The
F1 score of STLSTM, which corresponds to the denominator, is approximately 0.7 but depends on
which feature is made to be sparse.

A common characteristic for all series is that the relative performance of the STLSTM cell increases
as the sparsity increases, but only to a certain point where it then maintains or slightly drops. Further,
STLSTM offers a larger improvement in the case of the group sampling in most cases. As can be
seen in Figure 5, the relative performance of each model depends on the feature we are treating as
sparse. It is not surprising that the feature with the largest dependence on sparsity is the voltage

6



Under review as a conference paper at ICLR 2020

Figure 5: Relative change in F1 score between STLSTM and TLSTM cell. For single sparse fea-
tures, random sampling is first and group sampling second. Third is 2, 3, and 4 sparse features using
group sampling. Fourth is relative performance on different sparse subsets of features for the churn
data set.

variable itself (represented by blue), since this is the feature we are making predictions on. The
features with the smallest relative performance change are found to have the smallest response to
sparsity as well, which may indicate that they have less predictive power and thus it is not surprising
that the difference between the TLSTM and STLSTM is also small.

Further than looking at individual sparse features, we also investigate groups of sparse features with
different levels of sparsity. We report the results on groups of sparse features with size 2, 3, and 4
since it was shown that 3 of the features are not affected by sparsity. Figure 5 also shows the relative
performance for STLSTM and TLSTM models for groups of sparse features that were found to
have the largest effect at a given group size and sparsity. Unsurprisingly, the characteristics of the
series are the same as in the analysis of single features.Using more sparse features does increase
the relative performance of the STLSTM cell to a point, but for this dataset where the features are
closely related to one another the effectiveness is limited.

In addition to focusing on the relative performance between the TLSTM and STLSTM cells, we
also consider the performance of different aggregation methods L within the STLSTM cell. In
particular, we compare using a dense layer, an averaging aggregation, and a maximum aggregation
at four different levels of sparsity. The aggregation method clearly does not matter if there is only
one sparse feature, and so for this comparison we must use sets of sparse features. In particular, we
report results using the set of 3 sparse features that was found to give the largest relative improvement
for STLSTM. The results are summarized in Table 1a based on group sampling datasets.

As can be seen in Table 1a, the dense layer aggregation performs as well or better than the other two
methods at every level of sparsity. The average and maximum aggregation have similar performance,
perhaps slightly leaning toward the average method at low sparsity and the maximum method for
higher sparsity.

Table 1: Aggregation and static feature analysis.

(a) F1 scores for STLSTM model with different
aggregation methods for different levels of spar-
sity.

Sparse ratio Dense layer Average Max
0.03 0.668 0.658 0.659
0.07 0.675 0.664 0.666
0.11 0.683 0.674 0.672
0.15 0.693 0.685 0.681

(b) Averaged relative F1 score change after incor-
porating one or both types of static features on
group sampling datasets.

Sparse ratio Static standard Static decay Both
0.03 1.56 0.67 2.01
0.07 1.48 0.58 1.92
0.11 1.45 0.51 1.76
0.15 1.44 0.48 1.69

Finally, we study the effect of adding both types of static features to the model. Table 1b shows
the average relative improvements in F1 score for adding in one or both types of static features for
different subsets of sparse features with varying levels of sparsity. It is clear from Table 1b that both
types of features improve the performance of the model, with the static standard features having
a larger effect. This larger effect may be specific to the features of the power consumption data,
but generally both types of features improve performance when properly integrated into the model.
With respect to sparsity, both types of static features improve the model more as the features become
more sparse, with the static decay features being more dependent on sparsity.

7



Under review as a conference paper at ICLR 2020

It is worth discussing the impact of the added complexity of the STLSTM cell on training time.
With STLSTM, as the number of sparse features grows, so too does the number of parameters in the
model. This makes training slower per epoch, but it is mitigated in wall-clock training time by the
fact that it takes fewer epochs to reach convergence. Using standard TLSTM, an epoch of training
time takes about 10 seconds with the given sequence parameters for the datasets. When using four
sparse features, this increases to about 18 seconds per epoch. However, the STLSTM cell generally
reaches convergence in 40-50 epochs while the TLSTM cell requires 70-80 epochs.

