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ABSTRACT

Deep approaches to anomaly detection have recently shown promising results over
shallow methods on large and complex datasets. Typically anomaly detection is
treated as an unsupervised learning problem. In practice however, one may have—
in addition to a large set of unlabeled samples—access to a small pool of labeled
samples, e.g. a subset verified by some domain expert as being normal or anoma-
lous. Semi-supervised approaches to anomaly detection aim to utilize such labeled
samples, but most proposed methods are limited to merely including labeled nor-
mal samples. Only a few methods take advantage of labeled anomalies, with ex-
isting deep approaches being domain-specific. In this work we present Deep SAD,
an end-to-end deep methodology for general semi-supervised anomaly detection.
We further introduce an information-theoretic framework for deep anomaly detec-
tion based on the idea that the entropy of the latent distribution for normal data
should be lower than the entropy of the anomalous distribution, which can serve as
a theoretical interpretation for our method. In extensive experiments on MNIST,
Fashion-MNIST, and CIFAR-10, along with other anomaly detection benchmark
datasets, we demonstrate that our method is on par or outperforms shallow, hy-
brid, and deep competitors, yielding appreciable performance improvements even
when provided with only little labeled data.

1 INTRODUCTION

Anomaly detection (AD) (Chandola et al., 2009; Pimentel et al., 2014) is the task of identifying
unusual samples in data. Typically AD methods attempt to learn a “compact” description of the
data in an unsupervised manner assuming that most of the samples are normal (i.e., not anomalous).
For example, in one-class classification (Moya et al., 1993; Schölkopf et al., 2001) the objective
is to find a set of small measure which contains most of the data and samples not contained in
that set are deemed anomalous. Shallow unsupervised AD methods such as the One-Class SVM
(Schölkopf et al., 2001; Tax & Duin, 2004), Kernel Density Estimation (Parzen, 1962; Kim & Scott,
2012; Vandermeulen & Scott, 2013), or Isolation Forest (Liu et al., 2008) often require manual
feature engineering to be effective on high-dimensional data and are limited in their scalability to
large datasets. These limitations have sparked great interest in developing novel deep approaches to
unsupervised AD (Erfani et al., 2016; Zhai et al., 2016; Chen et al., 2017; Ruff et al., 2018; Deecke
et al., 2018; Ruff et al., 2019; Golan & El-Yaniv, 2018; Pang et al., 2019; Hendrycks et al., 2019a;b).
∗Majority of the work was done while RV was at TU Kaiserslautern, Germany.
†Part of the work was done while MK was a sabbatical visitor of the DASH Center at the University of

Southern California, United States.
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Figure 1: The need for semi-supervised anomaly detection: The training data (shown in (a)) consists
of (mostly normal) unlabeled data (gray) as well as a few labeled normal samples (blue) and labeled
anomalies (orange). Figures (b)–(f) show the decision boundaries of the various learning paradigms
at testing time along with novel anomalies that occur (bottom left in each plot). Our semi-supervised
AD approach takes advantage of all training data: unlabeled samples, labeled normal samples, as
well as labeled anomalies. This strikes a balance between one-class learning and classification.

Unlike the standard unsupervised AD setting, in many real-world applications one may also have
access to some verified (i.e., labeled) normal or anomalous samples in addition to the unlabeled data.
Such samples could be hand labeled by a domain expert for instance. This leads to a semi-supervised
AD problem: given n (mostly normal but possibly containing some anomalous contamination) un-
labeled samples x1, . . . ,xn and m labeled samples (x̃1, ỹ1), . . . , (x̃m, ỹm), where ỹ = +1 and
ỹ = −1 denote normal and anomalous samples respectively, the task is to learn a model that com-
pactly characterizes the “normal class.”

The term semi-supervised anomaly detection has been used to describe two different AD settings.
Most existing “semi-supervised” AD methods, both shallow (Muñoz-Marí et al., 2010; Blanchard
et al., 2010; Chandola et al., 2009) and deep (Song et al., 2017; Akcay et al., 2018; Chalapathy
& Chawla, 2019), only incorporate the use of labeled normal samples but not labeled anoma-
lies, i.e. they are more precisely instances of Learning from Positive (i.e., normal) and Unlabeled
Examples (LPUE) (Denis, 1998; Zhang & Zuo, 2008). A few works (Wang et al., 2005; Liu &
Zheng, 2006; Görnitz et al., 2013) have investigated the general semi-supervised AD setting where
one also utilizes labeled anomalies, however existing deep approaches are domain or data-type spe-
cific (Ergen et al., 2017; Kiran et al., 2018; Min et al., 2018).

Research on deep semi-supervised learning has almost exclusively focused on classification as the
downstream task (Kingma et al., 2014; Rasmus et al., 2015; Odena, 2016; Dai et al., 2017; Oliver
et al., 2018). Such semi-supervised classifiers typically assume that similar points are likely to be of
the same class, this is known as the cluster assumption (Zhu, 2005; Chapelle et al., 2009). This as-
sumption, however, only holds for the “normal class” in AD, but is crucially invalid for the “anomaly
class” since anomalies are not necessarily similar to one another. Instead, semi-supervised AD ap-
proaches must find a compact description of the normal class while also correctly discriminating
the labeled anomalies (Görnitz et al., 2013). Figure 1 illustrates the differences between various
learning paradigms applied to AD on a toy example.

We introduce Deep SAD (Deep Semi-supervised Anomaly Detection) in this work, an end-to-end
deep method for general semi-supervised AD. Our main contributions are the following:
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• We introduce Deep SAD, a generalization of the unsupervised Deep SVDD method (Ruff
et al., 2018) to the semi-supervised AD setting.
• We present an information-theoretic framework for deep AD, which can serve as an inter-

pretation of our Deep SAD method and similar approaches.
• We conduct extensive experiments in which we establish experimental scenarios for the

general semi-supervised AD problem where we also introduce novel baselines.

2 AN INFORMATION-THEORETIC VIEW ON DEEP ANOMALY DETECTION

The study of the theoretical foundations of deep learning is an active and ongoing research effort
(Montavon et al., 2011; Tishby & Zaslavsky, 2015; Cohen et al., 2016; Eldan & Shamir, 2016;
Neyshabur et al., 2017; Raghu et al., 2017; Zhang et al., 2017; Achille & Soatto, 2018; Arora et al.,
2018; Belkin et al., 2018; Wiatowski & Bölcskei, 2018; Lapuschkin et al., 2019). One important
line of research that has emerged is rooted in information theory (Shannon, 1948). In the supervised
classification setting where one has input variable X , latent variable Z (e.g., the final layer of a deep
network), and output variable Y (i.e., the label), the well-known Information Bottleneck principle
(Tishby et al., 1999; Tishby & Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Alemi et al., 2017;
Saxe et al., 2018) provides an explanation for representation learning as the trade-off between finding
a minimal compression Z of the input X while retaining the informativeness of Z for predicting the
label Y . Put formally, supervised deep learning seeks to minimize the mutual information I(X;Z)
between the input X and the latent representation Z while maximizing the mutual information
I(Z;Y ) between Z and the classification task Y , i.e.

min
p(z|x)

I(X;Z)− α I(Z;Y ), (1)

where p(z|x) is modeled by a deep network and the hyperparameter α > 0 controls the trade-off
between compression (i.e., complexity) and classification accuracy.

