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ABSTRACT

Current knowledge distillation methods require full training data to distill knowl-
edge from a large "teacher" network to a compact "student" network by matching
certain statistics between "teacher" and "student" such as softmax outputs and fea-
ture responses. This is not only time-consuming but also inconsistent with human
cognition in which children can learn knowledge from adults with few examples.
This paper proposes a novel and simple method for knowledge distillation from
few samples. Taking the assumption that both "teacher" and "student" have the
same feature map sizes at each corresponding block, we add a 1× 1 conv-layer at
the end of each block in the student-net, and align the block-level outputs between
"teacher" and "student" by estimating the parameters of the added layer with limited
samples. We prove that the added layer can be absorbed/merged into the previous
conv-layer to formulate a new conv-layer with the same size of parameters and
computation cost as the previous one. Experiments verify that the proposed method
is very efficient and effective to distill knowledge from teacher-net to student-net
constructing in different ways on various datasets.

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated extraordinary success in a variety of fields such
as computer vision (Krizhevsky & Hinton, 2012; He et al., 2016), speech recognition (Hinton et al.,
2012), and natural language processing (Mikolov et al., 2010). However, DNNs are resource-hungry
which hinders their wide deployment to some resource-limited scenarios, especially low-power
embedded devices in the emerging Internet-of-Things (IoT) domain. To address this limitation,
extensive works have been done to accelerate or compress deep neural networks. Putting those works
on designing (Chollet, 2016) or automatically searching efficient network architecture aside (Zoph &
Le, 2016), most studies try to optimize DNNs from four perspectives: network pruning (Han et al.,
2016; Li et al., 2016), network decomposition (Denton et al., 2014; Jaderberg et al., 2014), network
quantization (or low-precision networks) (Gupta et al., 2015; Courbariaux et al., 2016; Rastegari
et al., 2016) and knowledge distillation (Hinton et al., 2015; Romero et al., 2015).

Among these method categories, knowledge distillation is somewhat different due to the utilization of
information from the pre-trained teacher-net. The concept was proposed by (Bucila et al., 2006; Ba
& Caruana, 2014; Hinton et al., 2015) for transferring knowledge from a large "teacher" model to a
compact yet efficient "student" model by matching certain statistics between "teacher" and "student".
Further research introduced various kinds of matching mechanisms in the field of DNN optimization.
The distillation procedure designs a loss function based on the matching mechanisms and enforces
the loss during a full training process. Hence, all these methods usually require time-consuming
training procedure along with fully annotated large-scale training dataset.

Meanwhile, some network pruning (Li et al., 2016; Liu et al., 2017) and decomposition (Zhang et al.,
2016; Kim et al., 2016) methods can produce extremely small networks, but with large accuracy
drops so that time-consuming fine-tuning is required for possible accuracy recovery. Usually, it
may still not be able to recover the accuracy drops with the original cross-entropy loss due to its
low representation capacity. Hence, knowledge distillation may be used to alleviate the problem,
since the compact student-net can sometimes be trained to match the performance of the teacher-net.
For instance, Crowley et al. (2017) uses cheap group convolutions and pointwise convolutions to
build a small student-net and adopts knowledge distillation to transfer knowledge from a full-sized
"teacher-net" to the "student-net". However, it still suffers from high training cost.
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Figure 1: Three steps of our few-sample knowledge distillation. (1) design student-net from scratch or by
compressing teacher-net; (2) add 1×1 conv-layer at the end of each block of student-net (before ReLU), and
align teacher and student by estimating the parameter using least-squared regression; (3) absorb or merge the
added 1×1 conv-layer into the previous conv-layer to obtain final student-net.

As is known, children can learn knowledge concept from adults with few examples. This cognition
phenomenon has motivated the development of the few-shot learning (Fei-Fei et al., 2006; Bart &
Ullman, 2005), which aims to learn information about object categories from a few training samples,
and focuses more on image classification task. Nevertheless, it inspires people to consider the
possibility of knowledge distillation from few samples. Some recent works on knowledge distillation
address this problem by constructing "pseudo" training data (Kimura et al., 2018; Lopes et al., 2017)
with complicated heuristics and heavy engineering, which are still costly.

This paper proposes a novel and simple three-step method for few-sample knowledge distillation
(FSKD) as illustrated in Figure 1, including student-net design, teacher-student alignment, and
absorbing added conv-layer. We assume that both "teacher" and "student" nets have the same feature
map sizes at each corresponding block. However, the relatively small student-net can be obtained
in various ways, such as pruning/decomposing the teacher-net, and fully redesigned network with
random initialization. We add a 1×1 conv-layer at the end of each block of the student-net and align
the block-level outputs between "teacher" and "student", which is done by estimating the parameters
of the added layer with few samples using least square regression. Since the added 1×1 conv-layers
have relatively few parameters, we can get a good approximation from a small number of samples.
We further prove that the added 1×1 conv-layer can be absorbed/merged into the previous conv-layer
when certain conditions fulfill, so that the new conv-layer has the same number of parameters and
computation cost as the older/previous one.

We argue that FSKD has many potential applications, especially when fine-tuning or full training
is not feasible in practice. We just name a few such cases below. First, edge devices have limited
computing resources, while FSKD offers the possibility of on-device learning to compress deep
models with a limited number of samples. Second, FSKD may help software/hardware vendors
optimizing the deep models from their customers when full training data is unavailable due to privacy
or confidential issues. Third, FSKD enables fast model deployment optimization when there is a strict
time budget. Our major contributions can be summarized as follows:

(1) To the best of our knowledge, we are the first to show that knowledge distillation can be
done with few samples within minutes on a desktop PC.

