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Abstract

Navigated 2D multi-slice dynamic Magnetic Resonance (MR) imaging enables high
contrast 4D MR imaging during free breathing and provides in-vivo observations
for treatment planning and guidance. Navigator slices are vital for retrospective
stacking of 2D data slices in this method. However, they also prolong the acqui-
sition sessions. Temporal interpolation of navigator slices can be used to reduce
the number of navigator acquisitions without degrading specificity in stacking.
In this work, we propose a convolutional neural network (CNN) based method
for temporal interpolation via motion field prediction. The proposed formulation
incorporates the prior knowledge that a motion field underlies changes in the image
intensities over time. Previous approaches that interpolate directly in the intensity
space are prone to produce blurry images or even remove structures in the images.
Our method avoids such problems and faithfully preserves the information in the
image. Further, an important advantage of our formulation is that it provides
an unsupervised estimation of bi-directional motion fields. We show that these
motion fields can be used to halve the number of registrations required during 4D
reconstruction, thus substantially reducing the reconstruction time.

1 Introduction

Quantification of breathing-induced motion of anatomical structures is an important component in
image-guided therapy applications, such as planning and guiding radiotherapy [1] and high intensity
focused ultrasound therapy [2]. The main source for observing and quantifying long term motion
patterns is dynamic volumetric MR imaging (4D-MRI) [3]. A particular type of 4D MRI, navigated
2D multi-slice imaging, is especially useful as it is acquired during free-breathing and can capture
irregular breathing patterns, which require long and uninterrupted observations. In this technique,
navigator slices Nt (at same anatomical location) and data slices Dp (at different locations p to cover
the volume of interest) are alternately acquired. Data slices enclosed by navigators which show the
most similar organ position are retrospectively stacked together to create a 3D MRI for each navigator.
4D reconstruction without navigators has been proposed by using external breathing signal [4] or
consistency between adjacent data slices [5]. However, navigators enable continuous organ motion
quantification, which might not be externally measurable (e.g. drift of the liver [3]) or hard to
accurately estimate from the data slices, and hence potentially provide superior reconstructions.

Although useful, navigators prolong the acquisition time. Reducing the number of navigator acqui-
sitions without sacrificing accuracy in stacking of data slices can reduce total acquisition time or
improve through-plane resolution if the saved time is used to acquire more data slices. This motivates
the idea of acquiring fewer navigators and temporally interpolating these to predict the missing ones.

With this motivation, [6] proposed a convolutional neural network (CNN) based approach for temporal
interpolation of navigators. Their CNN takes as inputs a fixed number of acquired images and learns
to predict the missing images directly in the intensity space. This approach, which we call the Simple
Convolutional Interpolation Network (SCIN), is a ’black-box’ formulation that does not incorporate
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Figure 1: (a) Ground truth and (b,c) interpolated images from (b) baseline (SCIN) and (c) proposed
method (MFIN). The image interpolated via SCIN is heavily blurred and misses several lung and
liver structures, while the proposed method is able to preserve the details in the ground truth image.

any prior information about the interpolation process. Image prediction is guided only by the cost
function used to optimize the network parameters. The issue with this is that it is unclear whether the
image similarity measures that are generally used as cost functions suffice to ensure fidelity of the
generated images to the original images. Indeed, Fig. 1b shows a case where an image interpolated
using SCIN is quite blurry and misses several liver and lung structures present in the original image.

In this article, we propose an interpolation method that incorporates the prior knowledge that a motion
field underlies the difference between images acquired at different times. We note that in scenarios
where an image sequence captures anatomical structures in motion (without induced contrast changes),
the content of the images remains largely unchanged over time and issues such as occlusion are not
pertinent. Further, if the principal direction of motion is in the plane of the 2D images, the chances of
structures going out of the image or new structures coming into the image due to off-plane motion
may be minimal. Under these assumptions, each image can be viewed as a spatially transformed
version of its temporal neighbours. This observation leads us to incorporate motion field prediction as
an intermediate step for the interpolation problem, which removes the ability of the CNN to directly
change image intensities and enables the regularization of the predicted motion fields. We hypothesize
that this formulation makes changes in image structure unlikely, leading to more plausible predicted
images. We train a CNN to take as input several acquired navigators and predict the motion fields
between the image to be interpolated and its known two neighbours. Any of these two motion fields
can then be used to wrap the corresponding known neighbouring image to obtain the missing image.
We call this network the Motion Field Interpolation Network (MFIN). MFIN is trained end-to-end
using only navigator images, without ground truth motion fields. Indeed, an important advantage
of our interpolation formulation is that it provides an unsupervised estimation of the motion fields.
In the particular setting of navigated multi-slice imaging, each navigator has to be registered to a
reference image. The motion fields obtained by our interpolation framework can be used to halve the
number of these registrations, substantially reducing the computational effort of 4D reconstruction.

