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Abstract

Graph-based algorithms are among the most successful paradigms for solving semi-
supervised learning tasks. Recent work on graph convolutional networks and neural
graph learning methods has successfully combined the expressiveness of neural
networks with graph structures. We propose a technique that, when applied to these
methods, achieves state-of-the-art results on semi-supervised learning datasets.
Traditional graph-based algorithms, such as label propagation, were designed with
the underlying assumption that the label of a node can be imputed from that of
the neighboring nodes. However, real-world graphs are either noisy or have edges
that do not correspond to label agreement. To address this, we propose Graph
Agreement Models (GAM), which introduces an auxiliary model that predicts the
probability of two nodes sharing the same label as a learned function of their
features. The agreement model is used when training a node classification model
by encouraging agreement only for the pairs of nodes it deems likely to have the
same label, thus guiding its parameters to better local optima. The classification
and agreement models are trained jointly in a co-training fashion. Moreover, GAM
can also be applied to any semi-supervised classification problem, by inducing a
graph whenever one is not provided. We demonstrate that our method achieves
a relative improvement of up to 72% for various node classification models, and
obtains state-of-the-art results on multiple established datasets.

1 Introduction

In many practical settings, it is often expensive, if not impossible, to obtain large amounts of labeled
data. Unlabeled data, on the other hand, is often readily available. Semi-supervised learning (SSL)
algorithms leverage the information contained in both the labeled and unlabeled samples, thus
often achieving better generalization capabilities than supervised learning algorithms. Graph-based
semi-supervised learning [43| 41]] has been one of the most successful paradigms for solving SSL
problems when a graph connecting the samples is available. In this paradigm, both labeled and
unlabeled samples are represented as nodes in a graph. The edges of the graph can arise naturally
(e.g., links connecting Wikipedia pages, or citations between research papers), but oftentimes they
are constructed automatically using an appropriately chosen similarity metric. This similarity score
may also be used as a weight for each constructed edge (e.g., for a document classification problem,
Zhu et al. [43]] set the edge weights to the cosine similarity between the tf-idf vectors of documents).

There exist several lines of work that leverage graph structure in different ways, from label propagation
methods [43]41] to neural graph learning methods [[7,137] to graph convolution approaches [15} 35],
which we describe in more detail in Sections[2]and 5] Most of these methods rely on the assumption
that graph edges correspond in some way to label similarity (or agreement). For instance, label
propagation assumes that node labels are distributed according to a jointly Gaussian distribution
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whose precision matrix is defined by the edge weights. However, in practice, graph edges and
their weights come from noisy sources (especially when the graph is constructed from embeddings).
Therefore, the edges may not clearly correspond to label agreement uniformly across the graph. The
likelihood of two nodes sharing a label could perhaps be better modeled explicitly, as a learned
function of their features. To this end, we introduce graph agreement models (GAM), which learn
to predict the probability that pairs of nodes share the same label. In addition to the main node
classification model, we introduce an auxiliary agreement model that takes as input the feature
vectors of two graph nodes and predicts the probability that they have the same label. The output
of the agreement model can be used to regularize the classification model by encouraging the label
predictions for two nodes to be similar only when the agreement model says so. Intuitively, a perfect
agreement model will allow labels to propagate only across “correct” edges and will thus make it
possible to boost classification performance using noisy graphs.

Training either the classification or the agreement Classification Model

model in isolation may be hard, if not impossible, for E

many SSL settings. That is because we often start
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agreement model can be used to regularize the classi- Figure 1: Proposed learning paradigm.

fication model, the most confident predictions of the

latter can be used to augment the training data for the agreement model. Figure[I]illustrates the

interaction between the two models. This idea is inspired by the co-training algorithm proposed by

Blum and Mitchell [6]. We show in our experiments that the proposed approach achieves the best

known results on several established graph-based classification datasets. We also demonstrate that

our approach works well with graph convolutional networks [[15]], and the combination outperforms

graph attention networks [35]] which are expensive during inference.

Agreement Model

While our method was originally inspired by graph-based classification problems, we show that it
can also be applied to any semi-supervised classification problem, by inducing a graph whenever one
is not provided. We performed experiments on the popular datasets CIFAR-10 [16] and SVHN [26]]
and show that GAM outperforms state-of-the-art SSL approaches. Furthemore, the proposed method
has the following desirable properties:

1. General: Can be applied on top of any classification model to improve its performance.

2. State-of-the-Art: Outperforms previous methods on several established datasets.

3. Efficient: Does not incur any additional performance cost at inference.

4. Robust: Up to 18% accuracy improvement when 5% of the graph edges correspond to agreement.

2 Background

We introduce notation used in the paper, and describe related work most relevant to our proposed
method. Let G(V, E, W) be a graph with nodes V, edges F, and edge weights W = {w;; }ijcE.
Each node 7 € V is represented by a feature vector z; and label y;. Labels are observed for a small
subset of nodes, L C V, and the goal is to infer them for the remaining unlabeled nodes, U = V' \ L.