(2) The proposed FSKD method is widely applicable not only for fully redesigned student-nets
but also for compressed networks from pruning and decomposition-based methods.

(3) We demonstrate significant performance improvement of the student-net by FSKD, compar-
ing to existing distillation techniques on various datasets and network structures.

2 RELATED WORK

Knowledge Distillation (KD) transfers knowledge from a pre-trained large "teacher" network (or
even an ensemble of networks) to a small "student" network, for facilitating the deployment at
test time. Originally, this is done by regressing the softmax output of the teacher model (Hinton
et al., 2015). The soft continuous regression loss used here provides richer information than the
label based loss, so that the distilled model can be more accurate than training on labeled data with
cross-entropy loss. Later, various works have extended this approach by matching other statistics,
including intermediate feature responses (Romero et al., 2015; Chen et al., 2016), gradient (Srinivas &
Fleuret, 2018), distribution (Huang & Wang, 2017), Gram matrix (Yim et al., 2017), etc. Deep mutual
learning (Zhang et al., 2018) trains a cohort of student-nets and teaches each other collaboratively
with model distillation throughout the training process. All these methods require a large amount of
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data (known as the “transfer set”) to transfer the knowledge, whereas we aim to provide a solution
with a limited number of samples. We need emphasize that FSKD has a quite different philosophy on
aligning intermediate responses to the closest knowledge distillation method FitNet (Romero et al.,
2015). FitNet re-trains the whole student-net with intermediate supervision using a larger amount of
data, while FSKD only estimates parameters for the added 1× 1 conv-layer with few samples. We
will verify in experiments that FSKD is not only more efficient but also more accurate than FitNet.

Network Pruning methods obtain a small network by pruning weights from a trained larger network,
which can keep the accuracy of the larger model if the prune ratio is set properly. Han et al.
(2015) proposes to prune the individual weights that are near zero. Recently, channel pruning has
become increasingly popular thanks to its better compatibility with off-the-shelf computing libraries,
compared with weights pruning. Different criteria have been proposed to select the channel to be
pruned, including norm of weights (Li et al., 2016), scales of multiplicative coefficients (Liu et al.,
2017), statistics of next layer (Luo et al., 2017), etc. It is usually required iterative loop between
pruning and fine-tuning for achieving better pruning ratio and speedup. Similar gradually adjusting
trick is also applied to train very-deep neural networks (Smith et al., 2016). Meanwhile, Network
Decomposition methods try to factorize heavy layers in DNNs into multiple lightweight ones. For
instance, it may adopt low-rank decomposition to fully-connection layers (Denton et al., 2014), and
different kinds of tensor decomposition to conv-layers (Zhang et al., 2016; Kim et al., 2016). However,
aggressive network pruning or network decomposition usually lead to large accuracy drops, thus
fine-tuning is required to alleviate those drops (Li et al., 2016; Liu et al., 2017; Zhang et al., 2016).
As aforementioned, KD is more accurate than directly training on labeled data, it is of great interest to
explore KD on extremely pruned or decomposed networks, especially under the few-sample setting.

Learning with few samples has been extensively studied under the concept of one-shot or few-shot
learning. One category of methods directly model few-shot samples with generative models (Fei-Fei
et al., 2006; Lake et al., 2011), while most others study the problem under the notion of transfer
learning (Bart & Ullman, 2005; Ravi & Larochelle, 2017). In the latter category, meta-learning
methods (Vinyals et al., 2016; Finn et al., 2017) solve the problem in a learning to learn fashion,
which has been recently gaining momentum due to their application versatility. Most studies are
devoted to the image classification task, while it is still less-explored for knowledge distillation from
few samples. Recently, some works tried to address this problem. Kimura et al. (2018) constructs
pseudo-examples using the inducing point method, and develops a complicated algorithm to optimize
the model and pseudo-examples alternatively. Lopes et al. (2017) records per-layer meta-data for the
teacher-net in order to reconstruct a training set, and then adopts a standard training procedure to
obtain the student-net. Both are very costly due to the complicated and heavy training procedure. On
the contrary, we aim for a simple solution for knowledge distillation from few samples.

3 FEW-SAMPLE KNOWLEDGE DISTILLATION (FSKD)

3.1 OVERVIEW

Our FSKD method consists of three steps as shown in Figure 1. First, we design a student-net either
by pruning/decomposing the teacher-net, or by fully redesigning a small student-net with random
initialization. Second, we add a 1×1 conv-layer at the end of each block of the student-net and align
the block-level outputs between "teacher" and "student" by estimating the parameters for the added
layer from few samples. Third, we absorb the added 1×1 conv-layer into the previous conv-layer
without introducing extra parameters and computations into the student-net.

Two reasons make this idea work efficiently. First, the 1×1 conv-layers have relatively few parameters,
which do not require too many data for the estimation. Second, the block-level output from teacher-net
provides rich information as shown in FitNet (Romero et al., 2015). Below, we will first provide the
theoretical derivation why the added 1×1 conv-layer could be absorbed/merged into the previous
conv-layer. Then we provide details on how we do the block-level output alignment.