2 Related Work

Temporal image interpolation in the medical imaging context has been mainly suggested for ultra-
sound imaging [7–9]. These methods explicitly track pixel-wise correspondences between neighbour-
ing images via optical flow estimation or non-linear registration. An advantage of such methods is
that they often estimate the underlying motion fields as part of the interpolation. Yet, they often make
simplistic assumptions regarding the shape and dynamics of the motion trajectory such as linear,
constant velocity. With the surge of learning-based methods, end-to-end learning-based solutions
directly predict in-between images given surrounding ones, skipping the motion field estimation com-
pletely. In this line, [6] proposed the aforementioned SCIN for interpolating navigators for 4D-MRI
reconstruction. In computer vision, variants of CNNs have been suggested for interpolation [10] and
video frame prediction [11–13]. A common feature between these methods is that they train their
networks to directly predict the missing image in the intensity space.

Prediction of image intensities from scratch may be difficult, leading to blurry results, or even
distortion of image structures. To tackle this, some works have suggested using content of the known
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images. [14] propose to use a variational auto-encoder (VAE) [15] to learn bidirectional motion fields
between two known images. Then, without explicit training for interpolation, motion fields from the
known images to an in-between image are predicted by linear interpolation in the latent space of the
VAE. This approach produces sharp interpolated facial expression images, but it is unclear whether it
would be able to faithfully interpolate breathing motion patterns in abdominal navigators. In [16],
a CNN directly predicts bi-directional motion fields between the known images, which are further
refined using another CNN to account for occlusions and then combined to produce the interpolated
image. In [17], interpolation is formulated as a local convolution over the known images and a CNN
predicts a convolutional kernel for each pixel of the interpolated image. Although these methods
incorporate prior information about the image content into the interpolation framework, they do not
readily provide the motion fields from the known images to the final predicted image. Note that in
both [14] and [16], bi-directional motion fields are combined to obtain the interpolated image, as the
emphasis is on dealing with interpolation scenarios including occlusions. Such combination renders
the methods unable to provide the final motion field between the predicted and the known images.

The underlying motion estimation problem has been separately studied, either requiring ground truth
flow fields for training [18–20] or in an unsupervised fashion by relying on reconstruction of warped
images using predicted flow fields [21, 22]. The relationship between the problems of interpolation
and motion field estimation has been exploited in [10] to find dense correspondences between input
images via saliency maps [23] of an interpolation CNN. Instead of this indirect approach of using
interpolation to find motion fields, MFIN takes the direct route and interpolates by first estimating the
underlying motion.

Another related problem is that of image registration. CNNs have been proposed for learning image
registration using known ground truth motion [24] or gold-standard registration results [25], or in
an unsupervised manner within an optimization framework [26]. While the registration problem is
one of motion field estimation between two known images, the interpolation problem is to predict
missing images and here we are additionally interested in estimating the underlying motion field