Graph-based algorithms, such as label propagation (LP), tackle this problem by assuming that two
nodes connected by an edge likely have the same label, and a higher edge weight indicates a higher
likelihood that this is true. In LP, this is done by encouraging a node’s predicted label probability
distribution to be equal to a weighted average of its neighbors’ distributions. While this method is
simple and scalable, it is limited as it does not take advantage of the node features. Weston et al. [37]
and Bui et al. [7] propose combining the LP approach with the power of neural networks by learning
expressive node representations. In particular, Bui et al. [[7] propose Neural Graph Machines (NGM),
a method for training a neural network that predicts node labels solely based on node features and the
LP assumption which takes the form of regularization. They minimize the following objective:

Lxam = Y _O(f(@:),yi) + ApL > _wijd(hi, hy) +Apo»_wijd(hi, hy)+Aow Y _wigd(hi, hy),
i€l i jELijEE i€L,jeU,ije i€U,jEVijEE
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where f(x;) is the predicted label distribution for node %, &, is the last hidden layer representation
of the network for input z;, £ is a cost function (e.g., cross-entropy), and d is a loss function that
measures dissimilarity between representations (e.g., L2). Arr, Apy, and Ayy are positive constants
representing regularization weights applied to distances between node representations for edges
connecting two labeled nodes, a labeled and an unlabeled node, and two unlabeled nodes, respectively.
Intuitively, this objective function aims to match predictions with labels, for nodes where labels are
available, while also making node representations similar for neighboring nodes in the graph.

NGMs are used to train neural networks and learn complex node representations, they are scalable,
and they incur no added cost at inference time as the classification model f is unchanged. However,
the quality of learned parameters relies on the quality of the underlying graph. Most real-world graphs
contain spurious edges that may not directly reflect label similarity. In practice, graphs are of one of
two types: (1) Provided: As an example, several benchmark datasets for graph-based SSL consider a
citation graph between research articles, and the goal is to classify the article topic. While articles
with similar topics often cite each other, there exist citations edges between articles of different topics.
Thus, this graph offers a good but non-deterministic prior for label agreement. (2) Constructed: In
many settings, graphs are not available, but can be generated. For example, one can generate graph
edges by calculating the pairwise distances between research articles, using any distance metric. The
quality of this graph then depends on how well the distance metric reflects label agreement.

In either case, edge weights may not correspond to likelihood of label agreement, and given a small
number of labeled nodes, it is hard to determine whether that correspondence exists in a given graph.
This drastically limits the regularization capacity of label propagation methods: a large regularization
weight risks disrupting the base model due to noisy edges, while a small regularization weight does
not prevent the base model from overfitting. In the next section, we propose a novel approach that
aims to address this problem, and can be thought of as a generalization of label propagation methods.

3 Proposed Method

We propose Graph Agreement Models (GAM), a novel approach that aims to resolve the main
limitation of label propagation methods while leveraging their strengths. Instead of using the edge
weights as a fixed measure of how much the labels of two nodes should agree, GAM learns the
probability of agreement. To achieve this, we introduce an agreement model, g, that takes as input
the features of two nodes and (optionally) the weight of the edge between them, and predicts the
probability that they have the same label. The predicted agreement probabilities are then used when
training the classification model, f, to prevent overfitting.

Classification Model. The only aspect of the classification model that we modify is the loss func-
tion. We propose a modified version of the NGM loss function, where the weight of each edge’s
contribution to the loss is decided by the agreement model. In other words, we replace all w;;s with
9ij = g(x,z;,w;;). The new loss function becomes:

Laam =Y U(Fiyi) + AL Y 9i5d(ir £5) + Aou Y giid(yi £5) + Avw Y giid(fir £3), (D)
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where we use the short notation f; = f(x;). Note that there are actually a few more differences
between Lngm and Lgan. Since the agreement model g is designed to estimate agreement between
labels, and not between the hidden representations h generated by f, we are in fact penalizing
disagreement between the predicted label distributions directly. This is also easier to implement for
arbitrary classification models, since it removes the need for a decision on what should be the hidden
representation of the graph nodes. Moreover, our regularization terms make use of the supervised
node labels, whenever available (i.e., in the LU term, or one of the two sides of the LL term). This is
because we aim to decrease the entropy of the predictions, which, as we have empirically observed,
improves the stability of the learning process.

Agreement Model. The agreement model, g, can be any neural network. The only constraint is that
it must receive the features of two nodes and predict a single value that represents the probability
that the two nodes have the same label. Note that using the edge weight could be helpful, but is not
necessary. Since modularity enables more flexibility, we decided to split the agreement model further
into the following components:

1. Encoder: Produces a vector representation for a node. The same encoder network is applied to
both inputs (each input is a node’s features) of the agreement model.

2. Aggregator: Combines the encoded representations of the two node arguments into a single
vector, and is invariant to the order of its two arguments (e.g., the “sum” operation). The last
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Figure 3: Overview of the three main steps in each iteration of the proposed co-training algorithm.

condition represents a meaningful and valid inductive bias for the agreement model; namely that
the order in which nodes are presented should not influence their probability of agreement.

3. Predictor: Given the aggregator output, this component predicts the probability that the initial
two nodes have the same label.

Figure 2 shows how these components are used together in the agreement Node 1 Node 2
model. This formulation is highly generic, as each module can be im-

plemented as an arbitrary neural network. The recent success of BERT ’ .
[LO]—a transfer learning architecture that recently achieved state-of-the-art

performance for several natural language processing tasks—seems to indi- Epcoder Encoder
cate that it is important to have a highly expressive encoder, even if the

predictor is only a linear function. Furthermore, it is clear that the choice CJ CJ
for an encoder network heavily depends on the nature of the data (e.g., Aggregator
convolutional neural networks perform well for images). However, through

our extensive experiments—which are further described in Section @}—we (ee9)

observed that simple multi-layer perceptrons consistently provide a good Predict
trade-off between performance and efficiency. Regarding the aggregator, - |cAor
“addition” and “subtraction” are both simple and valid options. However, the O p%cﬁrﬂm
functional form that seemed to work best in practice, and the one we use in .
our experiments is defined as aggregator(e;, e;) = (e; — €;)?, where ¢; Figure 2: Agreement
and e; are the output vector embeddings from the encoder for nodes j and model components.