For unsupervised deep learning, due to the absence of labels Y and thus the lack of a clear task, other
information-theoretic learning principles have been formulated. Of these, the Infomax principle
(Linsker, 1988; Bell & Sejnowski, 1995; Hjelm et al., 2019) is one of the most prevalent and widely
used principles. In contrast to (1), the objective of Infomax is to maximize the mutual information
I(X;Z) between the data X and its latent representation Z:

max
p(z|x)

I(X;Z) + βR(Z). (2)

This is typically done under some additional constraint or regularizationR(Z) on the representation
Z with hyperparameter β > 0 to obtain statistical properties desired for some specific downstream
task. Examples where the Infomax principle has been applied include tasks such as independent
component analysis (Bell & Sejnowski, 1995), clustering (Slonim et al., 2005; Ji et al., 2018), gen-
erative modeling (Chen et al., 2016; Hoffman & Johnson, 2016; Zhao et al., 2017; Alemi et al.,
2018), and unsupervised representation learning in general (Hjelm et al., 2019).

We observe that the Infomax principle has also been applied in previous deep representations for
AD. Most notably autoencoders (Rumelhart et al., 1986; Hinton & Salakhutdinov, 2006), which are
the predominant approach to deep AD (Hawkins et al., 2002; Sakurada & Yairi, 2014; Andrews
et al., 2016; Erfani et al., 2016; Zhai et al., 2016; Chen et al., 2017; Chalapathy & Chawla, 2019),
can be understood as implicitly maximizing the mutual information I(X;Z) via the reconstruction
objective (Vincent et al., 2008) under some regularization of the latent code Z. Choices for regu-
larization include sparsity (Makhzani & Frey, 2014), the distance to some latent prior distribution,
e.g. measured via the KL divergence (Kingma & Welling, 2013; Rezende et al., 2014), an adversar-
ial loss (Makhzani et al., 2015), or simply a bottleneck in dimensionality. Such restrictions for AD
share the idea that the latent representation of the normal data should be in some sense “compact.”

As illustrated in Figure 1, a supervised (or semi-supervised) classification approach to AD only
learns to recognize anomalies similar to those seen during training, due to the class cluster assump-
tion (Chapelle et al., 2009). However, anything not normal is by definition an anomaly and thus
anomalies do not have to be similar. This makes supervised (or semi-supervised) classification
learning principles such as (1) ill-defined for AD. We instead build upon principle (2) to motivate a
deep method for general semi-supervised AD, where we include the label information Y through a
novel representation learning regularization objectiveR(Z) = R(Z;Y ) that is based on entropy.
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3 DEEP SEMI-SUPERVISED ANOMALY DETECTION

In the following, we introduce Deep SAD, a deep method for general semi-supervised AD. To for-
mulate our objective, we first briefly explain the unsupervised Deep SVDD method (Ruff et al.,
2018) which we then generalize to the semi-supervised AD setting.

3.1 UNSUPERVISED DEEP SVDD AND ENTROPY MINIMIZATION

For input space X ⊆ RD and output space Z ⊆ Rd, let φ(· ;W) : X → Z be a neural network
with L hidden layers and corresponding set of weights W = {W 1, . . . ,WL}. The objective of
Deep SVDD is to train the neural network φ to learn a transformation that minimizes the volume
of a data-enclosing hypersphere in output space Z centered on a predetermined point c. Given n
(unlabeled) training samples x1, . . . ,xn ∈ X , the One-Class Deep SVDD objective is

min
W

1

n

n∑
i=1

‖φ(xi;W)− c‖2 +
λ

2

L∑
`=1

‖W `‖2F , λ > 0. (3)

Penalizing the mean squared distance of the mapped samples to the hypersphere center c forces the
network to extract those common factors of variation which are most stable within the dataset. As a
consequence normal data points tend to get mapped near the hypersphere center, whereas anomalies
are mapped further away (Ruff et al., 2018). The second term is a standard weight decay regularizer.

Deep SVDD is optimized via SGD using backpropagation. For initialization, Ruff et al. (2018)
first pre-train an autoencoder and then initialize the weightsW of the network φ with the converged
weights of the encoder. After initialization, the hypersphere center c is set as the mean of the network
outputs obtained from an initial forward pass of the data. Once the network is trained, the anomaly
score for a test point x is given by the distance from φ(x;W) to the center of the hypersphere:

s(x) = ‖φ(x;W)− c‖. (4)

We now argue that Deep SVDD may not only be interpreted in geometric terms as minimum volume
estimation (Scott & Nowak, 2006), but also in probabilistic terms as entropy minimization over the
latent distribution. For a latent random variableZ with covariance Σ, pdf p(z), and supportZ ⊆ Rd,
we have the following bound on entropy

H(Z) = E[− log p(Z)] = −
∫
Z
p(z) log p(z) dz ≤ 1

2
log((2πe)d det Σ), (5)

which holds with equality iff Z is jointly Gaussian (Cover & Thomas, 2012). Assuming the latent
distribution Z follows an isotropic Gaussian, Z ∼ N(µ, σ2I) with σ > 0, we get

H(Z) =
1

2
log((2πe)d detσ2I) =

1

2
log((2πeσ2)d · 1) =

d

2
(1 + log(2πσ2)) ∝ log σ2, (6)

i.e. for a fixed dimensionality d, the entropy of Z is proportional to its log-variance.

Now observe that the Deep SVDD objective (3) (disregarding weight decay regularization) is equiv-
alent to minimizing the empirical variance and thus minimizes an upper bound on the entropy of
a latent Gaussian. Since the Deep SVDD network is pre-trained on an autoencoding objective that
implicitly maximizes the mutual information I(X;Z) (Vincent et al., 2008), we may interpret Deep
SVDD as following the Infomax principle (2) with the additional “compactness” objective that the
latent distribution should have minimal entropy.

