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ABSTRACT 
In real-world underwater environment, exploration of seabed resources, underwater 
archaeology, and underwater fishing rely on a variety of sensors, vision sensor is the most 
important one due to its high information content, non-intrusive, and passive nature. 
However, wavelength-dependent light attenuation and back-scattering result in color 
distortion and haze effect, which degrade the visibility of images. To address this problem, 
firstly, we proposed an unsupervised generative adversarial network (GAN) for generating 
realistic underwater images (color distortion and haze effect) from in-air image and depth 
map pairs based on improved underwater imaging model. Secondly, U-Net, which is 
trained efficiently using synthetic underwater dataset, is adopted for color restoration and 
dehazing. Our model directly reconstructs underwater clear images using end-to-end 
autoencoder networks, while maintaining scene content structural similarity. The results 
obtained by our method were compared with existing methods qualitatively and 
quantitatively. Experimental results obtained by the proposed model demonstrate well 
performance on open real-world underwater datasets, and the processing speed can reach 
up to 125FPS running on one NVIDIA 1060 GPU. 

1 INTRODUCTION 
In recent years, underwater vision plays an important role in a lot of different applications. Therefore, 
underwater image processing has received extensive attention and research due to the poor underwater 
imaging environment and image quality. The main reason is the scattering and attenuation of light, the 
scattering results in haze effect, and the attenuation of light leads to color cast. 

So far many image enhancement algorithms have been proposed, such as white balance algorithm (Liu Y C, 
1995), gray world algorithm (Rizzi A, 2002), histogram equalization (Pizer S M, 1987) and fusion 
algorithm (Ancuti C, 2012), however, these methods are not based on the underwater physical imaging 
model, so it is challenging and ineffective to apply these algorithms to different underwater scenes directly. 

Many underwater image enhancement algorithms based on imaging models have been proposed. For instance, 
He et al (He K, 2010) proposed a dark channel prior (Dark channel prior, DCP) dehazing algorithm based 
on many experiments. Chiang et al (Chiang J Y, 2011) apply DCP model on underwater image dehazing 
problem. These traditional methods are not intelligent, it is very time-consuming to calculate the 
characteristics of the image. 

In these years, the deep learning network developed rapidly, especially the convolutional neural network 
(CNN), which is used in image classification (Krizhevsky A, 2012), object detection (Redmon J, 2016), 
and motion recognition (Kuehne H, 2011), the performance is much better than traditional methods. 
However, the current research on underwater image enhancement using CNN is limited due to lack of 
underwater datasets. It is difficult to obtain images without water in real-world underwater scenes. Therefore, 
using synthetic underwater datasets is an important approach (Anwar S, 2018; Ancuti C, 2016; Uplavikar  
P, 2019). Some model based on generative adversarial network (GAN (Goodfellow I , 2014)) are used to 
generating realistic underwater images. For instance, CycleGAN (Zhu J Y, 2017) generates images through 
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style transfer. WaterGAN (Li J , 2017) takes in-air images, depth maps and noise vectors as input, followed 
by a camera model, then output synthetic images. Based on our experimental results, the image generated by 
WaterGAN suffers color noise and they differ a lot from real world underwater images. Therefore, to generate 
realistic underwater images with both color cast and haze effect, we improved the underwater imaging model, 
and proposed an unsupervised GAN based on this model to generate realistic underwater images from clear 
in-air images. Then, U-Net with different loss functions (Ronneberger O, 2015) is trained to enhance 
underwater images through synthetic datasets. Finally, the performance of the proposed algorithm is validated 
on real underwater images as well as underwater target detection datasets for both low-level and high-level 
computer vision tasks. The experimental results show that the proposed method can recover the underwater 
image while maintaining structural similarities. Apart from this, the effects of different loss functions in U-
net are compared, the most suitable loss function for underwater image restoration is suggested based on the 
comparison (This part can be found in APPENDIX), which provides a new idea for underwater image 
enhancement. 

2 OUR PROPOSED METHOD 
To generate the realistic underwater images (color casts, low contrast and haze effect), we improved 
underwater imaging model, and proposed an underwater generative adversarial network (UWGAN), which 
takes in-air RGB-D images and a sample set of underwater images of a specific survey site as input to train 
a generative network adversarially. These synthetic underwater images, which were used to train a restoration 
network based on U-Net (Ronneberger O, 2015) that can enhance underwater images in real-time.  