3 Method

We consider the scenario where the temporal resolution of the acquired navigator sequence is sought
to be doubled. That is, missing navigators N4, N6, N8, etc. are to be interpolated using the acquired
N1, N3, N5, N7, etc.. Following [6], where temporal context beyond immediate neighbours has
been shown to be important for dealing with non-linear motion, we provide 2 images each from the
past and the future as inputs to MFIN. Thus, in order to interpolate Nt, the inputs to the network
are Nt−3, Nt−1, Nt+1 and Nt+3. The general architecture of MFIN is shown in Fig. 2. The inputs
pass through shared convolutional layers before diverging into 2 sub-networks. Each sub-network
predicts the motion field from the image to be interpolated, Nt, to one of its neighbours (Nt−1 or
Nt+1). The motion field predicted by each sub-network (Ft→t−1 or Ft→t+1) is used to warp the
corresponding neighbouring image using bilinear interpolation to predict Nt independently. The
warping is incorporated into the network and works as follows. The intensity of each pixel in the
image to be interpolated is obtained via spatial bilinear interpolation in the neighbouring image
(Nt−1 or Nt+1) around the location pointed by the corresponding predicted motion field (Ft→t−1 or
Ft→t+1). The loss function used to optimize the network parameters (discussed in section 3.1) is
defined to measure the similarity of the interpolated and the ground truth images, thus not requiring
ground truth motion fields. While either one of the two sub-networks is sufficient for interpolation,
we still predict the displacement fields in both directions in view of potential inductive bias promoted
by multi-task learning [27]. Additionally, in an extension to our base model (described in Sec.3.2),
we utilize the bidirectional motion fields to enforce a cyclic consistency constraint.

3.1 Loss Functions

The loss function for MFIN, shown in Eq. 1, consists of a reconstruction loss term (Lrecon) and
a regularization term (Lreg). Lrecon (Eq. 2) is the sum of the reconstruction errors from the two
sub-networks, where N ′t,s denotes the prediction for image Nt be warping the image Ns according
to the estimated motion field Ft→s, i.e. defined by displacement vectors defined at pixel locations
in Nt pointing to Ns. The form of the reconstruction loss must capture the desired notion of image
similarity between the predicted and the ground truth image. The mean-squared-error in intensity
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Figure 2: Architectures of the Simple Convolutional Interpolation Network [6] (SCIN), the proposed
Motion Field Interpolation Network (MFIN) and its extension for incorporating cyclic consistency
(MFINc). For the convolutional layers, fi, ni and ni+1 indicate the filter size and number of input and
output channels respectively in the ith layer.

space, which is generally used as the reconstruction loss, might not be robust to intensity scaling.
Such scaling might be relevant due to saturation effects in the employed interleaved MR acquisition,
where the navigator image is saturated when the preceding data slice is at similar location. Since
the MFIN formulation simply moves the pixel-intensities from one of the known images to obtain
the missing image, it cannot account for such effects. Importantly, such intensity differences are not
crucial for the application of 4D reconstruction as long as the estimated motion fields are accurate.
With this motivation, we investigate the use of structural similarity index (SSIM) [28] as a loss
function in addition to the generally used L2 intensity loss. The SSIM between two image patches
x and y is defined as in Eq 4, where µx, µy are patch means, σ2

x, σ2
y are patch variances, σxy is the

covariance of the two patches and c1, c2 are constants. The SSIM for the entire image is taken as
the mean of the patch similarities. It takes into account local correlation between image patches
and therefore, may be more robust to the aforementioned intensity scalings. It has also been shown
to preserve low-level structure [29]. Finally, it is differentiable and can thus be readily integrated
into gradient based optimization. As SSIM measures image similarity instead of image dissimilarity,
Lrecon is maximized when SSIM is employed as the loss function. For Lreg, we employ total
variation regularization (Eq. 3) to promote smoothness in the predicted motion fields, while allowing
for sharp gradients to cope with sliding interfaces.

Ltotal,MFIN = Lrecon,MFIN + λ1Lreg,MFIN (1)

Lrecon,MFIN = L(N ′t,t−1, Nt) + L(N ′t,t+1, Nt) (2)

Lreg,MFIN = ||∇Ft→t−1||1 + ||∇Ft→t+1||1 (3)

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(4)
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3.2 Cycle Consistency

Cycle consistency has been shown to be an effective regularizer in registration problems [30, 31]
as well as in other contexts such as image generation in deep neural networks [32]. The MFIN
architecture can be readily extended to include such cyclic consistency between estimated motion
fields. For this, we add another sub-network to the MFIN for estimating the motion field between
the two, always known, neighbours of the image to be interpolated, i.e. Ft+1→t−1. We denote the
extended network by MFINc and optimize for the registration and two interpolation tasks jointly
by minimizing the cost function in Eq. 5. The reconstruction (Eq. 6) and regularization (Eq. 7)
terms in the loss function are extended to include the extra sub-network. Finally, Eq. 8 shows the
cycle consistency loss term, where � denotes a pixel-wise composition of transformations achieved
via bilinear interpolation of the motion field. We hypothesize that the registration sub-network
has an easier task in that it has to estimate the motion field between two known images, while
the interpolation sub-networks have to predict the missing image in addition to estimating the
corresponding motion fields. Thus, Ft+1→t−1 may be more accurate than Ft→t−1, Ft→t+1 and
enforcing cycle consistency may help to correct errors in the latter two.