7, respectively. This function is invariant to the order of the two nodes and it reflects our intuition that
agreement probability can be thought of as distance between two nodes in a latent space. For the
predictor, we use a linear layer, similar to BERT. Finally, we use the following loss function to

train the agreement model:
t
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where / is a binary classification loss function (e.g., sigmoid cross- -entropy), and 1, —,. is an indicator
function whose value is 1 when y; = y;, and 0 otherwise. It now remains to describe the overall
learning algorithm we propose for jointly training the classification and agreement models.

3.1 Learning Algorithm

The classification model, f, is trained by minimizing the loss function shown in Equation However,
this loss function uses the agreement model g, that also needs to be trained. We can think of g as
regularizing the training process of f. Perhaps most interestingly though, while the agreement model
can play a crucial role in training the classification model, the classification model can also help
train the agreement model. A key contribution of our work is exactly this interaction in the training
processes of f and g. More specifically, we propose the following learning algorithm:

1. Train the agreement model g to convergence, usmg the limited amount of labeled data that is
provided. We refer to the initial trained model as ¢°.

2. Train f using ¢° in its loss function. We refer to the trained model as f°.

3. Let fY produce predictions over all of the unlabeled nodes. Although this model was trained using
a limited amount of data, we expect its most confident predictions (i.e., the labels with the highest
probability) to most likely be correct. Thus, we take the top M most confident predictions and
add them to the set of labeled nodes. We refer to this step as the self-labeling phase.

The newly added labeled examples can provide new information to the agreement and classification
models. We thus start again from step 1, and obtain new trained models g* and f!, and a new set of



most confident M predictions for the remaining unlabeled nodes. We repeat this process for & steps
(or until all nodes have been labeled), using g*~! to help train f* and f* to help train g*+!.

This training algorithm resembles the co-training algorithm, originally proposed by Blum and Mitchell
[6]]. The core idea behind it is that, if f and g are good at exploiting different kinds of information,
then we can leverage that by having them help train each other. Similar algorithms have been
successfully used in practice [e.g., 22], and, for some settings there even exist theoretical guarantees
that such algorithms will converge to a better classifier than the one that would have been obtained
without co-training [3l]. For these reasons, we expect this interaction to boost the performance of both
f and g. An illustration of the algorithm is shown in Figure 3]

Note that g only participates in training. At inference time predictions are made by applying the
trained f to the input. Thus GAM does not incur extra computation cost at inference.

3.2 Inducing Graphs

Methods that rely on the provided graph have two main limitations. First, they cannot be applied to
datasets that do not include a graph. In addition, by inspecting Equation |1|it is easy to notice that
even with g providing perfect predictions, it will only allow labels to propagate along the graph edges
connecting nodes with matching labels. However, if the graph is sparse or the number of labeled
nodes is small, there may be unlabeled nodes for which there is no “agreement” path connecting
it to a labeled node from its class. In fact, in the benchmark datasets, Cora [19], Citeseer [5] and
Pubmed [25], propagating labels through “agreement” edges, while starting at the provided labeled
nodes, only covers 84%, 49%, and 85% of the nodes respectively. The remaining nodes do not appear
in any of the regularization terms of the classification model loss function, thus making it prone to
overfitting. Our approach alleviates this issue by self-labeling unlabeled nodes. These nodes can then
propagate their labels during the next co-training iteration.

In fact, we propose to go a step further and address both limitations. Notice that g can be trained and
applied on any pair of labeled nodes—not necessarily connected by an edge—and can thus regularize
predictions made by f for any pair of nodes. This can be achieved by removing all constraints
ij € E from Equations|I]and 2] In this formulation the provided graph becomes unnecessary. This is
equivalent to having a fully-connected graph, and using the agreement model to denoise it. We refer
to this GAM variant that does not use a graph as GAM*.

Our experimental results, presented in the next section, indicate that this new formulation not only
boosts the performance of GAM on some graph-based datasets, but it also opens up a wide range
of new applications. That is because GAM* can now be applied to any SSL dataset, whether or
not a graph is provided. In Section[4.2] we evaluate GAM* on two datasets with no inherent graph
structure, and show that it is able to improve upon state-of-the-art methods for SSL.

4 Experiments

We performed a set of experiments to test different properties of GAM. First, we tested the generality
of GAM by applying our approach to Multilayer Perceptrons (MLP), Convolutional Neural Networks
(CNN), Graph Convolution Networks (GCN) [[L5]], and Graph Attention Networks (GAT) [35ﬂ Next,
we tested the robustness of GAM when faced with noisy graphs, and evaluated it with and without
a provided graph, comparing with the state-of-the-art methods.

4.1 Graph-based Classification

Datasets. We obtained three public datasets from Yang et al. [38]]: Cora [19]], Citeseer [5]], and
Pubmed [25]], which have become the de facto standard for evaluating graph node classification
algorithms. We used the same train/validation/test splits as Yang et al. [39]], which have been used by
the methods we compare to. In these datasets, graph nodes represent research publications and edges
represent citations. Each node is represented as a vector, whose components correspond to words.
For Cora and Citeseer the vector elements are binary indicating whether the corresponding term is
present in the publication, while for Pubmed they are real-valued tf-idf scores. The goal is to classify
research publications according to their main topic which belongs to a provided set of topics. In each
case we are given true labels for a small subset of nodes. Dataset statistics are shown in Table d]in

Appendix

2MLPs and CNNs are common in many SSL problems and GCN and GAT achieve state-of-the-art perfor-
mance on three datasets commonly used in recent graph-based SSL work.