2.1 IMPROVED UNDERWATER IMAGING MODEL 

As is well known, a simplified underwater imaging model is shown in Eq.1. 

𝐼𝐼(𝑥𝑥) = 𝐽𝐽(𝑥𝑥)𝑇𝑇(𝑥𝑥) + 𝐴𝐴�1 − 𝑇𝑇(𝑥𝑥)� 

𝑇𝑇(𝑥𝑥)  =  𝑒𝑒−𝛽𝛽(𝜆𝜆)𝑑𝑑(𝑥𝑥)                                 (Eq. 1) 

where, 𝐼𝐼(𝑥𝑥) is the light intensity of each pixel 𝑥𝑥. 𝐽𝐽(𝑥𝑥) is the initial irradiance that not propagating through 
the water. 𝑇𝑇(𝑥𝑥) is the transmission map of the scene. 𝐴𝐴 is the atmospheric ambient light of the scene. 𝛽𝛽 
is attenuation coefficient of light of different wavelengths 𝜆𝜆, and 𝑑𝑑(𝑥𝑥) is the range between the scene and 
the camera. 

 
Figure 1. Synthetic underwater-style images through Eq. 2 . (a) are in-air sample images, (b)-(d) are synthetic 
underwater-style sample images of different water types. 
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We can generate underwater-style images using the in-air image and its depth map by Eq. 1 , which can well 
simulate color cast caused by light attenuation in water. However, it is difficult to simulate the haze effect 
caused by the scattering of water impurities. As shown in Figure 4, obvious haze effect can be observed on 
real underwater images. Inspired by related dehazing methods (Ancuti C, 2016), we improved the second 
term in Eq. 1 . The improved imaging model is shown in Eq. 2 . 

𝐼𝐼(𝑥𝑥) = 𝐽𝐽(𝑥𝑥)𝑇𝑇(𝑥𝑥) + 𝐴𝐴𝑇𝑇(𝑥𝑥)�1 − 𝑇𝑇′(𝑥𝑥)� 

𝑇𝑇′(𝑥𝑥)  =  𝑒𝑒−𝛼𝛼𝑑𝑑(𝑥𝑥)                                     (Eq. 2) 

where, 𝐴𝐴𝑇𝑇(𝑥𝑥)  is ambient light based on the light attenuation of different wavelength. 𝛼𝛼  is the scene 
scattering coefficient, which corresponds to the scattering coefficient in the atmospheric imaging model, and 
𝛼𝛼 is set by default to 1, corresponding to a moderate and homogeneous haze effect. Three types of realistic 
underwater images were synthesized with color cast and haze effect are shown in Figure 1. 

2.2 UWGAN FOR GENERATING REALISTIC UNDERWATER IMAGES 

Underwater-style images are generated based on Eq. 2, whose parameters are estimated through adversarial 

learning using GAN, as shown in Figure 2. 

 
Figure 2: UnderwaterGAN architecture. UWGAN takes color image and its depth map as input, then it 
synthesizes underwater realistic images based on underwater optical imaging model by learning parameters 
through generative adversarial training.  

2.3 UNDERWATER IMAGE RESTORATION BASED ON U-NET 

U-Net is used for color restoration and haze removal of underwater images. A detailed description of U-Net 
architecture proposed in the paper is shown in Figure 3. Firstly, a degraded underwater RGB image is resized 
to 256x256 and then fed into the encoder part of U-net. In the encoder, the image is finally downsampled into 
a 32x32x256-dimensional latent vector through a series of convolution and max-pooling operations. In each 
downsampling stage, 3x3 convolution with a stride of 1 followed by a rectified linear unit (ReLU) activation 
function are conducted twice, then a 2x2 max pooling with a stride of 2 is used. The number of feature maps 
are doubled at each stage. In the decoder part, upsampling is done from the latent high dimensional vector 
back to the original input size sequentially. After each upsampling operation, output tensor is concatenated 
to the corresponding symmetric layer in the encoder side, then followed by two consecutive convolution 
layers and a rectified linear activation layer. The number of feature maps is gradually reduced to three 
channels. 
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Figure 3: Proposed U-net Architecture for underwater image restoration and enhancement. 