Ltotal,MFINc = Lrecon,MFINc + λ1Lreg,MFINc + λ2Lcycle,MFINc (5)

Lrecon,MFINc = L(N ′t,t−1, Nt) + L(N ′t,t+1, Nt) + L(N ′t−1,t+1, Nt−1) (6)

Lreg,MFINc = ||∇Ft→t−1||1 + ||∇Ft→t+1||1 + ||∇Ft+1→t−1||1 (7)

Lcycle,MFINc = ||(Ft+1→t−1 � Ft→t+1)− Ft→t−1||2 (8)

4 Experiments and Results

4.1 Dataset

We carry out our experiments on 2D navigator images from an abdominal 4D MRI dataset consisting
of 14 subjects. The interleaved acquisition of navigator and data slices [3] was done on a 1.5T
Philips Achieva scanner using a 4-channel cardiac array coil, a balanced steady-state free precession
sequence, SENSE factor 1.7, 70o flip angle, 3.1 ms TR, and 1.5 ms TE. The images have a spatial
resolution of 1.33×1.33 mm2, slice thickness of 5mm and temporal resolution of 2.4-3.1 Hz. For
each subject, there are between 4000 and 6000 navigators, acquired in several blocks of 7 to 9 min
and with 5 min resting periods in between. Expert-annotated landmarks for two liver vessels per
image were available for 10% randomly selected images for 7 out of the 14 subjects. We train on
the remaining 7 subjects and use the 7 subjects with expert annotations as test subjects, so that the
accuracy of the predicted motion fields could be evaluated as described in Sec. 4.3.

4.2 Implementation details

We implement MFIN and MFINc (Fig. 2) as networks with an encoder-decoder like structure. Both
networks consist of an initial block of shared layers, followed by 2 and 3 separate sub-networks
for MFIN and MFINc respectively. The shared layers include the entire encoder / contracting path
as well as two upscaling layers from the decoder. Each sub-network consists of two convolutional
layers, followed by a bilinear upsampling and then a final convolutional layer to obtain a motion field.
There is no activation function at the end of the last convolutional layer to allow for both positive
and negative flow values. All other convolutional layers are following by a ReLU activation function.
Finally, a warping layer maps the predicted motion field and the corresponding known image to the
interpolated image. The filter sizes and number of feature maps are empirically set to (f1, f2, . . .,
f8) = (7,5,3,3,3,3,3,3) and (n2, n2, . . ., n8) = (16,32,64,64,32,32,16). For interpolating a navigator
at any time point, two known navigators from the past and the future are provided as inputs. The
output of each sub-network before the warping layer is a 2D flow vector for each pixel, i.e. (n1, n9) =
(4, 2). Following [6], we set the batch size to 64 and use the Adam optimizer [33] with a learning
rate of 1e-4. The only pre-processing step is block-wise linear normalization of the images to their
2 to 98 %tile range. Following [28], the hyperparameters of the SSIM loss are set as c1 = 0.0001,
c2 = 0.0009 and patch size of 11 x 11. The weights for the regularizers in the loss functions are
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empirically set to λ1 = 0.001 and λ2 = 0.0005 while using the L2 loss for Lrecon and λ1 = 0.1 and
λ2 = 0.05 while using the SSIM loss for Lrecon.

4.3 Evaluation

The choice of appropriate evaluation metrics is crucial to correctly compare competing solutions.
Here, we list several metrics and discuss their suitability for evaluating interpolation in the setting of
navigator slices for 4D MR reconstruction.

1. Root-mean-squared-error (RMSE): RMSE or mean-absolute-error are generally used for
evaluation in regression problems. However, they might not be well-suited for measuring
image fidelity due to the following reasons. Firstly, they are measured pixel-wise and hence,
do not encode structural information. Further, these metrics are not robust to intensity
scaling. In the case of interpolation of navigators, we are only interested in the correct
location of the structures in the image. Thus, a shift in the average intensity should not be
punished. This might be relevant in cases when the navigator is affected by saturation, as in
acquisitions with interleaved navigator and data slices. Finally, these metrics are sensitive
to noise and noise is inherently present in MR images. The L2 distance between a given
ground truth image and a smoothened (denoised) interpolated image would be smaller than
the case where the interpolated image had different noise values that the ground truth image.