3.2 DEEP SAD

We now introduce our method for deep semi-supervised anomaly detection: Deep SAD. Assume
that, in addition to the n unlabeled samples x1, . . . ,xn ∈ X with X ⊆ RD, we also have access to
m labeled samples (x̃1, ỹ1), . . . , (x̃m, ỹm) ∈ X × Y with Y = {−1,+1} where ỹ = +1 denotes
known normal samples and ỹ = −1 known anomalies. We define our Deep SAD objective as
follows:

min
W

1

n+m

n∑
i=1

‖φ(xi;W)− c‖2 +
η

n+m

m∑
j=1

(
‖φ(x̃j ;W)− c‖2

)ỹj
+
λ

2

L∑
`=1

‖W `‖2F . (7)
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We employ the same loss term as Deep SVDD for the unlabeled data in our Deep SAD objective
and thus recover Deep SVDD (3) as the special case when there is no labeled training data available
(m = 0). In doing this we also incorporate the assumption that most of the unlabeled data is normal.

For the labeled data, we introduce a new loss term that is weighted via the hyperparameter η > 0
which controls the balance between the labeled and the unlabeled term. Setting η > 1 puts more
emphasis on the labeled data whereas η < 1 emphasizes the unlabeled data. For the labeled normal
samples (ỹ = +1), we also impose a quadratic loss on the distances of the mapped points to the
center c, thus intending to overall learn a latent distribution which concentrates the normal data.
Again, one might consider η > 1 to emphasize labeled normal over unlabeled samples. For the
labeled anomalies (ỹ = −1) in contrast, we penalize the inverse of the distances such that anomalies
must be mapped further away from the center.1 Note that this is in line with the common assumption
that anomalies are not concentrated (Schölkopf & Smola, 2002; Steinwart et al., 2005). In our
experiments we found that simply setting η = 1 yields a consistent and substantial performance
improvement. A sensitivity analysis on η is in Section 4.3.

We define the Deep SAD anomaly score again by the distance of the mapped point to the center c
as given in Eq. (4) and optimize our Deep SAD objective (7) via SGD using backpropagation. We
provide a summary of the Deep SAD optimization procedure and further details in Appendix C.

In addition to the inverse squared norm loss we experimented with several other losses including the
negative squared norm loss, negative robust losses, and the hinge loss. The negative squared norm
loss, which is unbounded from below, resulted in an ill-posed optimization problem and caused
optimization to diverge. Negative robust losses, such as the Hampel loss, introduce one or more scale
parameters which are difficult to select or optimize in conjunction with the changing representation
learned by the network. Like Ruff et al. (2018), we observed that the hinge loss was difficult to
optimize and resulted in poorer performance. The inverse squared norm loss instead is bounded
from below and smooth, which are crucial properties for losses used in deep learning (Goodfellow
et al., 2016), and ultimately performed the best while remaining conceptually simple.

Following our insights on the connection between Deep SVDD and entropy minimization from
Section 3.1, we may interpret our Deep SAD objective as modeling the latent distribution of
normal data, Z+ = Z|{Y=+1}, to have low entropy, and the latent distribution of anomalies,
Z− = Z|{Y=−1}, to have high entropy. Minimizing the distances to the center c (i.e., minimizing
the empirical variance) for the mapped points of labeled normal samples (ỹ = +1) induces a latent
distribution with low entropy for the normal data. In contrast, penalizing low variance via the inverse
squared norm loss for the mapped points of labeled anomalies (ỹ = −1) induces a latent distribution
with high entropy for the anomalous data. That is, the network must attempt to map known anoma-
lies to some heavy-tailed distribution. We argue that such a model better captures the nature of
anomalies, which can be thought of as being generated from an infinite mixture of distributions that
are different from the normal data distribution, indubitably a distribution that has high entropy. Our
objective notably does not impose any cluster assumption on the anomaly-generating distribution
X|{Y=−1} as is typically made in supervised or semi-supervised classification approaches (Zhu,
2005; Chapelle et al., 2009). We can express this interpretation in terms of principle (2) with an
entropy regularization objective on the latent distribution:

max
p(z|x)

I(X;Z) + β (H(Z−)−H(Z+)). (8)

To maximize the mutual information I(X;Z), Deep SAD also relies on autoencoder pre-training
(Vincent et al., 2008; Ruff et al., 2018).

4 EXPERIMENTS

We evaluate Deep SAD on MNIST, Fashion-MNIST, and CIFAR-10 as well as on classic AD bench-
mark datasets. We compare to shallow, hybrid, as well as deep unsupervised, semi-supervised and
supervised competitors. We refer to other recent works (Ruff et al., 2018; Golan & El-Yaniv, 2018;
Hendrycks et al., 2019a) for further comparisons between unsupervised deep AD methods.2

1To ensure numerical stability, we add a machine epsilon (eps ∼ 10−6) to the denominator of the inverse.
2Our code is available at: https://github.com/lukasruff/Deep-SAD-PyTorch
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4.1 COMPETING METHODS

We consider the OC-SVM (Schölkopf et al., 2001) and SVDD (Tax & Duin, 2004) with Gaussian
kernel (which in this case are equivalent), Isolation Forest (Liu et al., 2008), and KDE (Parzen,
1962) for shallow unsupervised baselines. For deep unsupervised competitors, we consider well-
established (convolutional) autoencoders and the state-of-the-art unsupervised Deep SVDD method
(Ruff et al., 2018). To avoid confusion, we note again that some literature (Song et al., 2017; Cha-
lapathy & Chawla, 2019) refer to the methods above as being “semi-supervised” if they are trained
on only labeled normal samples. For general semi-supervised AD approaches that also take advan-
tage of labeled anomalies, we consider the state-of-the-art shallow SSAD method (Görnitz et al.,
2013) with Gaussian kernel. As mentioned earlier, there are no deep competitors for general semi-
supervised AD that are applicable to general data types. To get a comprehensive comparison we
therefore introduce a novel hybrid SSAD baseline that applies SSAD to the latent codes of autoen-
coder models. Such hybrid methods have demonstrated solid performance improvements over their
raw feature counterparts on high-dimensional data (Erfani et al., 2016; Nicolau et al., 2016). We
also include such hybrid variants for all unsupervised shallow competitors. To also compare to a
deep semi-supervised learning method that targets classification as the downstream task, we add the
well-known Semi-Supervised Deep Generative Model (SS-DGM) (Kingma et al., 2014) where we
use the latent class probability estimate (normal vs. anomalous) as the anomaly score. To complete
the full learning spectrum, we also include a fully supervised deep classifier trained on the binary
cross-entropy loss.

In our experiments we deliberately grant the shallow and hybrid methods an unfair advantage by
selecting their hyperparameters to maximize AUC on a subset (10%) of the test set to minimize
hyperparameter selection issues. To control for architectural effects between the deep methods,
we always use the same (LeNet-type) deep networks. Full details on network architectures and
hyperparameter selection can be found in Appendices D and E. Due to space constraints, in the
main text we only report results for methods which showed competitive performance and defer
results for the underperforming methods in Appendix F.