Setup. We implemented our models in Ten-
sorFlow [1]]. Parameter updates are using the
Adam optimizer [14] with default TensorFlow
parameters, and initial learning rate of 0.001 for
MLPs and GCN, and 0.005 for GAT (based on
the original publication [35]). When training
the classification model, we used a batch size
of 128 for both the supervised term and for
the edges in each of the LL, LU, and UU
terms. We stopped training when validation
accuracy did not increase in the last 2000
iterations, and reported the test accuracy at the
iteration with the best validation performance.
For the agreement model, we sampled random
batches containing pairs of nodes from the
pool of all edges with both nodes labeled for
GAM, or of all pairs of nodes for GAM¥*.
In both cases, we ensured a ratio of 50%
positives (labels agree) and 50% negatives
(labels disagree). In the case of GAM, since
graphs typically contain more positive edges
than negative, extra negative samples were
selected at random from the pairs of nodes with
no edge connecting them. Our experiments
were performed using a single Nvidia Titan X
GPU, and our implementation can be found
at https://github.com/tensorflow/
neural-structured-learning.

Models. For both  GAM and NGM, we
used Euclidean distance for d, and we
selected Ar;, Ary, and Ayy based on
validation set accuracy, where we varied
Arv € {0.1,1,10, 100, 1000, 10000}, and set
Avu = %)\LU and Ap;, = 0 (we found through
experimentation that the LL component does
not have a significant contribution, probably be-
cause the predictions for labeled nodes are al-
ready accounted for in the supervised loss term).
For the agreement model, we used an MLP with
the same number of hidden units as the classifi-
cation model. We started with 20 labeled exam-
ples per class and, when extending the labeled
node set, we added the M most confident pre-
dictions of the classifier over unlabeled nodes.
In our experiments, we set M = 200, but doing
parameter selection for M as well could poten-
tially lead to even better results. To avoid adding
incorrectly-labeled nodes we filtered out predic-
tions where the classification confidence (i.e.,
the maximum probability assigned to one of the

Table 1: Test classification accuracies (%) on
graph-based datasets. The first section contains
results reported in related work. The next seg-
ments show results for different classifiers and their
extensions using NGM, VAT, GAM, and GAM*.
Subscripts refer to the number of hidden units.

Shaded methods do not use the graph.

Model Datasets
Cora Citeseer Pubmed

ManiReg [4] 59.5 60.1 70.7
SemiEmb [37]] 59.0 59.6 71.7
LP [43] 68.0 45.3 63.0
DeepWalk [28] 67.2 432 65.3
ICA [19] 75.1 69.1 73.9
Planetoid [39] 75.7 64.7 77.2
Chebyshev [8] 81.2 69.8 74.4
MLP[250, |001+NGM [7] - - 759
MoNet [24] 81.7 - 78.8
GCNi [15]] 81.5 70.3 79.0
GATs [135] 83.0 72.5 79.0
GCNj6 + O-BVAT [9] 83.6 74.0 79.9
MLP)2s 51.7 52.2 69.4
MLP;23 + NGM 71.7 67.8 73.6
MLP;55 + VAT 56.5 56.1 73.1
MLP23 + VATENT 24.1 46.7 70.1
MLP,2 + GAM 80.7 73.0 82.8
MLPy4y 32 46.6 49.0 68.7
MLP4x32 + NGM 77.6 63.1 70.2
MLPy4y3, + VAT 55.3 46.5 74.2
MLP4y3, + VATENT 33.0 20.1 62.5
MLP4x3 + GAM 80.1 70.4 79.3
MLP4y3 + GAM* 64.0 66.9 76.9
GCNi28 80.9 68.1 76.9
GCNj25 + NGM 81.4 68.9 76.2
GCNj2s + VAT 79.0 69.5 76.8
GCNj2s + VATENT 83.4 69.8 75.0
GCNj25 + GAM 86.2 73.5 86.0
GCNi5 + GAM* 84.2 71.3 77.0
GCNio4 81.3 70.5 78.5
GCNjp4 + NGM 82.0 70.5 68.9
GCNj24 + VAT 81.8 69.3 76.3
GCN1024 + VATENT 64.0 50.5 72.1
GCNip4 + GAM 86.0 73.6 81.6
GCN1024 + GAM* 82.4 71.9 81.2
GAT 23 81.6 69.0 -
GAT]zg + NGM 80.3 70.8 -
GAT 25 + GAM 84.3 70.3 -
GAT]zs + GAM* 85.0 73.6 =

labels) was lower than 0.4 (since the smallest number of classes considered is 3 for Pubmed, making

chance classification probability 0.33).