3.2 ABSORBABLE 1× 1 CONV-LAYER

Let’s first give some mathematic notions for different kinds of convolutions before moving to the
theoretical derivation. A regular convolution consists of multi-channel and multi-kernel filters which
build both cross-channel correlations and spatial correlations. Formally, a regular convolution layer
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can be represented by a 4-dimensional tensor W ∈ Rno×ni×k×k, where no and ni are the number of
output and input channels respectively, and k × k is the squared spatial kernel size. The point-wise
(PW) convolution, also known as 1× 1 convolution (Lin et al., 2014) can be represented by a tensor
P ∈ Rno×ni×1×1, which is actually degraded from a 4-dimensional tensor to a 2-dimensional matrix.
The depth-wise (DW) convolution (Chollet, 2016) does per-channel 2D convolution for each input
channel, so that it can be represented by a tensor D ∈ R1×ni×k×k. Due to no-correlation among
output channels, it usually follows by a point-wise convolution to model their correlations. This
combination (DW + PW) is also named as depth-wise separable convolution by Chollet (2016).

Theorem 1. A pointwise convolution with tensor Q ∈ Rn′
o×n

′
i×1×1 can be absorbed into the previous

convolution layer with tensor W ∈ Rno×ni×1×1 to obtain the absorbed tensor W′ = Q◦W, where
◦ is absorbing operator and W′ ∈ Rn′

o×ni×k×k if the following conditions are satisfied.

c1. The output channel number of W equals to the input channel number of Q, i.e., no = n′i.
c2. No non-linear activation layer like ReLU (Nair & Hinton, 2010) between W and Q.

Due to the space limitation, we put the proof and the detailed form of the absorbing operator in
Appendix-A. The number of output channels of W′ is n′o, which is different from that of W (i.e.,
no). It is easy to have the following corollary.
Corollary 1. When the following condition is satisfied for Q,

c3. the number of input and output channels of Q equals to the number of output channel of W,
i.e., n′i = n′o = no, Q ∈ Rno×no×1×1,

the absorbed convolution tensor W′ has the same parameters and computation cost as W, i.e. both
W′,W ∈ Rno×ni×k×k.

This condition is required not only for ensuring the same parameter size and computing cost, but also
for ensuring current layer output size matching/connectable to next layer input size.

3.3 BLOCK-LEVEL ALIGNMENT AND ABSORBING

Now we consider the knowledge distillation problem. Suppose Xs,Xt ∈ Rno×d are the block-level
output in matrix form for the student-net and teacher-net respectively, where d is the per-channel
feature map resolution size. We add a 1 × 1 conv-layer Q at the end of each block of student-net
before non-linear activation, which satisfies condition c1 ∼ c3. As Q is degraded to the matrix form,
it can be estimated with least squared regression as

Q∗ = argmin
Q

∑N

i=1
‖Q ∗Xs

i −Xt
i‖, (1)

where N is the number of samples used, and "*" here means matrix product. The number of
parameters of Q is no × no, where no is the number of output channels in the block, which is usually
not too large so that we can estimate Q with a limited number of samples.

Suppose there are M corresponding blocks in the teacher and student networks required to align, to
achieve our goal, we need minimize the following loss function

L(Qj) =

M∑
j=1

N∑
i=1

‖Qj ∗Xs
ij −Xt

ij‖F , (2)

where Qj is the tensor for the added 1× 1 conv-layer of the j-th block. In practice, we optimize this
loss with a block-coordinate descent (BCD) algorithm (Hong et al., 2017), which greedy handles
each of the M terms/blocks in Equation 2 in the student-net sequentially as shown in algorithm 1 at
Appendix-B, instead of optimizing this loss all together using standard SGD. The BCD algorithm for
FSKD has the following advantages:

(1) The BCD algorithm processes each block greedy with a sequential update rule, and each Q
can be solved much cheaper with a small number of samples by aligning the block-level
responses between teacher and student networks, while SGD considers {Qj} all together
which theoretically requires more data.

(2) The alignment procedure is very efficient, which can be usually done within several minutes
for the entire network.
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Top1-before(%) Top1-after(%) FLOPs(×108) Reduced #Param(×106) Pruned #Samples
VGG-16 92.66 - 3.11 - 15 - -
Scheme-A + FSKD-BCD 85.42 92.37 2.06 34% 5.3 64% 100
Scheme-A + FSKD-SGD 85.42 92.18 2.06 34% 5.3 64% 100
Scheme-A + FitNet 85.42 91.23 2.06 34% 5.3 64% 100
Scheme-A + FSKD-BCD 85.42 92.46 2.06 34% 5.3 64% 500
Scheme-A + FSKD-SGD 85.42 92.42 2.06 34% 5.3 64% 500
Scheme-A + FitNet 85.42 92.13 2.06 34% 5.3 64% 500
Scheme-A + Fine-tuning 85.42 90.25 2.06 34% 5.3 64% 500
Scheme-A + Full fine-tuning 85.42 92.54 2.06 34% 5.3 64% 50000
Scheme-B + FSKD-BCD 47.90 90.17 1.33 58% 3.4 77% 100
Scheme-B + FSKD-SGD 47.90 89.41 1.33 58% 3.4 77% 100
Scheme-B + FitNet 47.90 88.76 1.33 58% 3.4 77% 100
Scheme-B + FSKD-BCD 47.90 91.21 1.33 58% 3.4 77% 500
Scheme-B + FSKD-SGD 47.90 90.76 1.33 58% 3.4 77% 500
Scheme-B + FitNet 47.90 90.68 1.33 58% 3.4 77% 500
Scheme-B + Fine-tuning 47.90 83.36 1.33 58% 3.4 77% 500
Scheme-B + Full fine-tuning 47.90 91.53 1.33 58% 3.4 77% 50000

Table 1: Performance comparison between FitNet, fine-tuning (Li et al., 2016), FSKD with student-nets from
filter pruning of VGG-16 with scheme-A/B on CIFAR-10. "Full fine-tuning" uses full training data.