4.2 EXPERIMENTAL SCENARIOS ON MNIST, FASHION-MNIST, AND CIFAR-10

Semi-supervised anomaly detection setup MNIST, Fashion-MNIST, and CIFAR-10 all have ten
classes from which we derive ten AD setups on each dataset following previous works (Ruff et al.,
2018; Chalapathy et al., 2018; Golan & El-Yaniv, 2018). In every setup, we set one of the ten classes
to be the normal class and let the remaining nine classes represent anomalies. We use the original
training data of the respective normal class as the unlabeled part of our training set. Thus we start
with a clean AD setting that fulfills the assumption that most (in this case all) unlabeled samples
are normal. The training data of the respective nine anomaly classes then forms the data pool from
which we draw anomalies for training to create different scenarios. We compute the commonly used
AUC measure on the original respective test sets using ground truth labels to make a quantitative
comparison, i.e. ỹ = +1 for the normal class and ỹ = −1 for the respective nine anomaly classes.
We rescale pixels to [0, 1] via min-max feature scaling as the only data pre-processing step.

Experimental scenarios We examine three scenarios in which we vary the following three ex-
perimental parameters: (i) the ratio of labeled training data γl, (ii) the ratio of pollution γp in the
unlabeled training data with (unknown) anomalies, and (iii) the number of anomaly classes kl in-
cluded in the labeled training data.

(i) Adding labeled anomalies In this scenario, we investigate the effect that including labeled
anomalies during training has on detection performance to see the benefit of a general semi-
supervised AD approach over other paradigms. To do this we increase the ratio of labeled training
data γl = m/(n+m) by adding more and more known anomalies x̃1, . . . , x̃m with ỹj = −1 to the
training set. The labeled anomalies are sampled from one of the nine anomaly classes (kl = 1). For
testing, we then consider all nine remaining classes as anomalies, i.e. there are eight novel classes at
testing time. We do this to simulate the unpredictable nature of anomalies. For the unlabeled part of
the training set, we keep the training data of the respective normal class, which we leave unpolluted
in this experimental setup, i.e. γp = 0. We iterate this training set generation process per AD setup
always over all the nine respective anomaly classes and report the average results over the ten AD
setups × nine anomaly classes, i.e. over 90 experiments per labeled ratio γl.
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(ii) Polluted training data Here we investigate the robustness of the different methods to an in-
creasing pollution ratio γp of the training set with unlabeled anomalies. To do so we pollute the
unlabeled part of the training set with anomalies drawn from all nine respective anomaly classes in
each AD setup. We fix the ratio of labeled training samples at γl = 0.05 where we again draw sam-
ples only from kl = 1 anomaly class in this scenario. We repeat this training set generation process
per AD setup over all the nine respective anomaly classes and report the average results over the
resulting 90 experiments per pollution ratio γp. We hypothesize that learning from labeled anoma-
lies in a semi-supervised AD approach alleviates the negative impact pollution has on detection
performance since similar unknown anomalies in the unlabeled data might be detected.

(iii) Number of known anomaly classes In the last scenario, we compare the detection perfor-
mance at various numbers of known anomaly classes. In scenarios (i) and (ii), we always sample
labeled anomalies only from one out of the nine anomaly classes (kl = 1). In this scenario, we now
increase the number of anomaly classes kl included in the labeled part of the training set. Since
we have a limited number of anomaly classes (nine) in each AD setup, we expect the supervised
classifier to catch up at some point. We fix the overall ratio of labeled training examples again at
γl = 0.05 and consider a pollution ratio of γp = 0.1 for the unlabeled training data in this scenario.
We repeat this training set generation process for ten seeds in each of the ten AD setups and report
the average results over the resulting 100 experiments per number kl. For each seed, the kl classes
are drawn uniformly at random from the nine respective anomaly classes.

0.8
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Figure 2: Results of scenario (i), where we increase the ratio of labeled anomalies γl in the training
set. We report avg. AUC with st. dev. over 90 experiments at various ratios γl. A “?” indicates a
statistically significant (α = 0.05) difference between the 1st and 2nd best method.

Results The results of scenarios (i)–(iii) are shown in Figures 2–4. In addition to the avg. AUC
with st. dev., we report the outcome of Wilcoxon signed-rank tests (Wilcoxon, 1945) applied to the
first and second best performing method to indicate statistically significant (α = 0.05) differences
in performance. Figure 2 demonstrates the benefit of our semi-supervised approach to AD espe-
cially on the most complex CIFAR-10 dataset, where Deep SAD performs best. Figure 2 moreover
confirms that a supervised classification approach is vulnerable to novel anomalies at testing time
when only little labeled training data is available. In comparison, Deep SAD generalizes to novel
anomalies while also taking advantage of the labeled examples. Note that our novel hybrid SSAD
baseline also performs well. Figure 3 shows that the detection performance of all methods decreases
with increasing data pollution. Deep SAD proves to be most robust again especially on CIFAR-10.
Finally, Figure 4 shows that the more diverse the labeled anomalies in the training set, the better
the detection performance becomes. We can again see that the supervised method is very sensitive
to the number of anomaly classes but catches up at some point as suspected. This does not occur
with CIFAR-10, however, where γl = 0.05 labeled training samples seems to be insufficient for
classification. Overall, we see that Deep SAD is particularly beneficial on the more complex data.
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Figure 3: Results of scenario (ii), where we pollute the unlabeled part of the training set with (un-
known) anomalies. We report avg. AUC with st. dev. over 90 experiments at various ratios γp. A
“?” indicates a statistically significant (α = 0.05) difference between the 1st and 2nd best method.
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Figure 4: Results of scenario (iii), where we increase the number of anomaly classes kl included in
the labeled training data. We report avg. AUC with st. dev. over 100 experiments for various kl. A
“?” indicates a statistically significant (α = 0.05) difference between the 1st and 2nd best method.

4.3 SENSITIVITY ANALYSIS
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Figure 5: Deep SAD sensitivity analysis w.r.t. η.
We report avg. AUC with st. dev. over 90 experi-
ments for various values of hyperparameter η.

We run Deep SAD experiments on the ten AD
setups described above on each dataset for η ∈
{10−2, . . . , 102} to analyze the sensitivity of
Deep SAD with respect to the hyperparame-
ter η > 0. In this analysis, we set the experi-
mental parameters to their default, γl = 0.05,
γp = 0.1, and kl = 1, and again iterate over
all nine anomaly classes in every AD setup.
The results shown in Figure 5 suggest that Deep
SAD is fairly robust against changes of the hy-
perparameter η.