Results. Our results are reported in Table|l] Results obtained with GAM are denoted in the form
“{base model} + GAM”. The subscript following the base model represents the number of hidden
units of the classification model (e.g., MLP; g is a multilayer perceptron with a single layer of 128
hidden units, and MLP, 3, is a multilayer peceptron with 4 layers of 32 hidden units each). We
also report the best known results for these datasets from other publications, as reported in [35]].
Furthermore, in order to allow for a more complete comparison with other general-purpose SSL
methods, we also compared with VAT [23]]—the current state-of-the-art SSL. method, as reported in
[27] and [23]—and its entropy minimization variant, VATENT. We set the VAT regularization weight
to 1, as in [23,[27]. The results can be summarized as follows:


https://github.com/tensorflow/neural-structured-learning
https://github.com/tensorflow/neural-structured-learning

o GAM always improves the classification model accuracy of the base model, for all base models,
often by a significant margin (e.g., +33.5% for MLPy 4 32 on Cora, which is a relative increase of

baeli
72%). Note that we measure relative performance as “¥=2C"20— skeline_accuracy |
baseline_accuracy

e GAM also consistently achieves important gains compared to NGM (e.g., +4.8% for GCN 5 on
Cora, and +9.8% on Pubmed), supporting the intuition behind our edge denoising approach.

e VAT also consistently improves upon the baseline classifier (although not as much as GAM or
GAM¥), even though it does not use the graph and it treats the unlabeled nodes as independent
samples. Interestingly, VATENT fails on these datasets in many cases, although the same method
performs very well on other SSL datasets (Section 4.2).

e It is interesting to note that although GCN and GAT already use the graph as part of their architec-
ture, their performance can be further improved by using GAM.

o To the best of our knowledge, the GAM variants obtain the best results reported on these datasets.

o Further, note that GCN with GAM outperforms GAT (which is GCN with attention), suggesting
that GAM regularization is a better alternative to attention for handling noisy graphs. Note that
the GAT results for Pubmed are missing because we use the implementation of GAT provided by
Velickovié et al. [35], and it runs out of GPU memory for 128 hidden units on Pubmed.

Robustness. We developed GAM with the
goal of being able to handle graphs with “in-
correct” edges (i.e. those that connect nodes
with differing labels). We consider such edges
“incorrect" under the label propagation assump-
tion, despite the fact that they may refer to real-
world connections between these nodes (e.g.,
citations between research articles on different MLP

topics). In Cora, Citeseer, and Pubmed, 19%, 1 — MLPoa + NGM
26%, and 20% of the edges, respectively, are in- MLP12g + GAM
correct. To demonstrate the ability of GAM to O 2 30 40 s 60 o
handle these incorrect edges and perhaps even Percent correct edges

higher levels of noise, we performed a robust- Figure 4: Robustness to noisy graphs. The x axis
ness analysis by introducing spurious edges to represents the percentage of correct edges remain-

the graph, and testing whether our agreement  jng after adding wrong edges to the Citeseer dataset.
model learns to ignore them. We added spuri-

ous edges by randomly sampling pairs of nodes with different true labels until the percentage of
incorrect edges met a desired target. We tested the performance of GAM on a set of graphs created in
this manner. MLPs are good base model candidates for testing this because they can only be affected
by the graph quality through the GAM regularization terms (unlike GCN or GAT, where the graph is
implicitly used in the model). The results are shown in Figure 4|on the Citeseer dataset (the hardest of
the three datasets), for graphs containing between 5% and 74% correct edges. A plain MLP with 128
hidden units obtains 52.2% accuracy independent of the level of noise in the graph. Adding GAM to
this MLP increases its accuracy by about 19%. This improvement persists even as the fraction of
correct edges decreases. For example, the accuracy remains 70% even in the case where only 5% of
the graph edges are correct. In contrast, the performance of NGM steadily decreases as the fraction
of incorrect edges increases, to the point where it starts performing worse than the plain MLP (when
the percent of correct edges < 60%), and it is thus preferable not to use it.
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Ablation Study. We performed experiments to show how much each component of GAM contributes
to its success, as follows:

(1) Perfect agreement: We evaluated how well Table 2: Accuracy (%) of an MLP with 128 hidden
GAM would perform if the agreement model units using GAM with a perfect agreement model.
produced perfect predictions. This is done by Datasets

letting the agreement model see the true labels, ~ Model
and always return 1 when nodes agree, and 0 oth-
erwise. We ran this experiment for all 3 datasets MLPi2s + GAM, 90.5 76.5 91.6
with an MLP base classifier. The results in Ta-
ble 2] show that a perfect agreement model produces a huge boost, up to 38.8% over the baseline. For
Citeseer, the smaller improvement is not surprising, given that only 49% nodes are connected by
agreement (see Section [3.2).

Cora Citeseer Pubmed

(2) Sensitivity to agreement model: We evaluated how sensitive GAM is to the choice of agreement
model architecture. To assess this, we ran GAM multiple times, with a fixed classification model
architecture and we various agreement model sizes. Figure[6]in Appendix [C]shows the test accuracy




per co-train iteration for each of these models. The results indicate that the behaviour of GAM is
stable with respect to the agreement model size, which suggests that the agreement model size is a
parameter that does not require much tuning effort.

(3) Self-labeling: We evaluated the usefulness of the self-labeling component by showing how the
test accuracy evolves after each co-training iteration. Figure [5|shows that the accuracy generally has
an increasing trend with more co-training iterations. In some cases, the final iterations may have a
decreasing trend, because in the last few iterations the model self-labels the samples that it is most
uncertain about, and thus is more likely to get wrong. For this reason, we kept track of the validation
accuracy, and at the end we restored the model from the co-train iteration with the best validation
accuracy. Self-labeling is also a critical component for datasets such as Pubmed, where in the first
co-train iteration there are no edges with both nodes labeled, so g cannot be trained until we self-label
more nodes. In such cases, g returns 1 by default until it can be trained, defaulting to NGM and
relying on the graph (although for noisy graphs, one could return 0 by default).