(3) The alignment procedure itself does not require class label information of input data due
to its regression nature. However, if we fully redesign the student-net from scratch with
random weights, we may leverage SGD on a few labeled samples to initialize the network.
Our FSKD can still produce significant performance gains over SGD in this case.

(4) Our FSKD works extremely well for student-net obtained by aggressively prun-
ing/decomposing the teacher-net. It beats the standard fine-tuning based solution on the
number of data required, processing speed, and accuracy of the output student-net.

4 EXPERIMENT

We perform extensive experiments on different image classification datasets to verify the effectiveness
of FSKD on various student-net construction methods. Student-nets can be obtained either from
compressing the teacher-net or redesigning network structure with random initialization (termed
“zero student network”). For the former case, we evaluate FSKD on three well-known compression
methods, filter pruning (Li et al., 2016), network slimming (Liu et al., 2017), and network decoupling
(Guo et al., 2018). We implement the code with PyTorch, and conduct experiments on a desktop PC
with Intel i7-7700K CPU and one NVidia 1080TI GPU.

4.1 STUDENT NETWORK FROM COMPRESSING TEACHER NETWORK

FILTER PRUNING

We first obtain the student-nets using the filter pruning method (Li et al., 2016), which prunes out
conv-filters according to the L1 norm of their weights. The L1 norm of filter weights are sorted and
the smallest portion of filters will be pruned to reduce the number of filter-channels in a conv-layer.

We make a comprehensive study of VGG-16 (Simonyan & Zisserman, 2015) on CIFAR-10 dataset to
evaluate the performance of FSKD along with different configuration settings. Following Li et al.
(2016), we first prune half of the filters in conv1_1, conv4_1, conv4_2, conv4_3, conv5_1, conv5_2,
conv5_3 while keeps the other layer unchanged (scheme-A). We also propose another more aggressive
pruning scheme named scheme-B, which pruned 10% more filters in the aforementioned layers, and
also pruned 20% filters for the remaining layers. Scheme-A prunes 64% of total parameters with 7%
accuracy drop. Scheme-B prunes 77% of total parameters with almost 50% accuracy drop. We use
those two pruned networks as student-nets in this study. 1

We illustrate in Figure 6 in Appendix-C how teacher and student are aligned at block-level. For the
few-sample setting, we randomly select 100 (10 for each category) and 500 (50 for each category)
images from the CIFAR-10 training set, and keep them fixed in all experiments. Table 1 lists the
results of different methods of recovering a pruned network, including FitNet (Romero et al., 2015),
fine-tuning with limited data and full training data (Li et al., 2016). Note that we optimize FSKD with
two algorithms: FSKD-BCD uses the BCD algorithm on block-level and FSKD-SGD optimizes the
loss (Equation 2) all together with SGD algorithm. In the BCD algorithm, we do not observe benefit
for the iteration number T > 1 over T = 1, so that we set T = 1 in all our following experiments.
This is consistent with the finding by (Hong et al., 2017) that the convergence is sublinear when each

1An extremely pruned case "scheme-C" is also provided in Appendix-D.
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Figure 2: Accuracy vs #samples on CIFAR-10. Student-net (a) scheme-A (b) scheme-B by filter pruning.
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Figure 3: (a) Layer-level output correlation between "teacher" and "student" before and after FSKD on
student-nets (scheme-A) by filter pruning. (b) Accuracy change during sequentially block-level alignment.

block is minimized exactly (here due to linear structure). Regarding the processing speed, FSKD-
BCD can be done in 19.3 seconds for student-net from scheme-B with 500 samples, while FitNet
requires 157.3 seconds when converged, which is about 8.1× slower. This verifies our previous claim
that FSKD is more efficient than FitNet. It can be seen that in the few-sample setting, FSKD-BCD
provides better accuracy recovery than both FitNet and the fine-tuning procedure adopted in Li et al.
(2016). For instance, for scheme-B with only 500 samples, FSKD can recover the accuracy from
47.9% to 91.2%, while few-sample fine-tuning can only recover the accuracy to 83.36%. When full
training set available, it will take about 30 minutes for full fine-tuning to reach similar accuracy as
FSKD. This demonstrates the big advantages of FSKD over full fine-tuning based solutions.

Figure 2 further studies the performance with different amount of training samples available. It can
be observed that our FSKD-BCD keep outperforming FSKD-SGD, FitNet under the same training
samples. In particular, FSKD-SGD and FitNet experience a noticeable accuracy drop when the
number of samples is less than 100, while FSKD-BCD can still recover the accuracy of the pruned
network to a high level. It is also interesting to note that fine-tuning experiences even larger accuracy
drops than FitNet when the data amount is limited. This verifies that knowledge distillation methods
like FitNet provide richer information than fine-tuning/re-training with label based loss.

As is shown, FSKD-BCD performs better and tends to be more sample-efficient than FSKD-SGD.
Therefore, we choose it as the default algorithm, and denote it as FSKD for simplification in the
following studies. We further illustrate the per-layer (block) feature responses difference between
teacher and student before and after using FSKD in Figure 3a. Before applying FSKD, the correlation
between teacher and student is broken due to the aggressive compression. However, after FSKD, the
per-layer correlations between teacher and student are restored. This verifies the ability of FSKD
for recovering lost information. We do see a decreasing trend with layer depth increased, which
is possibly due to error accumulation through multiple convolutional layers. We also show the
accuracy change during sequentially block-level alignment in Figure 3b, which clearly demonstrate
the effectiveness of our sequentially block-by-block update in the BCD algorithm.