In addition, we run experiments under the same
experimental settings while varying the dimen-
sion d ∈ {24, . . . , 29} of the output space
Z ⊆ Rd to infer the sensitivity of Deep SAD
with respect to the representation dimensional-
ity, where we keep η = 1. The results are given
in Figure 6 in Appendix A. There we also com-
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pare to our hybrid SSAD baseline, which was the strongest competitor. Interestingly we observe that
detection performance increases with dimension d, converging to an upper bound in performance.
This suggests that one would want to set d large enough to have sufficiently high mutual information
I(X;Z) before compressing to a compact characterization.

4.4 CLASSIC ANOMALY DETECTION BENCHMARK DATASETS

In a final experiment, we also examine the detection performance of the various methods on some
well-established AD benchmark datasets (Rayana, 2016). We run these experiments to evaluate
the deep versus the shallow approaches on non-image datasets that are rarely considered in deep
AD literature. Here we observe that the shallow kernel methods seem to have a slight edge on the
relatively small, low-dimensional benchmarks. Nonetheless, Deep SAD proves competitive and the
small differences observed might be explained by the advantage we grant the shallow methods in
their hyperparameter selection. We give the full details and results in Appendix B.

Our results and other recent works (Ruff et al., 2018; Golan & El-Yaniv, 2018; Hendrycks et al.,
2019a) overall demonstrate that deep methods are especially superior on complex data with hierar-
chical structure. Unlike other deep approaches (Ergen et al., 2017; Kiran et al., 2018; Min et al.,
2018; Deecke et al., 2018; Golan & El-Yaniv, 2018), however, our Deep SAD method is not domain
or data-type specific. Due to its good performance using both deep and shallow networks we expect
Deep SAD to extend well to other data types.

5 CONCLUSION AND FUTURE WORK

In this work we introduced Deep SAD, a deep method for general semi-supervised anomaly detec-
tion. Our method is a generalization of the unsupervised Deep SVDD method (Ruff et al., 2018) to
the semi-supervised setting. The results of our experimental evaluation suggest that general semi-
supervised anomaly detection should always be preferred whenever some labeled information on
both normal samples or anomalies is available.

Moreover, we formulated an information-theoretic framework for deep anomaly detection based on
the Infomax principle. Using this framework, we interpreted our method as minimizing the entropy
of the latent distribution for normal data and maximizing the entropy of the latent distribution for
anomalous data. We introduced this framework with the aim of forming a basis for new methods as
well as rigorous theoretical analyses in the future, e.g. studying deep anomaly detection under the
rate-distortion curve (Alemi et al., 2018).
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A ADDITIONAL RESULTS ON MNIST, FASHION-MNIST, AND CIFAR-10

A.1 SENSITIVITY ANALYSIS W.R.T REPRESENTATION DIMENSIONALITY
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Figure 6: Sensitivity analysis w.r.t. the network representation dimensionality d for our Deep SAD
method and the closest competitor hybrid SSAD. We report avg. AUC with st. dev. over 90 experi-
ments for various values of d.

A.2 AUC SCATTERPLOTS OF BEST VS. SECOND BEST METHODS ON CIFAR-10

We provide AUC scatterplots in Figures 7–9 of the best (1st) vs. second best (2nd) performing meth-
ods in the experimental scenarios (i)–(iii) on the most complex CIFAR-10 dataset. If most points
fall above the identity line, this is a very strong indication that the best method indeed significantly
outperforms the second best, which often is the case for our Deep SAD method.
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Figure 7: AUC scatterplots of best (1st) vs. second best (2nd) performing methods in experimental
scenario (i) on CIFAR-10, where we increase the ratio of labeled anomalies γl in the training set.
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Figure 8: AUC scatterplots of best (1st) vs. second best (2nd) performing methods in experimental
scenario (ii) on CIFAR-10, where we pollute the unlabeled part of the training set with (unknown)
anomalies at various ratios γp.
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Figure 9: AUC scatterplots of best (1st) vs. second best (2nd) performing methods in experimental
scenario (iii) on CIFAR-10, where we increase the number of anomaly classes kl included in the
labeled training data.
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B RESULTS ON CLASSIC ANOMALY DETECTION BENCHMARK DATASETS

Table 1: Anomaly detection benchmarks.

Dataset N D #outliers (%)

arrhythmia 452 274 66 (14.6%)
cardio 1,831 21 176 (9.6%)
satellite 6,435 36 2,036 (31.6%)
satimage-2 5,803 36 71 (1.2%)
shuttle 49,097 9 3,511 (7.2%)
thyroid 3,772 6 93 (2.5%)

In this experiment, we examine the detec-
tion performance on some well-established AD
benchmark datasets (Rayana, 2016) listed in
Table 1. We do this to evaluate the deep against
the shallow approaches also on non-image, tab-
ular datasets that are rarely considered in the
deep AD literature. For the evaluation, we con-
sider random train-to-test set splits of 60:40
while maintaining the original proportion of
anomalies in each set. We then run experiments
for 10 seeds with γl = 0.01 and γp = 0, i.e. 1%
of the training set are labeled anomalies and the
unlabeled training data is unpolluted. Since there are no specific different anomaly classes in these
datasets, we have kl = 1. We standardize features to have zero mean and unit variance as the only
pre-processing step.

Table 2 shows the results of the competitive methods. We observe that the shallow kernel methods
seem to perform slightly better on the rather small, low-dimensional benchmarks. Deep SAD proves
competitive though and the small differences might be explained by the strong advantage we grant
the shallow methods in the selection of their hyperparameters. We provide the complete table with
the results from all methods in Appendix F

Table 2: Results on classic AD benchmark datasets in the setting with no pollution γp = 0 and a ratio
of labeled anomalies of γl = 0.01 in the training set. We report avg. AUC with st. dev. computed
over 10 seeds. A “?” indicates a statistically significant (α = 0.05) difference between 1st and 2nd.

OC-SVM OC-SVM Deep SSAD SSAD Supervised Deep
Dataset Raw Hybrid SVDD Raw Hybrid Classifier SAD

arrhythmia 84.5±3.9 76.7±6.2 74.6±9.0 86.7±4.0? 78.3±5.1 39.2±9.5 75.9±8.7
cardio 98.5±0.3 82.8±9.3 84.8±3.6 98.8±0.3 86.3±5.8 83.2±9.6 95.0±1.6
satellite 95.1±0.2 68.6±4.8 79.8±4.1 96.2±0.3? 86.9±2.8 87.2±2.1 91.5±1.1
satimage-2 99.4±0.8 96.7±2.1 98.3±1.4 99.9±0.1 96.8±2.1 99.9±0.1 99.9±0.1
shuttle 99.4±0.9 94.1±9.5 86.3±7.5 99.6±0.5 97.7±1.0 95.1±8.0 98.4±0.9
thyroid 98.3±0.9 91.2±4.0 72.0±9.7 97.9±1.9 95.3±3.1 97.8±2.6 98.6±0.9
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C OPTIMIZATION OF DEEP SAD

Our Deep SAD objective (7) is generally non-convex in the network weightsW which usually is the
case in deep learning. For a computationally efficient optimization, we rely on (mini-batch) SGD
to optimize the network weights using backpropagation. For improved generalization, we add L2

weight decay regularization with hyperparameter λ > 0 to the objective. Algorithm 1 summarizes
the Deep SAD optimization routine.