2.4 DATASET 

The in-air datasets we used are images of indoor scenes that has been labeled in the NYU Depth dataset V1 
(Silberman N, 2011) and V2 (Silberman N, 2012), which contain a total of 3733 RGB images and 
corresponding depth maps. The underwater dataset contains real-world underwater images collected from 
marine organisms’ farms (including scallops, sea cucumbers, sea urchins, etc.), which can be roughly divided 
into two categories, one contains near-field green hued images (RealA), and the other contains blue-green 
hued images of far-field scenes (RealB). We also use underwater open datasets (Li C, 2019) (RealC) as 
testing sets, where RealA contains 2069 underwater images, RealB contains 2173 underwater images, and 
RealC contains 890 underwater images. Several typical images of the datasets are shown in Figure 4. 
 

 
Figure 4: Typical images of datasets. (a)-(b) are color images and depth maps of NYU-Depth datasets, (c) 
are sample images of RealA dataset, (d) are sample images of RealB dataset, (e) are sample images of RealC 
dataset. 

3 EXPERIMENTAL SETUP 
The training settings of our proposed method are presented in details in this section. Our models are trained 
in the computer with the following configurations: Intel i7 HQ 8700 processor, 16GB RAM，NVIDIA TITAN 
X 12GB graphics card. 

Firstly, UWGAN is trained to synthesize underwater-style images using the NYU-Depth Dataset, RealA and 
RealB datasets. Our model was trained for 30 epochs, using Adam optimizer with a learning rate of 0.0001, 
and the momentum term was set to 0.5. The batch size was set to 64 with output images set to 256x256. 
Secondly, U-net is trained as an image enhancement network using synthetic pairs. The batch size was set to 
32 and the output image size is 256x256. The learning rate is set to 0.0001 according to Adam optimizer, our 
model is trained for 200 epochs. 

4 RESULT AND DISCUSSION 
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In this section, we quantitatively and qualitatively compare our proposed method with several representative 
underwater image enhancement algorithms, including Unsupervised Color Correction Method (UCM) (Iqbal  
K, 2010), Histogram equalization (HE) (Hummel R, 1975), Multi-Scale Retinex with Color Restoration 
(MSRCR) (Rahman Z, 1996), Fusion (Ancuti C, 2012), Underwater Dark Channel Prior (UDCP) (Drews 
P, 2013), Image Blurriness and Light Absorption (IBLA) (Peng Y T, 2017), Underwater Color Correction 
using GAN (UGAN) (Fabbri C, 2018), WaterGAN-color-correction (WaterGAN) (Li J, 2017). 

 
Figure 5: Qualitative comparisons for samples from the real-world underwater image dataset RealC. (a)-(j) 
represent the samples selected from RealC. 

We employ a non-reference metric, UIQM (Panetta K, 2015), for the quantitative assessment of underwater 
image quality on RealA, RealB, and RealC datasets as no ground truth scenes are available as the reference 
for real-world underwater images. Besides, we employ three full-reference metrics, namely MSE, PSNR 
(Hore A, 2010), SSIM, for assessment image quality on synthetic datasets. To reasonably assess the time 
spent on various algorithms, we resize all images to 256x256, which provides a stable output for 
enhancements in later experiments. 
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Figure 6: Qualitative comparisons for samples from real-world underwater image dataset RealA and RealB. 
(a)-(j) represents the samples selected from RealA and RealB. 
Firstly, we compare the capabilities of different methods to improve the image visibility on the RealA, RealB, 
and RealC datasets. The qualitative comparison is shown in Figure 5 and 6. Most methods can improve the 
quality of images of a slight haze effect. UCM, HE, and Fusion can enhance the brightness and contrast of 
the image, but are less uniform for color restoration and seem to be over-enhanced in some areas of the image. 
The results of MSRCR appear to have a suitable hue but lack sufficient saturation and contrast. UDCP and 
IBLA do not recover well for green-toned images, they make the image darker but enhance the contrast of 
the image. UGAN, WaterGAN can enhance the contrast of the image but they don’t recover color well and 
generate some artifacts, which destroy the structural information of the image. The proposed method can 
recover the color of degraded underwater images while keeping a proper brightness and contrast. 

Table 1 and Table 2 quantitatively show the scores of sample images in Figure 5 and Figure 6 respectively. 
Our proposed method has achieved the highest scores in (a), (c) and (f). In addition, the average quantized 
scores evaluated on RealA, RealB, and RealC datasets are shown in Table 3. Our model achieves the best  
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scores in terms of color restoration. 