NETWORK SLIMMING

We then study the student-net from another channel pruning method named network slimming (Liu
et al., 2017), which removes insignificant filter channels and corresponding feature maps using
sparsified channel scaling factors. Network slimming consists of three steps: sparse regularized
training, pruning and fine-tuning. Here, we replace the time-consuming fine-tuning step with our
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Channel-prune-ratio Top1-before(%) Top1-after(%) FLOPs(×108) Reduced #Param(×106) Pruned
VGG-19 93.38 - 7.97 - 20 -
70% + FSKD 15.90 93.41 3.91 51% 2.2 89%
70% + FitNet 15.90 90.47 3.91 51% 2.2 89%
70% + Fine-tuning 15.90 62.86 3.91 51% 2.2 89%
ResNet-164 95.07 - 4.99 - 1.7 -
60% + FSKD 54.46 94.19 2.75 45% 1.1 37%
60% + FitNet 54.46 88.94 2.75 45% 1.1 37%
60% + Fine-tuning 54.46 60.94 2.75 45% 1.1 37%
DenseNet-40 94.18 - 5.33 - 1.1 -
60% + FSKD 88.24 93.62 2.89 46% 0.5 54%
60% + FitNet 88.24 91.37 2.89 46% 0.5 54%
60% + Fine-tuning 88.24 88.98 2.89 46% 0.5 54%

Table 2: Performance comparison between FSKD, FitNet and fine-tuning (Liu et al., 2017) on different network
structures obtained by network slimming with 100 samples randomly selected from CIFAR-10 training set.

Channel-prune-ratio Top1-before(%) Top1-after(%) FLOPs(×108) Reduced #Param(×106) Pruned
VGG-19 72.08 - 7.97 - 20 -
50% + FSKD 9.24 71.98 5.01 37% 5.0 75%
50% + FitNet 9.24 69.52 5.01 37% 5.0 75%
50% + Fine-tuning 9.24 48.75 5.01 37% 5.0 75%
ResNet-164 76.56 - 5.00 - 1.7 -
40% + FSKD 46.07 76.11 3.33 33% 1.5 14%
40% + FitNet 46.07 73.87 3.33 33% 1.5 14%
40% + Fine-tuning 46.07 57.45 3.33 33% 1.5 14%
DenseNet-40 73.21 - 5.33 - 1.1 -
40% + FSKD 60.62 73.26 3.71 30% 0.71 36%
40% + FitNet 60.62 71.08 3.71 30% 0.71 36%
40% + Fine-tuning 60.62 62.36 3.71 30% 0.71 36%

Table 3: Performance comparison between FSKD, FitNet and fine-tuning (Liu et al., 2017) on different network
structures obtained by network slimming with 500 samples randomly selected from CIFAR-100 training set.

FSKD, and follow the original paper (Liu et al., 2017) to conduct experiments to prune different
networks on different datasets. We apply FSKD on networks pruned from VGG-19, ResNet-164, and
DenseNet-40 (Huang et al., 2017), on both CIFAR-10 and CIFAR-100 datasets. Table 2 lists results
on CIFAR-10, while Table 3 lists results on CIFAR-100. Note that the channel-prune-ratio (like 70%
in Table 2) means the portion of channels that are removed in comparison to the total number of
channels in the network. It shows that FSKD consistently outperforms FitNet and fine-tuning with a
notable margin under the few-sample setting on all evaluated networks and datasets.

NETWORK DECOUPLING

Network decoupling (Guo et al., 2018) decomposes a regular convolution layer into the sum of several
blocks, where each block consists of a depth-wise (DW) convolution layer and a point-wise (PW,
1×1) convolution layer. The ratio of compression increases as the number of blocks decreases, but
the accuracy of the compressed model will also drop. Since each decoupled block ends with a 1×1
convolution, we can apply FSKD at the end of each decoupled block.

Following (Guo et al., 2018), we obtain student-nets by decoupling VGG-16 and ResNet-18 pre-
trained on ImageNet with different T values, where T stands for the number of DW + PW blocks that
a conv-layer decouples out. Figure 7 in Appendix-C illustrates how teacher and student are aligned at
block-level in this case. For VGG-16, we also decouple half of the conv-layer with T = 1 and the
other half T = 2, and denote the case as "T = 1mix". We evaluate the resulted network performance
on the validation set of the ImageNet classification task. We randomly select one image from each of
the 1000 classes in ImageNet training set to obtain 1000 samples as our FSKD training set. Table 4
shows the top-1 accuracy of student-net before and after applying FSKD on VGG-16 and ResNet-18.

It is quite interesting to see that in the case of T = 1mix for VGG-16 and T = 2 for ResNet-18,
we can recover the accuracy of student-net from nearly random guess (0.12%, 0.21%) to a much
higher level (51.3% and 49.5%) with only 1000 samples. In all the other cases, FSKD can recover the
accuracy of a highly-compressed network to be comparable with the original network. One possible
explanation is that the highly-compressed networks still inherit some representation power from
the teacher-net i.e., the depth-wise 3×3 convolution, while lacking the ability to output meaningful
predictions due to the inaccurate/degraded 1 × 1 convolution. The FSKD calibrates the 1 × 1
convolution by aligning the block-level responses between "teacher" and "student" so that the lost
information in 1× 1 convolution is compensated, and reasonable recovery is achieved 2.