Algorithm 1 Optimization of Deep SAD

Input:
Unlabeled data: x1, . . . ,xn
Labeled data: (x′1, y

′
1), . . . , (x′m, y

′
m)

Hyperparameters: η, λ
SGD learning rate: ε

Output:
Trained model: W∗

1: Initialize:
Neural network weights: W
Hypersphere center: c

2: for each epoch do
3: for each mini-batch do
4: Draw mini-batch B
5: W ←W − ε · ∇WJ(W;B)
6: end for
7: end for

Using SGD allows Deep SAD to scale with large datasets as the computational complexity scales
linearly in the number of training batches and computations in each batch can be parallelized (e.g.,
by training on GPUs). Moreover, Deep SAD has low memory complexity as a trained model is
fully characterized by the final network parametersW∗ and no data must be saved or referenced for
prediction. Instead, the prediction only requires a forward pass on the network which usually is just
a concatenation of simple functions. This enables fast predictions for Deep SAD.

Initialization of the network weights W We establish an autoencoder pre-training routine for
initialization. That is, we first train an autoencoder that has an encoder with the same architecture as
network φ on the reconstruction loss (mean squared error or cross-entropy). After training, we then
initializeW with the converged parameters of the encoder. Note that this is in line with the Infomax
principle (2) for unsupervised representation learning (Vincent et al., 2008).

Initialization of the center c After initializing the network weights W , we fix the hypersphere
center c as the mean of the network representations that we obtain from an initial forward pass on the
data (excluding labeled anomalies). We found SGD convergence to be smoother and faster by fixing
center c in the neighborhood of the initial data representations as also observed by Ruff et al. (2018).
If sufficiently many labeled normal examples are available, using only those examples for a mean
initialization would be another strategy to minimize possible distortions from polluted unlabeled
training data. Adding center c as a free optimization variable would allow a trivial “hypersphere
collapse” solution for the fully unlabeled setting, i.e. for unsupervised Deep SVDD.

Preventing a hypersphere collapse A “hypersphere collapse” describes the trivial solution that
neural network φ converges to the constant function φ ≡ c, i.e. the hypersphere collapses to a
single point. Ruff et al. (2018) demonstrate theoretical network properties that prevent such a col-
lapse which we adopt for Deep SAD. Most importantly, network φ must have no bias terms and
no bounded activation functions. We refer to Ruff et al. (2018) for further details. If there are
sufficiently many labeled anomalies available for training, however, hypersphere collapse is not a
problem for Deep SAD due to the opposing labeled and unlabeled objectives.
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D NETWORK ARCHITECTURES

We employ LeNet-type convolutional neural networks (CNNs) on MNIST, Fashion-MNIST, and
CIFAR-10, where each convolutional module consists of a convolutional layer followed by leaky
ReLU activations with leakiness α = 0.1 and (2×2)-max-pooling. On MNIST, we employ a CNN
with two modules, 8×(5×5)-filters followed by 4×(5×5)-filters, and a final dense layer of 32 units.
On Fashion-MNIST, we employ a CNN also with two modules, 16×(5×5)-filters and 32×(5×5)-
filters, followed by two dense layers of 64 and 32 units respectively. On CIFAR-10, we employ a
CNN with three modules, 32×(5×5)-filters, 64×(5×5)-filters, and 128×(5×5)-filters, followed by
a final dense layer of 128 units.

On the classic AD benchmark datasets, we employ standard MLP feed-forward architectures. On
arrhythmia, a 3-layer MLP with 128-64-32 units. On cardio, satellite, satimage-2, and shuttle a
3-layer MLP with 32-16-8 units. On thyroid a 3-layer MLP with 32-16-4 units.

For the (convolutional) autoencoders, we always employ the above architectures for the encoder
networks and then construct the decoder networks symmetrically, where we replace max-pooling
with simple upsampling and convolutions with deconvolutions.

E DETAILS ON COMPETING METHODS

OC-SVM/SVDD The OC-SVM and SVDD are equivalent for the Gaussian/RBF kernel we em-
ploy. As mentioned in the main paper, we deliberately grant the OC-SVM/SVDD an unfair advan-
tage by selecting its hyperparameters to maximize AUC on a subset (10%) of the test set to estab-
lish a strong baseline. To do this, we consider the RBF scale parameter γ ∈ {2−7, 2−6, . . . 22}
and select the best performing one. Moreover, we always repeat this over ν-parameter ν ∈
{0.01, 0.05, 0.1, 0.2, 0.5} and then report the best final result.

Isolation Forest (IF) We set the number of trees to t = 100 and the sub-sampling size to ψ = 256,
as recommended in the original work (Liu et al., 2008).

Kernel Density Estimator (KDE) We select the bandwidth h of the Gaussian kernel from h ∈
{20.5, 21, . . . , 25} via 5-fold cross-validation using the log-likelihood score following (Ruff et al.,
2018).

SSAD We also deliberately grant the state-of-the-art semi-supervised AD kernel method SSAD the
unfair advantage of selecting its hyperparameters optimally to maximize AUC on a subset (10%) of
the test set. To do this, we again select the scale parameter γ of the RBF kernel we use from
γ ∈ {2−7, 2−6, . . . 22} and select the best performing one. Otherwise we set the hyperparameters
as recommend by the original authors to κ = 1, κ = 1, ηu = 1, and ηl = 1 (Görnitz et al., 2013).

(Convolutional) Autoencoder ((C)AE) To create the (convolutional) autoencoders, we symmet-
rically construct the decoders w.r.t. the architectures reported in Appenidx D, which make up the
encoder parts of the autoencoders. Here, we replace max-pooling with simple upsampling and con-
volutions with deconvolutions. We train the autoencoders on the MSE reconstruction loss that also
serves as the anomaly score.

Hybrid Variants To establish hybrid methods, we apply the OC-SVM, IF, KDE, and SSAD as
outlined above to the resulting bottleneck representations given by the respective converged autoen-
coders.

Unsupervised Deep SVDD We consider both variants, Soft-Boundary Deep SVDD and One-Class
Deep SVDD as unsupervised baselines and always report the better performance as the unsupervised
result. For Soft-Boundary Deep SVDD, we optimally solve for the radius R on every mini-batch
and run experiments for ν ∈ {0.01, 0.1}. We set the weight decay hyperparameter to λ = 10−6. For
Deep SVDD, we always remove all the bias terms from a network to prevent a hypersphere collapse
as recommended by the authors in the original work (Ruff et al., 2018).

