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1. Introduction

Screening mammography had been shown to significantly reduce the mortality rate for breast
cancer (Kopans, 2002; Duffy et al., 2002a,b), the second leading cause of cancer-related
deaths among women in the United States. However, there is a high rate of false positive
recalls and biopsies associated with breast cancer screening. Among the 10–15% of women
asked for recall, only 10–20% within that subset are recommended for biopsy. Among those
biopsies, only 20–40% are diagnosed with cancer (Kopans, 2015).

Given the success of deep learning in computer vision, many deep neural network models
have been applied to breast cancer screening (Ribli et al., 2018; Lotter et al., 2017; Geras
et al., 2017; Wu et al., 2018, 2019a). Typically, these models operate on a single screening
exam. However, radiologists often compare current mammograms to prior ones to make
more informed diagnoses (Roelofs et al., 2007; Hayward et al., 2016). For instance, if a
suspicious region grows in size or density over time, radiologists can be more confident that
it is malignant. Conversely, if a suspicious region does not grow, then it is probably benign.

The goal of this work is to construct a model that can take advantage of prior exams in
making a diagnosis. Concretely, we train models that take two screening exams as input,
with each exam containing four images. For each corresponding image pair, the model
produces predictions for the presence of benign or malignant findings in the more recent
exam. An ensemble of such models achieves an AUC of 0.8664 for predicting malignancy in
the screening population and 0.7987 for the subpopulation of the screening population that
underwent biopsy, reducing the error rate of the corresponding baseline (Wu et al., 2019a).

2. Data

We use the NYU Breast Cancer Screening Dataset (Wu et al., 2019b) used in Wu et al.
(2019a). The dataset consists of 229,426 exams, with each exam consisting of at least one
image for the four standard views (L-CC, R-CC, L-MLO, R-MLO). We use the four binary
labels corresponding to the presence of benign or malignant findings in the left or the right
breasts. In this work, we consider only the subset of this dataset that includes patients for
which prior exams are available. We define an exam pair to consist of a chronologically
earlier and a later exam from the same patient, and an image pair to be the corresponding
pair of images for the same view within the exam pair. For the training and validation set,
we generate all combinations of such exam pairs. In the test set we only use pairs that
involve the most recent exam of the patient as the later exam. Our dataset thus consists
of 127,451 (respectively 25,111; 13,702) exam pairs from 43,013 (respectively 7,962; 7,600)
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patients in training (respectively validation; test) set where 2,519 (respectively 393, 244)
pairs had at least one biopsy performed. We refer to the population of patients who had at
least one biopsy performed as biopsied population. Each image is cropped or padded to a
fixed size of 2677× 1942 pixels for CC view images and 2974× 1748 for MLO view images.

2.1. Image Alignment

When a patient has multiple exams, the images for each view taken at different times can
appear at different angles, sizes, or even different resolutions. We align the images within
each pair before feeding them to our model in order to detect local changes without requiring
the model to learn alignment. Concretely, we use two CNN models for geometric matching
(Rocco et al., 2017), one trained using VGG (Simonyan and Zisserman, 2014) and one using
ResNet-101 (He et al., 2016), for feature extraction. These models take a pair of images
as input and output the parameters of an affine transformation to align the images from
the prior exams to images from the recent exams. Using two transformation parameters
from both models, we choose the one with better IoU of the nonzero masks of the registered
source and target images (cf. Figure 1).

3. Comparison Models

Figure 1: Alignment of image pairs. Source
is the prior image, target is the current im-
age, affine is registered source and mask
represents the overlay of target and affine.

We propose two architectures that incorporate
information from pairs of images. The Global-
Compare model applies the ResNets from the
single-exam baseline model (image-only image-
wise model from Wu et al. (2019a)) to both im-
ages and concatenates the two representations
after global average pooling to obtain one repre-
sentation per image pair. The AlignLocalCom-
pare model concatenates image representations
before global average pooling and applies an ad-
ditional 1x1 convolutional layer that preserves
the number of channels, followed by a ReLU activation function for local comparison. The
model architectures are shown in Figure 2. In both networks, we pass the resulting rep-
resentation to a hidden layer and then to a softmax layer to obtain benign and malignant
predictions for each image. Predicted probabilities for the same breast are averaged.