2. Structural Similarity Index (SSIM): SSIM encodes local correlations between image
patches along with their intensity similarity. Thus, it may be expected to be more robust to
intensity scaling and image distortions than RMSE. However, it is not robust to noise [34]
and also does not directly capture any important clinically relevant aspects like correct organ
position or accurate motion estimation.

3. Residual motion (ResMot): We register the interpolated image to the ground truth image
via a gold standard (gs) image registration algorithm (linearly interpolated grid of control
points, optimized for local correlation coefficient, total variation regularization) [35], thus
obtaining an error motion field Fgs

t→t̂
. The mean magnitude of this motion field could be

relevant for 4D reconstruction as it measures the mismatch in organ positions.
4. Error in motion to a reference image (RefMotErrIm): For 4D reconstruction, each

navigator image is registered to a reference image to estimate the position of the structure of
interest in the navigator. To measure the error introduced in this step due to interpolation, we
compute the difference of motion fields obtained via GS registration between the reference
image and either (i) an interpolated navigator or (ii) a true navigator, thus obtaining flow
fields Fgs

t→ref or Fgs

t̂→ref
respectively. From these flow fields, we compute two evaluation

measures: the mean difference in their magnitudes over the entire image (RefMotErrIm) or
only over the structure of interest, the liver in this application (RefMotErrImLiver).

The interpolation formulation in MFIN provides an unsupervised estimation of the motion fields
between the interpolated image and its neighbours. We use the following measures for evaluating the
accuracy for these motion fields.

5. Using the estimated motion fields for determining positions of interpolated images
(RefMotErrFl): As mentioned before, the crucial step in 4D reconstruction is to estimate
the position of the structure of interest in each navigator. This is usually done by registering
each navigator to a reference image and is the most time consuming step in the reconstruction
based on [3]. Since the interpolation of a navigator Nt provides the motion field Ft→t+1,
we can use it to reduce the number of navigator registrations by half. This can be achieved
by inverting the predicted motion field Ft→t+1 to get Ft+1→t and then composing it
with Fgs

ref→t+1 (obtained by registering Nt+1 to the reference image) to estimate Fgs
ref→t.

The error in the estimation ( Ft+1→t ◦ Fgs
ref→t+1 - Fgs

ref→t) serves as a measure of the
accuracy of the predicted motion field Ft→t+1. As with measure [4], [5] can also be
computed either over the entire image (RefMotErrFl) or only over the structure on interest
(RefMotErrFlLiver).

6. Landmark error (LandmarkErr): Another method to evaluate the accuracy of the motion
fields is to compute the landmark errors for the cases where we have expert annotations on
consecutive navigators.
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Table 1: Quantitative results. %ile refers to 5 percentile values for SSIM and 95 percentile otherwise.

SCIN-L2 MFIN-L2 MFINc-L2 SCIN-SSIM MFIN-SSIM MFINc-SSIM
Evaluation Metric mean %ile mean %ile mean %ile mean %ile mean %ile mean %ile
RMSE 8.78 11.83 10.35 13.90 10.23 13.74 9.05 12.03 10.30 14.09 10.28 14.06
SSIM [%] 82.08 77.15 79.55 74.35 79.61 74.53 82.72 78.01 79.81 74.67 79.87 74.78
ResMot [mm] 0.30 0.55 0.37 0.67 0.36 0.67 0.30 0.58 0.37 0.68 0.37 0.67
RefMotErrIm 0.53 0.98 0.58 1.05 0.57 1.04 0.54 1.00 0.59 1.08 0.58 1.05
RefMotErrImLiver 0.70 1.43 0.72 1.44 0.70 1.42 0.66 1.37 0.70 1.39 0.68 1.35
RefMotErrFl [mm] - - 0.83 1.64 0.84 1.64 - - 0.84 1.66 0.82 1.63
RefMotErrFlLiver - - 0.83 1.63 0.83 1.66 - - 0.80 1.57 0.78 1.53
LandmarkErr [mm] - - 0.98 1.88 0.93 1.97 - - 0.93 1.85 0.92 1.81

4.4 Experiments and Results

We trained three networks: SCIN, MFIN and MFINc. Each network was trained separately with two
loss functions for Lrecon: the L2 loss and SSIM. Table 1 summarizes quantitative results in terms of
the evaluation metrics discussed in Sec. 4.3. In terms of RMSE and SSIM, SCIN performs better than
both MFIN and MFINc. However, as discussed in Sec. 4.3, these metrics might not be appropriate
for measuring interpolation performance.