4.2 REAL WORLD CHURN DATA SET

In addition to this constructed dataset, we also use a real world proprietary dataset with naturally
sparse features for churn prediction within a future time span. At each time step, there is an event
embedding that is treated as a dense feature. In addition to this, there are approximately 60 additional
sequence state features. These state features have varying levels of sparse ratios, ranging from
0.03 to 0.6. We experiment with different subsets of dense and sparse features using the sequence
state features. Additionally, we use two decay features, one static standard feature, and one static
decay feature. For this dataset we use a training set with 700,000 samples and validation/test sets
with 200,000 samples each. Sequence length ranges from 1 to 150, but the samples are not evenly
distributed by sequence length. The distribution is exponential, with a large portion of sequences on
the lowest end of that range and the mean is approximately 40.

For this data set, we compare two stacked architectures composed of three stacked RNN cells. As
before, the bottom layer uses either STLSTM or TLSTM, and the higher levels use standard LSTM
cells. When multiple sparse features are present, we use a dense layer as the aggregation method
since it performs best. All results are given relative to the standard TLSTM model with all 60
additional sequence state features treated as dense features, as this was found to outperform an all
LSTM model by approximately 2% under the all dense setting.

Since this data set is naturally sparse, we do not tune the sparsity, but instead investigate the relative
performance for different subsets of sparse and dense features. There are four qualitative feature
subsets we primarily study. The first sparse subset contains features that relate to relative changes,
e.g. a customer can upgrade/downgrade his service to a different tier. The second sparse subset
includes true counts for feature values, e.g. the total number of people associated with an account.
These two subsets are the most sparse and have average sparsity of 0.065. The other two feature
subsets contain features relating customer specific (e.g. a customer relocates) and sequence specific
information (e.g. the number of emails to customer service). The relative performance for these
sparse feature subsets is found in Figure 5. We observe that using only relative change features
gives the smallest performance gain. This is not surprising because in this case a repeated value of 0
has meaning and the features are specifically designed to capture changes, somewhat mitigating the
intended effect of the STLSTM cell. Using the raw counts does give a larger performance increase.

Both customer and sequence specific subsets show the largest improvement, indicating that these
sub groups are responsive to STLSTM architecture. It is interesting that these two subgroups do not
necessarily contain only the most sparse features, but a mix between sparsity ratios roughly from
0.03 to 0.3. This suggests that in real applications with naturally sparse features there is a large
range of sparsity that can occur in the sparse sub group of features.

4.3 FUTURE WORK

For future work, it would be interesting to incorporate even more feature types than the five covered
in this work. One in particular is a feature type that gives time information looking forward in the
sequence. All features in this work use time information related to past events, but there are cases
that can benefit from the utility of incorporating future knowledge when available. One example of
this is the time to the prediction from the current time step so the network can have direct knowledge
of its absolute time location in the sequence.

REFERENCES

Inci M Baytas, Cao Xiao, Xi Zhang, Fei Wang, Anil K Jain, and Jiayu Zhou. Patient subtyping via
time-aware LSTM networks. In Proceedings of the 23rd ACM SIGKDD international conference

8



Under review as a conference paper at ICLR 2020

on knowledge discovery and data mining, pp. 65–74, 2017.

Yoshua Bengio and Francois Gingras. Recurrent neural networks for missing or asynchronous data.
In Advances in neural information processing systems, pp. 395–401, 1996.

Mikolaj Binkowski, Gautier Marti, and Philippe Donnat. Autoregressive convolutional neural net-
works for asynchronous time series. In Proceedings of the 35th international conference on
machine learning, volume 80, pp. 579–588, 2018.

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent
neural networks for multivariate time series with missing values. Scientific reports, 8(1):6085,
2018.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder
for statistical machine translation. arXiv:1406.1078, 2014.

John Cunningham, Zoubin Ghahramani, and Carl Rasmussen. Gaussian processes for time-marked
time-series data. In Artificial intelligence and statistics, pp. 255–263, 2012.

Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017. URL http:
//archive.ics.uci.edu/ml.

James Douglas Hamilton. Time series analysis, volume 2. Princeton university press, Princeton, NJ,
1994.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Martin Längkvist, Lars Karlsson, and Amy Loutfi. A review of unsupervised feature learning and
deep learning for time-series modeling. Pattern recognition letters, 42:11–24, 2014.

Steven Cheng-Xian Li and Benjamin M Marlin. A scalable end-to-end Gaussian process adapter
for irregularly sampled time series classification. In Advances in neural information processing
systems, pp. 1804–1812, 2016.