4. Experiments

We train theGlobalCompare model without aligning pairs of images, and the AlignLocalCom-
pare with aligned image pairs. For each network, we follow Wu et al. (2019a) and construct
an ensemble of five model instances. We load and freeze the weights of the ResNets from the
respective five model copies in Wu et al., randomly initialize the weights of remaining layers,
and train each model for 70 epochs. Each epoch consists of 2,519 pairs from the biopsied
population and 2,519 randomly sampled from the rest of the population. We evaluate after
every training epoch and choose the best weights based on the validation AUC on malignant
prediction for the biopsied population. We report the test performance for each network
using the ensemble of five model instances.
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Figure 2: Architecture Diagrams. Left: GlobalCompare, right: AlignLocalCompare.

The results from all three models are shown in Table 1. AlignLocalCompare performs bet-
ter for malignant prediction than the single-exam baseline and GlobalCompare, in both the
biopsied and screening populations. We do not observe improvement for benign category–we
speculate that this is because our model learns to focus on regions with significant changes,
but not many changes accompany benign findings. In Figure 3, we visualize a few cases
where the AlignLocalCompare is more confident in its prediction than the single-exam base-
line (Wu et al., 2019a). For Figure 3(a), we observe that the malignant region did not exist
in the prior exam. For Figure 3(b), we observe that the bright spot at the center already
existed in the prior exam, and the model can be more sure that it is not malignant.

single (average of individual AUCs) 5x ensemble
malignant benign malignant benign

screening population
single-exam baseline 0.8368 (std 0.0126) 0.7334 (std 0.0116) 0.8442 0.7421

GlobalCompare 0.7871 (std 0.0359) 0.6943 (std 0.0222) 0.8065 0.7232
AlignLocalCompare 0.8419 (std 0.0211) 0.7065 (std 0.0198) 0.8664 0.7233

biopsied population
single-exam baseline 0.7548 (std 0.0123) 0.6032 (std 0.0110) 0.7596 0.6071

GlobalCompare 0.7214 (std 0.0430) 0.5839 (std 0.0112) 0.7421 0.5958
AlignLocalCompare 0.7761 (std 0.0235) 0.5866 (std 0.0247) 0.7987 0.5902

Table 1: Test AUCs cal-
culated on subset with at
least one prior exam. The
larger variance of Align-
LocalCompare contributes
to its ensemble performing
better.

Figure 3: Test examples where
AlignLocalCompare performs better
than the single-exam baseline. A
breast with a malignant finding
shown in (a) (malignant finding is
highlighted with red) and one with
a benign lesion shown in (b). Align-
LocalCompare predicts malignancy
with 0.97 probability for (a) and
0.04 for (b), whereas the baseline
predicts 0.73 for (a) and 0.24 for (b).
There is about a year gap between
two exams for both patients.

prior latest highlight prior latest

L
-C

C

L
-C

C

L
-M

L
O

L
-M

L
O

(a) (b)

3



Screening Mammogram Classification with Prior Exams

Acknowledgments

We gratefully acknowledge the support of Nvidia Corporation with the donation of some of
the GPUs used in this research. This work was supported in part by grants from the National
Institutes of Health (R21CA225175 and P41EB017183). Jungkyu Park was supported by
the Moore-Sloan Data Science Environment at New York University.

References

S. W. Duffy, L. Tabar, H. H. Chen, M. Holmqvist, M. F. Yen, S. Abdsalah, B. Epstein,
E. Frodis, E. Ljungberg, C. Hedborg-Melander, A. Sundbom, M. Tholin, M. Wiege,
A. Akerlund, H. M. Wu, T. S. Tung, Y. H. Chiu, C. P. Chiu, C. C. Huang, R. A. Smith,
M. Rosen, M. Stenbeck, and L. Holmberg. The impact of organized mammography service
screening on breast carcinoma mortality in seven swedish counties. Cancer, 95(3), 2002a.