Among the registration-based evaluation measures, SCIN performs better in terms of ResMot. Yet
this measure might to some extend be artifically reduced for SCIN, as its blurring and denoising
property is likely to reduce gradients of the image similarity measure optimized during registration.
RefMotErrImLiver is the most relevant evaluation measure for the application of reconstruction of
4D MRIs. With regard to this measure, the difference in mean performance between SCIN-SSIM and
MFINc-SSIM is 0.02mm. To test whether this difference in performance affects the reconstruction, we
computed the error incurred in the data slice sorting that follows the navigator position determination
step in 4D reconstruction. In the case where all ground truth navigators are used, the discrepancy
between the navigator and the closest data slice is, on average, 1.48mm. This is much larger than
the difference in RefMotErrImLiver between SCIN and MFIN or MFINc. We thus infer that the
increase in RefMotErrImLiver for MFINc or even for MFIN as compared to SCIN may not affect
the reconstruction. Note that RefMotErrImLiver is higher than RefMotErrIm because the motion
magnitude to the reference is higher in the liver (mean 5.13, 95% 11.81 mm) than for whole image
(mean 3.40, 95% 8.21 mm).

Qualitative results are shown in Fig. 4. We observe no large qualitative differences in the performances
of MFIN and MFINc for either loss function. Since, MFINc-SSIM provides the best quantitative
results, we show interpolated images from this method and compare them against SCIN-SSIM. Both
methods perform well when the motion between the neighbouring images is low. This is reflected
in the absence of any structures in the error images in Fig. 4.1. However, RMSE is lower for SCIN
because it produces a denoised interpolated image, while MFIN carries over the noise pattern from
the neighbouring known image. Whenever there exists high motion between the images being
interpolated, SCIN produces blurry images and often misses image structures. This can be observed
in cases 2-4 in Fig. 4. For all these cases, MFINc (and also MFIN) produces sharp images and largely
preserves structures in the images. Fig. 4.2 shows a case where MFINc additionally has a much
better performance with respect to image alignment. Fig. 4.3 shows a representative case, with small
improvement in image alignment, yet worse RMSE and SSIM values for MFINc. Finally, Fig. 4.4
shows a case, where MFINc produces worse alignment of structures than SCIN.

Fig. 4.4 shows a comparison of a representative motion field predicted by MFINc with that computed
via the GS registration algorithm. We can see that the motion field produced by MFINc is smooth
and has sharper motion boundaries. The reason for this might be that the used registration is more
regularized due to its parametric model, where motion is defined by a grid of control points with
4x4 pixel spacing and linearly interpolated in between. This might also explain the higher error in
evaluation of the flow field predicted by the network over the whole image (RefMotErrFl) than only
over the liver (RefMotErrFlLiver).
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Figure 3: Ground truth images (a), SCIN-SSIM results (b) and difference images (c), MFINc-SSIM
results (d) and difference images (e). Rows: (1) low motion case, (2)-(4) high motion cases, where
MFINc produces (2) much better, (3) slightly better and (4) worse structure alignment that SCIN.
(RMSE, SSIM) pairs are indicated over the respective errors images.

a b c d

Figure 4: (a) Motion field Ft→t+1 from MFINc-SSIM overlaid on Nt+1-Nt and (b) corresponding
motion magnitude image. (c) Fgs

t→t+1 from gold standard registration and (d) its magnitude image.

5 Conclusion

In this article, we proposed a framework for temporal image interpolation that incorporates the prior
knowledge that changes in the images over time are caused by the motion of the visible structures in
the images. We showed the advantages of this approach over naive direct interpolation in the intensity
space. Although we presented results in the setting of 4D MRI reconstruction, the method may be
extended to other scenarios where the content of temporal sequences does not change over time.
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