Deep SAD We set λ = 10−6 and equally weight the unlabeled and labeled examples by setting
η = 1 if not reported otherwise.

SS-DGM We consider both the M2 and M1+M2 model and always report the better performing
result. Otherwise we follow the settings as recommended in the original work (Kingma et al., 2014).
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Note that we use the latent class probability estimate (normal vs. anomalous) of semi-supervised
DGM as a natural choice for the anomaly score, and not the reconstruction error as used for un-
supervised autoencoding models such as the (convolutional) autoencoder we consider. Such deep
semi-supervised models designed for classification as the downstream task have no notion of out-
of-distribution and again implicitly make the cluster assumption (Zhu, 2005; Chapelle et al., 2009)
we refer to. Thus, semi-supervised DGM also suffers from overfitting to previously seen anomalies
at training similar to the supervised model which explains its bad AD performance.

Supervised Deep Binary Classifier To interpret AD as a binary classification problem, we rely on
the typical assumption that most of the unlabeled training data is normal by assigning y = +1 to all
unlabeled examples. Already labeled normal examples and labeled anomalies retain their assigned
labels of ỹ = +1 and ỹ = −1 respectively. We train the supervised classifier on the binary cross-
entropy loss. Note that in scenario (i), in particular, the supervised classifier has perfect, unpolluted
label information but still fails to generalize as there are novel anomaly classes at testing.

SGD Optimization Details for Deep Methods We use the Adam optimizer with recommended
default hyperparameters (Kingma & Ba, 2015) and apply Batch Normalization (Ioffe & Szegedy,
2015) in SGD optimization. For all deep approaches and on all datasets, we employ a two-phase
(“searching” and “fine-tuning”) learning rate schedule. In the searching phase we first train with a
learning rate ε = 10−4 for 50 epochs. In the fine-tuning phase we train with ε = 10−5 for another
100 epochs. We always use a batch size of 200. For the autoencoder, SS-DGM, and the supervised
classifier, we initialize the network with uniform Glorot weights (Glorot & Bengio, 2010). For
Deep SVDD and Deep SAD, we establish an unsupervised pre-training routine via autoencoder as
explained in Appendix C, where we set the network φ to be the encoder of the autoencoder that we
train beforehand.

F COMPLETE TABLES OF EXPERIMENTAL RESULTS

The following Tables 3–6 list the complete experimental results of all the methods in all our experi-
ments.
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Table 3: Complete results of experimental scenario (i), where we increase the ratio of labeled anomalies γl in the training set. We report the avg. AUC with
st. dev. computed over 90 experiments at various ratios γl.

OC-SVM OC-SVM IF IF KDE KDE Deep SSAD SSAD Deep Supervised
Data γl Raw Hybrid Raw Hybrid Raw Hybrid CAE SVDD Raw Hybrid SS-DGM SAD Classifier

MNIST .00 96.0±2.9 96.3±2.5 85.4±8.7 90.5±5.3 95.0±3.3 87.8±5.6 92.9±5.7 92.8±4.9 96.0±2.9 96.3±2.5 92.8±4.9
.01 96.6±2.4 96.8±2.3 89.9±9.2 96.4±2.7 92.8±5.5
.05 93.3±3.6 97.4±2.0 92.2±5.6 96.7±2.4 94.5±4.6
.10 90.7±4.4 97.6±1.7 91.6±5.5 96.9±2.3 95.0±4.7
.20 87.2±5.6 97.8±1.5 91.2±5.6 96.9±2.4 95.6±4.4

F-MNIST .00 92.8±4.7 91.2±4.7 91.6±5.5 82.5±8.1 92.0±4.9 69.7±14.4 90.2±5.8 89.2±6.2 92.8±4.7 91.2±4.7 89.2±6.2
.01 92.1±5.0 89.4±6.0 65.1±16.3 90.0±6.4 74.4±13.6
.05 88.3±6.2 90.5±5.9 71.4±12.7 90.5±6.5 76.8±13.2
.10 85.5±7.1 91.0±5.6 72.9±12.2 91.3±6.0 79.0±12.3
.20 82.0±8.0 89.7±6.6 74.7±13.5 91.0±5.5 81.4±12.0

CIFAR-10 .00 62.0±10.6 63.8±9.0 60.0±10.0 59.9±6.7 59.9±11.7 56.1±10.2 56.2±13.2 60.9±9.4 62.0±10.6 63.8±9.0 60.9±9.4
.01 73.0±8.0 70.5±8.3 49.7±1.7 72.6±7.4 55.6±5.0
.05 71.5±8.1 73.3±8.4 50.8±4.7 77.9±7.2 63.5±8.0
.10 70.1±8.1 74.0±8.1 52.0±5.5 79.8±7.1 67.7±9.6
.20 67.4±8.8 74.5±8.0 53.2±6.7 81.9±7.0 80.5±5.9
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Table 4: Complete results of experimental scenario (ii), where we pollute the unlabeled part of the training set with (unknown) anomalies. We report the avg. AUC
with st. dev. computed over 90 experiments at various ratios γp.

OC-SVM OC-SVM IF IF KDE KDE Deep SSAD SSAD Deep Supervised
Data γp Raw Hybrid Raw Hybrid Raw Hybrid CAE SVDD Raw Hybrid SS-DGM SAD Classifier

MNIST .00 96.0±2.9 96.3±2.5 85.4±8.7 90.5±5.3 95.0±3.3 87.8±5.6 92.9±5.7 92.8±4.9 97.9±1.8 97.4±2.0 92.2±5.6 96.7±2.4 94.5±4.6
.01 94.3±3.9 95.6±2.5 85.2±8.8 90.6±5.0 91.2±4.9 87.9±5.3 91.3±6.1 92.1±5.1 96.6±2.4 95.2±2.3 92.0±6.0 95.5±3.3 91.5±5.9
.05 91.4±5.2 93.8±3.9 83.9±9.2 89.7±6.0 85.5±7.1 87.3±7.0 87.2±7.1 89.4±5.8 93.4±3.4 89.5±3.9 91.0±6.9 93.5±4.1 86.7±7.4
.10 88.8±6.0 91.4±5.1 82.3±9.5 88.2±6.5 82.1±8.5 85.9±6.6 83.7±8.4 86.5±6.8 90.7±4.4 86.0±4.6 89.7±7.5 91.2±4.9 83.6±8.2
.20 84.1±7.6 85.9±7.6 78.7±10.5 85.3±7.9 77.4±10.9 82.6±8.6 78.6±10.3 81.5±8.4 87.4±5.6 82.1±5.4 87.4±8.6 86.6±6.6 79.7±9.4