4.2 Semi-Supervised Learning Without a Graph

Our robustness experiments show that GAM is effective even when the majority of edges in the graph
connect nodes with mismatched labels. Therefore, we tested its power further by considering a more
extreme scenario: no graph is provided, and the agreement model is tasked with learning whether
an arbitrary pair of nodes shares a label. Note that having no graph, and picking random pairs of
samples to use in the regularization terms in Equation [I] is equivalent to having a fully-connected
graph from which we sample edges. We tested this scenario on Cora, Citeseer, and Pubmed and the
results are marked as GAM* in Table|l} For completeness, we also show results for GCN+GAM*
and GAT+GAM*, where even though the GAM* regularization term does not use the graph, the
classification models use it by design. Our results show that GAM* also boosts the performance of
all tested baseline models, with a gain of up to 19% accuracy for MLPs, 3.3% for GCNs, and 4.6%
for GATs. It is worth noting that, even though GAM outperforms GAM* due to the extra information
provided by the graph, GAM* generally outperforms the competing methods that also do not use a
graph, and often even NGM which does.

Non-graph Datasets. Since our approach no longer requires a graph to be provided, we tested
GAM on the popular CIFAR-10 [16] and SVHN [26] datasets. For evaluation, we use the setup and
train/validation/test splits provided by [27], which aims to provide a realistic framework for evaluating
SSL methods. Thus, we start with 4000 and 1000 labeled samples for CIFAR-10 and SVHN,
respectively, while the remaining training samples are considered unlabeled. More information about
these datasets can be found in Appendix |B} It is important to note that while Cora, Citeseer and
Pubmed were evaluated under a transductive setting (where the input features and the graph structure
of the test nodes are seen during training, but not their labels) as is typical in graph-based SSL, in the
following experiments we evaluate GAM* under an inductive setting (the features of the test nodes
are completely held out, and there is no graph to provide other information about them).

Models. As the.datasets consist of images, we Table 3: Classification accuracies (%) on CIFAR-
use a Convolutional Neural Network (CNN) 10 with 4000 labels, and SVHN with 1000 labels.
with 2 convolution layers followed by max-

pooling, then 2 fully-connected layers (archi-  ppodel Datasets
tecture details in Appendix [D)). The agreement CIFAR-10 SVHN
model is a 3 layer MLP with 128, 64, and 32

hidden units, respectively, and Leaky ReLU ac- ggg + VAT gig; ;3;2
tivations. After each co-training iteration, we CNN + VATENT 6673 8186
self-label 1000 unlabeled samples, subjecttoa NN + GAM* 6027  83.43
confidence > 0.4 (same as in Section d.I but NN + VAT + GAM* 69.64  85.47
tuning may improve results further). VAT and CNN + VATENT + GAM:* 67.29  84.63

VATENT settings are the same as in Section[4.1]

Results. Table [3|shows that GAM* significantly improves performance over the baseline classifier,
even when no graph is given (up to 13% on SVHN). Moreover, it can improve performance over one
of the best current SSL methods, VAT, when applied in conjunction with it (e.g., +5.27% when GAM*
is applied on top of VAT on CIFAR-10, which yields a 7% improvement from a plain CNN). We show
the progression of the test accuracy per co-train iteration on CIFAR-10 in Figure 5| (b). Moreover, we
did not tune the parameters of the CNN or the learning rate to be favorable to our method. However,
the results indicate that GAM™ offers a promising direction for general-purpose SSL.
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Figure 5: Test accuracy per co-train iteration for a (a) MLP,3 + GAM on the Citeseer dataset starting
with 120 labeled samples, and self-labeling 200 samples per co-train iteration, and (b) CNN + GAM*
on the CIFAR-10 dataset starting with 4000 labeled samples, and self-labeling 1000 samples per
co-train iteration. Iteration 0 shows the baseline model accuracy, without GAM.

5 Related Work

There has been substantial work on graph-based semi-supervised learning [e.g.,34]. A first class of
methods regularize the predicted labels using the Laplacian of the graph without taking advantage
of the node features. These include label propagation [43| 41]], manifold regularization [4]], and
ICA [19]. Another line of work [[18} 20] focuses on refining the SSL graphs obtained from similarity
matrices using only the similarity scores, but ignoring the node features. Recent approaches have
attempted to marry the core idea behind these methods with the expressive power afforded by neural
networks. Among these, the regularization based approaches of Weston et al. [36], Weston et al. [37],
as well as Neural Graph Machines by [7] (described in Section [2)) are closest to ours. Moreover,
Planetoid [39] applies regularization using a term that depends on the skip-gram representation of
the graph. Note that the notion of using agreement in predictions made by classifiers is a concept
that has also been used more broadly in the context of SSL [e.g.,[29]], and not just for graph-based
SSL. Another class of techniques learns node embeddings that take into account both the features
and the graph, which are then consumed by standard supervised learning methods [28, [13} 31} [11].
More recently, there has been a large amount of work on Graph Neural Networks that extend neural
networks to graph-structured inputs. See for example [42]] for a survey of methods in this category.
Among these, the most relevant to our work are graph convolutional networks (GCN) proposed
by Kipf and Welling [15]] and a scalable extension [40]. These approaches define a notion of graph
convolution and uses an approximation of the convolution to provide a scalable method that produced
state-of-the-art results. Moreover, [35]] and [33] applied attention on the edges of the graph to further
improve the performance of GCN.

Aside from graph-based approaches, there has also been a great deal of work on SSL methods without
a graph. Most relevant to our work are methods that use regularization to discourage the model
from making vastly dissimilar predictions for similar inputs. These include II-Model [[17,|30]], Mean
Teacher [32] and Virtual Adversarial Training (VAT) [23]], SNTG [21]] and fast-SWA [2]]. Some of
the best results are obtained by combining VAT with entropy minimization [12]], which adds a loss
term that encourages more confident predictions. SNTG infers a similarity graph between samples,
but it does so in a significantly different way than GAM*. Also, in contrast to SNTG, we propose an
additional self-training component, and our method is applicable when a graph is provided, whereas
SNTG, as published, is not designed to use information from a provided graph.