2We thus make a bold hypothesis that point-wise is more critical for performance than depthwise, so that
even depthwise 3× 3 conv-layers are initialized to be orthogonal from random data, training only pointwise
conv-layers could provide enough accurate results. We verify this in Appendix-E.
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Top1-before(%) Top1-after (%) GFLOPs Reduced #Param∗(×106) Pruned
VGG-16 (teacher) 68.4 - 15.47 - 14.71 -
Decoupled (T = 2) + FSKD 0.24 62.7 3.76 75.7% 3.35 77.2%
Decoupled (T = 3) + FSKD 1.57 67.1 5.54 64.2% 5.02 65.8%
Decoupled (T = 4) + FSKD 54.6 67.6 7.31 52.7% 6.69 54.5%
ResNet-18 (teacher) 67.1 - 1.83 - 11.17 -
Decoupled (T = 2) + FSKD 0.21 49.5 0.55 70.0% 2.69 75.9%
Decoupled (T = 3) + FSKD 3.99 61.9 0.75 59.0% 3.95 64.6%
Decoupled (T = 4) + FSKD 26.5 65.1 0.95 48.1% 5.20 53.4%
Decoupled (T = 5) + FSKD 53.6 66.3 1.15 37.2% 6.46 42.2%

Table 4: Performance of FSKD on different student nets obtained by network decoupling VGG-16 and ResNet-
18 with different parameters T on ImageNet dataset. “∗” here means that parameters from FC-layer are not
counted, only those from conv-layers are counted, since decoupling only handles the conv-layers.
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Figure 4: Accuracy vs #samples for zero student network on (a) CIFAR-10, (b) CIFAR-100.

4.2 ZERO STUDENT NETWORK

Finally, we evaluate FSKD on fully redesigned student-net with a different structure from the teacher
and random initialized parameters (named as zero student-net). We conduct experiments on CIFAR-
10 and CIFAR-100 with VGG-19 as the teacher-net and a shallower VGG-13 as the student-net. Due
to the similar structure between VGG-13 and VGG-19, they can be easily aligned in block-level.

The random initialized network does not contain any information about the training set. Simply
training this network using SGD with few samples will lead to poor generalization ability, as shown
in Figure 4. We propose two schemes to combine FSKD in the training procedure: SGD+FSKD
and FitNet+FSKD. In the SGD+FSKD case, we first use SGD to train the student-net (without using
teacher-net information) on the given few labeled samples with 150 epochs (multi-step learning-rate
decay at every 50 epochs from 0.01 to 0.0001), and then apply FSKD to the obtained student-net
using the same few-sample set. We repeat these two steps until the training loss converges. In the
FitNet+FSKD case, we keep the same few-sample set, and simply replace the SGD with FitNet (using
teacher-net information) to add supervision on intermediate responses during training.

We compare the results from four different recovery methods: running SGD until convergence,
SGD+FSKD, running FitNet until convergence, and FitNet+FSKD. In order to better simulate the
few-sample setting, we do not apply data augmentation to the training set. We randomly pick 100,
200, 500, 1000 samples from the CIFAR-10 training set, and 500, 1000, 1500, 2000 samples from
the CIFAR-100 training set, and keep these few-sample sets fixed in this study. Figure 4 shows the
comparison results on the four methods and four few-sample sets. It shows that FSKD+SGD takes a
big jump over pure SGD, and FSKD+FitNet also takes a big jump over pure FitNet. FSKD+SGD
performs much better than FitNet on CIFAR-10, while this is not true on CIFAR-100. There are two
possible reasons. First, we did not enable data augmentation so that few-sample SGD is underfitting,
which provides much less information than what the student-net can get from the teacher-net in
FitNet. Second, CIFAR-100 is much more difficult than CIFAR-10 so that the performance is more
sensitive to the number of samples. However, FSKD+SGD can still achieve accuracy on par with
FitNet. We should also note here that the zero-student-nets have accuracy gaps with the fully-trained
teacher-nets on both CIFAR-10 and CIFAR-100. This is reasonable and acceptable, considering that
we did not use data augmentation and trained the model with very few samples. Nevertheless, it still
demonstrates the advantages of our FSKD over SGD and FitNet based methods. To further illustrate
the benefit of FSKD over SGD, we visualize the convolution kernel (in terms of decoupled pointwise
convolutions) before SGD, after SGD, and after SGD+FSKD in Appendix-F.
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5 CONCLUSION

We proposed a novel and simple method for knowledge distillation from few samples (FSKD). The
method works for student-nets constructed in various ways, including compression from teacher-
nets and fully redesigned networks with random initialization on various datasets. Experiments
demonstrate that FSKD outperforms existing knowledge distillation methods by a large margin in the
few-sample setting, while requires significantly less computation budget. This advantage will bring
many potential applications and extensions for FSKD.
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APPENDIX-A: PROOF OF THEOREM 1

Proof. When W is a point-wise convolution with tensor W ∈ Rno×ni×1×1, both W and Q are
degraded into matrix form. It is obvious that when condition c1 ∼ c3 satisfied, the theorem holds
with W′ = Q ∗W in this case, where ∗ indicates matrix multiplication.