S. W. Duffy, L. Tabar, and R. A. Smith. The mammographic screening trials: commentary
on the recent work by Olsen and Gotzsche. CA Cancer J Clin, 52(2), 2002b.

K. J. Geras, S. Wolfson, Y. Shen, N. Wu, S. G. Kim, E. Kim, L. Heacock, U. Parikh, L. Moy,
and K. Cho. High-resolution breast cancer screening with multi-view deep convolutional
neural networks. arXiv:1703.07047, 2017.

J. H. Hayward, K. M. Ray, D. J. Wisner, J. Kornak, W. Lin, B. N. Joe, and E. A. Sickles.
Improving screening mammography outcomes through comparison with multiple prior
mammograms. American Journal of Roentgenology, 207(4):918–924, Jul 2016. ISSN 0361-
803X. doi: 10.2214/AJR.15.15917. URL https://doi.org/10.2214/AJR.15.15917.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
CVPR, 2016.

D. B. Kopans. Beyond randomized controlled trials: organized mammographic screening
substantially reduces breast carcinoma mortality. Cancer, 94(2), 2002.

D. B. Kopans. An open letter to panels that are deciding guidelines for breast cancer
screening. Breast Cancer Res Treat, 151(1), 2015.

W. Lotter, G. Sorensen, and D. Cox. A multi-scale CNN and curriculum learning strategy
for mammogram classification. In DLMIA, 2017.

D. Ribli, A. Horváth, Z. Unger, P. Pollner, and I. Csabai. Detecting and classifying lesions
in mammograms with deep learning. Scientific Reports, 8, 2018.

I. Rocco, R. Arandjelović, and J. Sivic. Convolutional neural network architecture for geo-
metric matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

A. A. J. Roelofs, N. Karssemeijer, N. Wedekind, C. Beck, S. van Woudenberg, P. R. Snoeren,
J. H. C. L. Hendriks, M. Rosselli del Turco, N. Bjurstam, H. Junkermann, D. Beijerinck,

4

https://doi.org/10.2214/AJR.15.15917


Screening Mammogram Classification with Prior Exams

B. Séradour, and C. J. G. Evertsz. Importance of comparison of current and prior mammo-
grams in breast cancer screening. Radiology, 242(1):70–77, Jan 2007. ISSN 0033-8419. doi:
10.1148/radiol.2421050684. URL https://www.ncbi.nlm.nih.gov/pubmed/17185661.
17185661[pmid].

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2014.

N. Wu, K. J. Geras, Y. Shen, J. Su, S. G. Kim, E. Kim, S. Wolfson, L. Moy, and K. Cho.
Breast density classification with deep convolutional neural networks. In ICASSP, 2018.

N. Wu, J. Phang, J. Park, Y. Shen, Z. Huang, M. Zorin, S. Jastrzębski, T. Févry, J. Kat-
snelson, E. Kim, S. Wolfson, U. Parikh, S. Gaddam, L. L. Y. Lin, K. Ho, J. D. Wein-
stein, B. Reig, Y. Gao, H. Toth, K. Pysarenko, A. Lewin, J. Lee, K. Airola, E. Mema,
S. Chung, E. Hwang, N. Samreen, S. G. Kim, L. Heacock, L. Moy, K. Cho, and K. J.
Geras. Deep neural networks improve radiologists’ performance in breast cancer screening.
arXiv:1903.08297, 2019a.

N. Wu, J. Phang, J. Park, Y. Shen, S. G. Kim, L. Heacock, L. Moy, K. Cho, and K. J.
Geras. The NYU breast cancer screening dataset v1.0. Technical report, 2019b. Available
at https://cs.nyu.edu/~kgeras/reports/datav1.0.pdf.

5

https://www.ncbi.nlm.nih.gov/pubmed/17185661
https://cs.nyu.edu/~kgeras/reports/datav1.0.pdf

	Introduction
	Data
	Image Alignment

	Comparison Models
	Experiments