Our proposed method, GAM, can be applied as an extension to all of the above methods, as it only
requires the addition of a regularization term to their loss function.

6 Conclusions

We introduced Graph Agreement Models (GAM), a novel regularization method for graph-based and
general purpose semi-supervised learning (SSL), that can be applied on top of any classification model.
The key idea behind our approach is the interaction between a node classification model and a node
agreement model, which are trained in tandem in a co-training fashion. Our experiments show that
GAM can improve the accuracy of several types of classifiers, including two of the most successful
graph-based SSL methods, thus establishing a new state-of-the-art for graph-based classification.
Moreover, we demonstrated that GAM can be extended to settings where a graph is not provided, and
it is able to improve upon the performances of some of the best SSL classification models.



References

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: a system for
large-scale machine learning. Arxiv e-prints, March 2016.

[2] Ben Athiwaratkun, Marc Finzi, Pavel Izmailov, and Andrew Gordon Wilson. There are many
consistent explanations of unlabeled data: Why you should average. In ICLR, 2019.

[3] Maria-Florina Balcan, Avrim Blum, and Ke Yang. Co-training and expansion: Towards bridging
theory and practice. In Advances in neural information processing systems, pages 89-96, 2005.

[4] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric
framework for learning from labeled and unlabeled examples. Journal of machine learning
research, 7(Nov):2399-2434, 2006.

[5] Indrajit Bhattacharya and Lise Getoor. Collective entity resolution in relational data. ACM
Transactions on Knowledge Discovery from Data (TKDD), 1(1):5, 2007.

[6] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. In
Proceedings of the eleventh annual conference on Computational learning theory, pages 92—100.
ACM, 1998.

[7] Thang D Bui, Sujith Ravi, and Vivek Ramavajjala. Neural graph learning: Training neural
networks using graphs. In Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining, pages 64-71. ACM, 2018.

[8] Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in Neural Information Processing
Systems, pages 3844-3852, 2016.

[9] Zhijie Deng, Yinpeng Dong, and Jun Zhu. Batch virtual adversarial training for graph convolu-
tional networks. CoRR, abs/1902.09192, 2019. URL http://arxiv.org/abs/1902.09192!

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. In NAACL-HLT, 2019.

[11] E. Faerman, F. Borutta, K. Fountoulakis, and M.W. Mahoney. Lasagne: Locality and structure
aware graph node embedding. Arxiv e-prints, October 2017.

[12] Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. In
NIPS, 2004.

[13] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ACM, pages 855-864,
2016.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[15] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[16] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

[17] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. CoRR,
abs/1610.02242, 2017.

[18] Wei Liu and Shih-Fu Chang. Robust multi-class transductive learning with graphs. 2009
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 381-388, 2009.

[19] Qing Lu and Lisa Getoor. Link-based classification. In Proceedings of the 20th International
Conference on Machine Learning, ICML-03, pages 496-503, 2003.

[20] Dijun Luo, Heng Huang, Feiping Nie, and Chris H Ding. Forging the graphs: A low rank and
positive semidefinite graph learning approach. In Advances in neural information processing
systems, pages 2960-2968, 2012.

[21] Yucen Luo, Jun Zhu, Mengxi Li, Yong Ren, and Bo Zhang. Smooth neighbors on teacher
graphs for semi-supervised learning. 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8896-8905, 2017.

[22] Tom Mitchell, William Cohen, Estevam Hruschka, Partha Talukdar, Bo Yang, Justin Bet-
teridge, Andrew Carlson, B Dalvi, Matt Gardner, Bryan Kisiel, et al. Never-ending learning.
Communications of the ACM, 61(5):103-115, 2018.

10


http://arxiv.org/abs/1902.09192

[23] Takeru Miyato, Shin ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training:
a regularization method for supervised and semi-supervised learning. IEEE transactions on
pattern analysis and machine intelligence, 2018.

[24] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and
Michael M. Bronstein. Geometric deep learning on graphs and manifolds using mixture
model cnns. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 5425-5434, 2017.

[25] Galileo Namata, Ben London, Lise Getoor, Bert Huang, and UMD EDU. Query-driven active
surveying for collective classification. In /0th International Workshop on Mining and Learning
with Graphs, 2012.

[26] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. In NIPS Workshop on
Deep Learning and Unsupervised Feature Learning, 2011.

[27] Avital Oliver, Augustus Odena, Colin A. Raffel, Ekin Dogus Cubuk, and Ian J. Goodfellow.
Realistic evaluation of deep semi-supervised learning algorithms. In NeurIPS, 2018.

[28] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 701-710. ACM, 2014.

[29] Emmanouil Antonios Platanios. Agreement-based learning. arXiv preprint arXiv:1806.01258,
2018.

[30] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen. Regularization with stochastic trans-
formations and perturbations for deep semi-supervised learning. In NIPS, 2016.

[31] J. Tang, M. Qu, M. Wang, J. Yan, and Q. Mei. Line: Large-scale information network
embedding. In Proceedings of the 24th International Conference on World Wide Web, ACM,
pages 1067-1077, 2015.

[32] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results. In ICLR, 2017.

[33] K. K. Thekumparampil, C. Wang, S. Oh, and L.-J. Li. Attention-based Graph Neural Network
for Semi-supervised Learning. ArXiv e-prints, March 2018.