When W is a regular convolution with tensor W ∈ Rno×ni×k×k, the proof is non-trivial. Fortunately,
recent work on network decoupling (Guo et al., 2018) presents an important theoretic result as the
basis of our derivation.
Lemma 1. Regular convolution can be exactly expanded to a sum of several depth-wise separable
convolutions. Formally, ∀W ∈ Rno×ni×k×k, ∃ {Pk,Dk}Kk=1, where Pk ∈ Rno×ni×1×1, Dk ∈
R1×ni×k×k,

s.t. (a)K ≤ k2;

(b)W =
∑K

k=1
Pk ◦Dk,

(3)

where ◦ is the compound operation, which means performing Dk before Pk.

Please refer to Guo et al. (2018) for the details of proof for this Lemma. When W is applied to an
input patch x ∈ Rni×k×k, we obtain a response vector y ∈ Rno as

y = W ⊗ x, (4)

where yo =
∑ni

i=1 Wo,i ⊗ xi, o ∈ [no], i ∈ [ni], and ⊗ here means convolution operation. Wo,i =
W[o, i, :, :] is a tensor slice along the i-th input and o-th output channels, xi = x[i, :, :] is a tensor
slice along the i-th channel of 3D tensor x.

When point-wise convolution Q is added after Q without non-linear activation between them, we
have

y′ = Q ◦ (W ⊗ x). (5)

With Lemma-1, we have

y′ = (Q ◦
∑K

k=1
Pk ◦Dk)⊗ x = (

∑K

k=1
(Q ∗Pk) ◦Dk)⊗ x (6)

As both Q and Pk are degraded into matrix form, denoting P
′

k = Q∗Pk and W′ =
∑K

k=1 P
′

k ◦Dk,
we have y′ = W′ ◦ x. This proves the case when W is a regular convolution.

APPENDIX-B: ALGORITHM OF BLOCK-LEVEL ALIGNMENT FOR FSKD

The block-level alignment algorithm for FSKD is in fact a block-coordinate descent (BCD) algorithm
with greedy sequential block-level update rule, as shown in algorithm 1.

Algorithm 1: Block-coordinate descent algorithm for FSKD
1 Data: Given student-net s and teacher-net t and input data {Xi}Ni=1,
2 number of aligned blocks M , number of iterations T
3 for k = 1 : T do
4 Random flip input dataset to obtain {X ′i}Ni=1;
5 for j = 1 : M do
6 Feed {X ′i}Ni=1 to the end of j-th block for teacher-net t and and current student-net s;
7 Obtain response {Xt

ij} and {Xs
ij} from j-th block;

8 Add 1× 1 conv-layer with tensor Qj to the end of j-th block of student-net s (before ReLU);
9 Solve Qj with least-square regression based on Equation 1;

10 Merge Qj into previous conv-layer Lj with tensor Wj to obtain new tensor W′
j based on

Theorem 1 for student-net;
11 Update j-th block of current student-net s;
12 end
13 end
14 Result: Absorbed conv-layers {W′

j}Mj=1 and updated student-net s′.

11
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Figure 5: Accuracy vs #iterations of FSKD-BCD on CIFAR-10. Student-net is scheme-B by filter pruning.
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Figure 6: Illustration of FSKD on filter pruning and
network slimming. At each block, we copy weights
of the unpruned part in teacher-net to student-net, and
align the feature maps of student-net to those unpruned
feature maps of teacher-net by adding a 1 × 1 conv-
layer (red-color) with L2-loss. The added 1× 1 can be
merged into the previous conv-layer in student-net.
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Figure 7: Illustration of FSKD on network decoupling.
At each block, we decouple regular-conv in teacher-net
into a sum of depthwise + pointwise conv-layers as
the block of student-net, and align the feature maps of
student-net to that of teacher-net by adding a 1×1 conv-
layer (red-color) with L2-loss. The added 1× 1 can be
merged into previous the pointwise layer in student-net.

The accuracy of FSKD-BCD versus the number of iterations T is illustrated in Figure 5, which shows
that more iterations do not bring noticeable performance gain. This is because in each iteration,
the sub-problem is a linear optimization problem so that we can find exact minimization. This is
consistent with the finding by (Hong et al., 2017). Therefore, in the paper, we only report the accuracy
of T = 1 for FSKD-BCD.

APPENDIX-C: ILLUSTRATION OF FSKD ON PRUNING AND DECOUPLING

Figure 6 illustrates how FSKD work for block-level alignment on the filter pruning (Li et al., 2016)
and network slimming (Liu et al., 2017) cases. Figure 7 illustrates how FSKD works for block-level
alignment on the network decoupling (Guo et al., 2018) case.

APPENDIX-D: ITERATIVE PRUNING AND FSKD

Previous works show that one time extremely pruning may yield the pruned network unable to
recovery from fine-tuning, while the iteratively pruning and fine-tuning procedure is observed
effective to obtain extreme model compression (Han et al., 2016; Li et al., 2016; Liu et al., 2017).
Inspired by these works, we proposed the iteratively pruning and FSKD procedure as described in
algorithm 2 to achieve extremely compression rate. This solution is still much more efficient than
iteratively pruning and fine-tuning due to the great efficiency of FSKD over fine-tuning.
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Algorithm 2: Iteratively pruning and FSKD Algorithm
1 Data: Teacher-net t, input data {Xi}Ni=1, prune-ratio-list {rk}Kk=1, number of iterations T
2 smax = ∅;
3 for t = 1 : T do
4 qmax = 0;
5 for k = 1 : K do
6 Prune s with ratio rk to obtain student-net t;
7 Run FSKD (algorithm 1) with s, t and {Xi}Ni=1, output s′;
8 Evaluation s′ on validation set to obtain score qk;
9 if qk > qmqx then

10 qmax = qk;
11 smax = s′;
12 end
13 end
14 Update teacher t = smax;
15 end
16 Result: final student-net smax.