F-MNIST .00 92.8±4.7 91.2±4.7 91.6±5.5 82.5±8.1 92.0±4.9 69.7±14.4 90.2±5.8 89.2±6.2 94.0±4.4 90.5±5.9 71.4±12.7 90.5±6.5 76.8±13.2
.01 91.7±5.0 91.5±4.6 91.5±5.5 84.9±7.2 89.4±6.3 73.9±12.4 87.1±7.3 86.3±6.3 92.2±4.9 87.8±6.1 71.2±14.3 87.2±7.1 67.3±8.1
.05 90.7±5.5 90.7±4.9 90.9±5.9 85.5±7.2 85.2±9.1 75.4±12.9 81.6±9.6 80.6±7.1 88.3±6.2 82.7±7.8 71.9±14.3 81.5±8.5 59.8±4.6
.10 89.5±6.1 89.3±6.2 90.2±6.3 85.5±7.7 81.8±11.2 77.8±12.0 77.4±11.1 76.2±7.3 85.6±7.0 79.8±9.0 72.5±15.5 78.2±9.1 56.7±4.1
.20 86.3±7.7 88.1±6.9 88.4±7.6 86.3±7.4 77.4±13.6 82.1±9.8 72.5±12.6 69.3±6.3 81.9±8.1 74.3±10.6 70.8±16.0 74.8±9.4 53.9±2.9

CIFAR-10 .00 62.0±10.6 63.8±9.0 60.0±10.0 59.9±6.7 59.9±11.7 56.1±10.2 56.2±13.2 60.9±9.4 73.8±7.6 73.3±8.4 50.8±4.7 77.9±7.2 63.5±8.0
.01 61.9±10.6 63.8±9.3 59.9±10.1 59.9±6.7 59.2±12.3 56.3±10.4 56.2±13.1 60.5±9.4 73.0±8.0 72.8±8.1 51.1±4.7 76.5±7.2 62.9±7.3
.05 61.4±10.7 62.6±9.2 59.6±10.1 59.6±6.4 58.1±12.9 55.6±10.5 55.7±13.3 59.6±9.8 71.5±8.2 71.0±8.4 50.1±2.9 74.0±6.9 62.2±8.2
.10 60.8±10.7 62.9±8.2 58.8±10.1 59.1±6.6 57.3±13.5 54.9±11.1 55.4±13.3 58.6±10.0 69.8±8.4 69.3±8.5 50.5±3.6 71.8±7.0 60.6±8.3
.20 60.3±10.3 61.9±8.1 57.9±10.1 58.3±6.2 56.2±13.9 54.2±11.1 54.6±13.3 57.0±10.6 67.8±8.6 67.9±8.1 50.1±1.7 68.5±7.1 58.5±6.7
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Table 5: Complete results of experimental scenario (iii), where we increase the number of anomaly classes kl included in the labeled training data. We report the
avg. AUC with st. dev. computed over 100 experiments at various numbers kl.

OC-SVM OC-SVM IF IF KDE KDE Deep SSAD SSAD Deep Supervised
Data kl Raw Hybrid Raw Hybrid Raw Hybrid CAE SVDD Raw Hybrid SS-DGM SAD Classifier

MNIST 0 88.8±6.0 91.4±5.1 82.3±9.5 88.2±6.5 82.1±8.5 85.9±6.6 83.7±8.4 86.5±6.8 88.8±6.0 91.4±5.1 86.5±6.8
1 90.7±4.4 86.0±4.6 89.7±7.5 91.2±4.9 83.6±8.2
2 92.5±3.6 87.7±3.8 92.8±5.3 92.0±3.6 90.3±4.6
3 93.9±3.3 89.8±3.3 94.9±4.2 94.7±2.8 93.9±2.8
5 95.5±2.5 91.9±3.0 96.7±2.3 97.3±1.8 96.9±1.7

F-MNIST 0 89.5±6.1 89.3±6.2 90.2±6.3 85.5±7.7 81.8±11.2 77.8±12.0 77.4±11.1 76.2±7.3 89.5±6.1 89.3±6.2 76.2±7.3
1 85.6±7.0 79.8±9.0 72.5±15.5 78.2±9.1 56.7±4.1
2 87.8±6.1 80.1±10.5 74.3±15.4 80.5±8.2 62.3±2.9
3 89.4±5.5 83.8±9.4 77.5±14.7 83.9±7.4 67.3±3.0
5 91.2±4.8 86.8±7.7 79.9±13.8 87.3±6.4 75.3±2.7

CIFAR-10 0 60.8±10.7 62.9±8.2 58.8±10.1 59.1±6.6 57.3±13.5 54.9±11.1 55.4±13.3 58.6±10.0 60.8±10.7 62.9±8.2 58.6±10.0
1 69.8±8.4 69.3±8.5 50.5±3.6 71.8±7.0 60.6±8.3
2 73.0±7.1 72.3±7.5 50.3±2.4 75.2±6.4 61.0±6.6
3 73.8±6.6 73.3±7.0 50.0±0.7 77.5±5.9 62.7±6.8
5 75.1±5.5 74.2±6.5 50.0±1.0 80.4±4.6 60.9±4.6
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Table 6: Complete results on classic AD benchmark datasets in the setting with no pollution γp = 0 and a ratio of labeled anomalies of γl = 0.01 in the training
set. We report the avg. AUC with st. dev. computed over 10 seeds.

OC-SVM OC-SVM Deep SSAD SSAD Deep Supervised
Data Raw Hybrid CAE SVDD Raw Hybrid SS-DGM SAD Classifier

arrhythmia 84.5±3.9 76.7±6.2 74.0±7.5 74.6±9.0 86.7±4.0 78.3±5.1 50.3±9.8 75.9±8.7 39.2±9.5
cardio 98.5±0.3 82.8±9.3 94.3±2.0 84.8±3.6 98.8±0.3 86.3±5.8 66.2±14.3 95.0±1.6 83.2±9.6
satellite 95.1±0.2 68.6±4.8 80.0±1.7 79.8±4.1 96.2±0.3 86.9±2.8 57.4±6.4 91.5±1.1 87.2±2.1
satimage-2 99.4±0.8 96.7±2.1 99.9±0.0 98.3±1.4 99.9±0.1 96.8±2.1 99.2±0.6 99.9±0.1 99.9±0.1
shuttle 99.4±0.9 94.1±9.5 98.2±1.2 86.3±7.5 99.6±0.5 97.7±1.0 97.9±0.3 98.4±0.9 95.1±8.0
thyroid 98.3±0.9 91.2±4.0 75.2±10.2 72.0±9.7 97.9±1.9 95.3±3.1 72.7±12.0 98.6±0.9 97.8±2.6
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