[34] Philippe Thomas. Semi-supervised learning by olivier chapelle, bernhard scholkopf, and
alexander zien (review). IEEE Trans. Neural Networks, 20:542, 2009.

[35] Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ!

[36] J. Weston, F. Ratle, and R. Collobert. Deep learning via semi-supervised embedding. In
Proceedings of the 25th international conference on Machine learning, pages 1168—1175, 2008.

[37] Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert. Deep learning via semi-
supervised embedding. In Neural Networks: Tricks of the Trade, pages 639-655. Springer,
2012.

[38] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Planetoid github repository.
https://github.com/kimiyoung/planetoid, 2016. Accessed: 2018-02-08.

[39] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In ICML, 2016.

[40] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. Graph convolu-
tional neural networks for web-scale recommender systems. In KDD, 2018.

[41] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and Bernhard Scholkopf.
Learning with local and global consistency. In Proceedings of the 16th International Conference
on Neural Information Processing Systems, NIPS’03, pages 321-328, Cambridge, MA, USA,
2003. MIT Press. URL http://dl.acm.org/citation.cfm?i1d=2981345.2981386,

[42] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph
neural networks: A review of methods and applications. CoRR, abs/1812.08434, 2018. URL
http://arxiv.org/abs/1812.08434,

[43] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian
fields and harmonic functions. In Proceedings of the 20th International conference on Machine
learning (ICML-03), pages 912-919, 2003.

11


https://openreview.net/forum?id=rJXMpikCZ
https://github.com/kimiyoung/planetoid
http://dl.acm.org/citation.cfm?id=2981345.2981386
http://arxiv.org/abs/1812.08434

Appendix

A Citation Networks Dataset Statistics

Table 4: Statistics for the commonly used citation networks datasets.

DATASET # NODES # EDGES  # CLASSES

CORA 2,708 5,429 7
CITESEER 3,327 4,732 6
PUBMED 19,717 44,338 3

B Semi-Supervised Learning Datasets with No Graph

CIFAR-10 consists of 32 x 32 color images belonging to 10 classes. The preprocessed dataset
obtained from Oliver et al. [27] contains 45,000 training samples, 5000 validation samples, and
10, 000 test samples. To convert this to a SSL setting, we only allow our model to see 4000 labeled
samples (as selected by Oliver et al. [27]), while for the rest of the training samples our model only
has access to their features, but not their true labels.

Similarly, the SVHN (Street View House Numbers) dataset consists of 32 x 32 color images from 10
classes, coming from real world images depicting house numbers from Google Street View imagesﬂ
Using the splits from Oliver et al. [27]], the dataset contains 65, 931 training samples, 7, 326 validation
samples, and 26, 032 test samples. We only allow our model to see the labels for 1,000 training
samples.

For CIFAR-10, we perform global contrast normalization and ZCA whitening, and for SVHN we
simply convert the pixels to [-1, 1] range, as done by Oliver et al. [27]].

C Sensitivity to Agreement Model Architecture
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Figure 6: Test accuracy per co-train iteration with GAM for various agreement model sizes, on the
Citeseer dataset. The classification model size for all plots is a multilayer perceptron with 128 hidden
units. We vary the number of agreement model hidden units between 8 to 2048. Iteration O shows the
baseline model accuracy, without GAM.

D Convolutional Neural Network Architecture

The architecture we chose was inspired by the TensorFlow CIFAR tutorial found at https://
github.com/tensorflow/models/blob/adc271722e512c8abbef 18b46c666a031de7 7774/
tutorials/image/cifar10/cifar10.py, including numbers of hidden units and weight decay
values.

*http://ufldl.stanford.edu/housenumbers/
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In summary, the CNN contains the following layers:
1. Convolution: 2D convolution using a 5 x 5 filter with 64 channels, followed by ReLU
activation.
2. Max pooling using a 3 x 3 window.
3. Local Response Normalization.

4. Convolution: 2D convolution using a 5 x 5 filter with 64 channels, followed by ReLU
activation.

Local Response Normalization.

Max pooling using a 3 x 3 window.

Fully connected layer with 384 hidden units, and rectified linear activation.
Fully connected layer with 192, and rectified linear activation.

e

Output layer performing a linear projection to the output dimension (i.e. number of classes),
returning logits.

The implementation can be found at our GitHub repository, referenced in the main paper.

An important detail in the GAM* experiments is the use of the agreement model predictions in
the loss function of the classification model (g;; in Equationg[). In the graph experiments we used
the agreement model predictions directly, with g;; € [0, 1]. However, if g is trained to predict the
probability of agreement, and the model is presented with roughly 50% positive examples and 50%
negative examples, then whenever g predicts values < 0.5, it believes that the two nodes should
have different labels. Therefore, including such edges in the GAM regularization loss, albeit with
a small contribution as predicted by g, still encourages agreement between nodes that g believes
should not agree. This does not pose a problem for the graph experiments, where the assumption
is that the majority of the edges correspond to agreement (and g reduces the contribution of those
that do not). However, in the case of GAM*, we consider a fully-connected graph that contains all
pairs of nodes. In most practical applications, this means that there are more edges between nodes
that disagree than edges corresponding to agreement. Thus, a random batch of edges sampled for
each of the regularization terms in Equation [T| will likely contain more disagreement edges, which all
contribute a small loss that pulls the model parameters in the wrong direction. For this reason, in the
GAM* experiments, we threshold the agreement model predictions at 0.5. That is, we replace g;;
in Equation [I| with ReLU(g;; — 0.5). In this manner, the only pairs of nodes that contribute to the
GAM* regularization loss are those that the agreement model believes should have the same label.
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