Top1-before(%) Top1-after(%) FLOPs(×108) Reduced #Param(×106) Pruned #Samples
VGG-16 92.66 - 3.11 - 15 - -
Scheme-C + FSKD-BCD 13.05 89.55 1.09 65% 1.8 88% 100
Scheme-C + FSKD-SGD 13.05 89.01 1.09 65% 1.8 88% 100
Scheme-C + FitNet 13.05 85.09 1.09 65% 1.8 88% 100
Scheme-C + FSKD-BCD 13.05 90.41 1.09 65% 1.8 88% 500
Scheme-C + FSKD-SGD 13.05 90.12 1.09 65% 1.8 88% 500
Scheme-C + FitNet 13.05 88.31 1.09 65% 1.8 88% 500
Scheme-C + Fine-tuning 13.05 78.13 1.09 65% 1.8 88% 500
Scheme-C + Full fine-tuning 13.05 90.77 1.09 65% 1.8 88% 50000

Table 5: Performance comparison between FitNet, fine-tuning (Li et al., 2016), FSKD-BCD/SGD with student-
nets from filter pruning of VGG-16 with scheme-C on CIFAR-10. "Full fine-tuning"uses full training data.

Based on this procedure, we extremely prune VGG-16 on CIFAR-10 by 88% total parameters. Table 5
list the results comparison to fine-tuning, FitNet, etc. It verfies the effectiveness of our FSKD on this
extremely pruned case.

APPENDIX-E: TRAINING ONLY POINTWISE CONV-LAYER IS ACCURATE ENOUGH

People may challenge that learning 1 × 1-conv may loss representation power and ask why the
added 1× 1 convolution works so well with such few samples. According to the network decoupling
theory (Lemma-1), any regular conv-layer could be decomposed into a sum of depthwise separable
blocks, where each depthwise separable block consists of a depthwise (DW) convolution (for spatial
correlation modeling) followed by a pointwise (PW) convolution (for cross-channel correlation
modeling). The added 1× 1 conv-layer is absorbed/merged into the previous PW layer finally. The
decoupling yields that the number of parameters in PW-layer occupies most (>=80%) parameters
of the whole network. We argue that learning 1 × 1-conv is still very powerful, and make a bold
hypothesis in subsection 4.1 that PW conv-layer is more critical for performance than DW conv-
layer. To verify this hypothesis, we make experiments on VGG16 and ResNet50 on CIFAR-10 and
CIFAR-100 under below different settings.

(1) We train the network from random initialization with 150 epoches.
(2) We start from a random initialized network (VGG16 or ResNet50), and do full rank de-

coupling (K = k2 in Equation 3) so that channels in DW layers are orthogonal, and PW
layers are still fully random. Note that Lemma-1 ensures the network before and after
decoupling are equivalent (i.e., able to transfer back and force from each other). We keep all
the DW-layers fixed (with random orthogonal basis), and train only the PW layers with 150
epochs. We denote this scheme as ND-1*1.

Note that except the setting explicitly described, all the other configurations (including training
epochs, hyper-parameters, hardware platform, etc) are kept the same on both experimental cases.
Table 6 lists the experimental results on these two cases on both datasets with two different network
structures. It is obvious that the 2nd case (ND-1*1) clearly outperforms the 1st case. This verifies our

13



Under review as a conference paper at ICLR 2019

Model CIFAR-10(%) CIFAR-100(%)
VGG16 93.00 73.35
VGG16 (ND-1*1) 93.91 73.61
ResNet50 92.64 69.93
ResNet50 (ND-1*1) 93.51 70.83

Table 6: Results by two schemes (1) full training (2) only training pointwise conv-layers (ND-1*1).
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Figure 8: Decouple VGG13 into depthwise (DW) and pointwise (PW) conv-layers, and show one PW layer
before SGD with random initialization (left), after SGD (middle), and after FSKD (right). Note values of the PW
tensor are scaled into the range (0,1.0) by the min/max values of the tensor for better visulization.

hypothesis that when keeping DW channels orthogonal, training only the pointwise (1×1) conv-layer
is accurate enough, or even better than training all the parameters together.

APPENDIX-F: FILTER VISUALIZATION ON ZERO STUDENT-NET

To help better understanding how FSKD impacts the filters, we try to visualize the filter kernels. As
the regular conv-layer kernel size is just 3× 3 in the zero student-net (VGG13), it is hard to see a
difference in such a small kernel-size. Instead, we consider visualizing the pointwise convolution
tensor (degraded to matrix form) in Figure 8 for the following three cases:

(a) We initialize VGG13 with the MSRA initialization method, and then decouple one layer (64
input channels and 64 output channels) to obtain the PW conv-layer. For simplicity, we only
visualize the PW tensor of the first decoupling block (in the left), which has size 64× 64;

(b) We run SGD on few samples for VGG13 from random initialization until convergence, and
then decouple the same layer to obtain the first-rank PW tensor (visualized in the middle);

(c) We further run FSKD on few samples for VGG13 already optimized by SGD, and then
decouple the same layer to obtain the first-rank PW tensor (visualized in the right).

It shows that the tensor before SGD is fairly random on the value range, the tensor after SGD is less
random, while the tensor after FSKD further shows some regular patterns, which indicates that there
are some strong correlations among depthwise channels.
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