Zachary C Lipton, David Kale, and Randall Wetzel. Directly modeling missing data in sequences
with RNNs: Improved classification of clinical time series. In Machine learning for healthcare
conference, pp. 253–270, 2016.

Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. Long short term memory
networks for anomaly detection in time series. In European symposium on artificial networks,
computational intelligence, and machine learning, pp. 89–93, 2015.

Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased LSTM: Accelerating recurrent network
training for long or event-based sequences. In Advances in neural information processing systems,
pp. 3882–3890, 2016.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Volker Tresp and Thomas Briegel. A solution for missing data in recurrent neural networks with an
application to blood glucose prediction. In Advances in neural information processing systems,
pp. 971–977, 1998.

9

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Under review as a conference paper at ICLR 2020

Ruofeng Wen, Kari Torkkola, and Balakrishnan Narayanaswamy. A multi-horizon quantile recurrent
forecaster. arXiv:1711.11053, 2017.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, and Klaus Macherey. Google’s neural machine translation
system: Bridging the gap between human and machine translation. arXiv:1609.08144, 2016.

Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich Schütze. Comparative study of CNN and RNN
for natural language processing. arXiv:1702.01923, 2017.

10



Under review as a conference paper at ICLR 2020

5 APPENDIX

The power consumption dataset is one long sequence, and so we break this down into many se-
quences. We create the sequences based on three parameters: sample time Ts, shift window, and
sequence length T . To create the first sequence we first set the start index to the first record. A full
sequence is created by selecting Ts records beginning at the start index. We further subsample from
the Ts records in order to obtain final sequences with decay features in two ways. In the first way
we randomly sample individual records. The first record in the full sequence is always kept, but
after the first record we randomly drop records based on Bernoulli until there are T remaining. In
the second way, we create groups of 5 records. We start with the first 5 records from the start index.
Next we focus on records from start index + 8 to start index + Ts. We select a random record and
the surrounding 4 records. We then repeat the procedure until we have T selected records. We finish
with groups of 5 consecutive records that do not overlap. In either way we sample, this means the
sampling rate is no longer a uniform one minute, and we use the time between two adjacent events
to be the decay feature. The seven electrical features are dense features present at every time step
in the sequence. The start index is then increased by the shift window and the process continues
until we run through the entire dataset. If the shift window is less than the sample time, then there
can be some overlap in the sequences. We allow these overlaps in the training set, but remove any
sequences in the validation and test sets with subsequences duplicated in the training set.

Once the sequences are all created, we can create sparse features on any subset of the seven dense
features. This is done by choosing a sparse ratio for each feature in the sparse subset, where the
sparse ratio is the ratio of feature values that are kept in each sequence. We keep feature values
present with uniform probability equal to the sparse ratio for that feature. If a feature value is not
kept at a time step, its mask value is set to 0 at the time step. This allows us to easily experiment
with different numbers of sparse features and the extent of the sparsity.

Both types of static features are also used for this dataset. There is one static decay feature, and it
is the time elapsed between the last event of the sequence and the prediction time for that sequence,
which is Ts events from the time of the first event. There are three categorical static standard features,
and these are the day of the week, day of the month, and time of day (morning, afternoon, evening,
night). Each of the sequences we use spans two hours or less, and we assign the static standard
feature values based on the first event in the sequence. Figure 6 depicts these concepts.

Figure 6: The creation of sequences from the electric power consumption dataset.

The training target for the power consumption dataset is a multi-class classification target. We
predict whether the average voltage over some time interval after the prediction time of a sequence
stays within half a standard deviation, increases by more than half a standard deviation, or decreases
by more than half a standard deviation when compared to the value averaged over the time span
of the sequence measured from the first event to Ts time steps after the first event. The standard
deviation value here is taken over the entire training set. This is an unbalanced classification task.
While the exact majority class percentage varies depending on the way the sequences are created, it
falls between 65% and 80% for our experiments. For the experiments described in Section 4.1 we
use two hours of data corresponding to Ts = 120. We also use a shift window of 30 and set T = 50.

11


	Introduction
	Related work
	Models
	Dense features
	Decay features
	Sparse features
	Static standard features
	Static decay features

	Computational study
	Power consumption data set
	Real world churn data set
	Future work

	Appendix