Table 1: Quantitative UIQM values of samples in Figure 5. The greater the UIQM values, the better the 
enhanced results, with blue representing the maximum and green representing the minimum. 
Assessments Methods (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) 

UIQM 

Input 5.475 4.995 4.171 3.523 4.554 4.842 4.868 4.459 4.195 4.619 
UCM 5.253 5.320 5.200 4.447 4.870 5.219 5.181 5.130 4.672 5.158 
HE 5.080 5.369 4.814 4.779 4.907 4.925 5.174 5.215 4.493 5.247 

MSRCR 4.047 4.636 5.229 4.135 4.516 4.528 4.465 4.259 4.022 4.684 
Fusion 5.329 5.460 5.095 4.546 4.970 5.181 5.295 5.220 4.544 5.145 
UDCP 4.820 4.704 4.727 4.836 5.255 4.440 4.435 3.830 3.757 5.385 
IBLA 5.468 5.302 3.867 3.559 20.606 4.861 4.941 3.537 3.659 4.999 

UGAN 5.326 5.287 5.325 4.204 4.846 5.022 5.126 4.947 4.353 5.122 
WaterGAN 5.024 4.934 4.833 2.763 4.594 4.414 4.547 4.879 3.953 4.700 

Ours 5.602 5.387 5.379 4.219 4.820 5.327 4.868 5.110 3.922 5.018 
 
Table 2: Quantitative UIQM values of samples in Figure 6. The greater the UIQM values, the better the 
enhanced results, with blue representing the maximum and green representing the minimum. 
Assessments Methods (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) 

UIQM 

Input 4.865 4.316 4.923 4.516 3.854 4.837 3.740 4.320 4.819 3.468 
UCM 5.127 5.093 4.999 5.165 4.558 5.056 4.028 4.925 4.773 4.634 
HE 4.942 5.189 5.320 5.016 4.809 5.153 4.608 4.910 4.892 4.618 

MSRCR 4.747 4.700 4.096 4.908 4.426 4.039 3.906 4.067 3.606 4.318 
Fusion 5.280 5.131 5.063 5.184 4.485 5.030 4.023 4.811 4.961 4.557 
UDCP 5.389 5.256 4.932 4.868 4.731 5.406 4.722 5.180 4.962 5.131 
IBLA 5.158 4.796 4.560 4.626 3.978 4.858 3.873 4.494 3.965 4.139 

UGAN 5.249 5.185 5.040 4.800 4.832 5.026 4.561 5.601 4.934 4.675 
WaterGAN 5.003 4.537 4.756 4.636 4.212 4.524 3.801 4.323 4.846 4.223 

Ours 5.391 5.058 4.979 4.891 4.834 5.015 4.034 4.936 5.140 4.377 
 
Table 3: Average quantitative UICM, UISM, UIConM and UIQM values on real-world underwater image 
datasets RealA, RealB and RealC. The greater the values, the better the enhanced results, with blue 
representing the maximum 
Datasets Assessments Input UCM HE MSRCR Fusion UDCP IBLA UGAN WaterGAN Ours 

RealA 
UICM -0.332 -0.059 0.003 -0.006 -0.127 -0.300 -0.233 -0.074 -0.079 0.006 
UISM 7.151 7.092 7.194 6.934 7.000 7.073 7.148 7.045 6.820 7.096 

UIConM 0.593 0.694 0.812 0.537 0.716 0.739 0.679 0.770 0.634 0.675 
UIQM 4.22 4.574 5.027 3.967 4.622 4.721 4.533 4.832 4.280 4.508 

RealB 
UICM -0.273 0.029 0.016 -0.006 -0.0350 -0.051 -0.193 -0.120 -0.151 0.091 
UISM 7.169 7.053 7.120 6.944 6.910 7.080 7.049 6.957 6.821 6.992 

UIConM 0.506 0.730 0.772 0.654 0.737 0.837 0.703 0.804 0.643 0.708 
UIQM 3.920 4.695 4.864 4.387 4.675 5.080 4.590 4.927 4.309 4.598 

RealC 
UICM -0.223 -0.023 -0.010 0.006 -0.110 -0.085 -0.136 -0.089 -0.121 0.044 
UISM 7.310 7.309 7.312 7.348 7.318 7.428 7.305 7.117 6.895 7.282 

UIConM 0.674 0.740 0.743 0.493 0.764 0.964 1.207 0.810 0.824 0.780 
UIQM 4.561 4.803 4.816 3.932 4.891 5.636 6.469 4.996 4.979 4.942 

UIQM is a non-reference assessment metric whose quantitative results depend largely on the value of scale 
factors. Structural information of images is not considered in these kinds of non-reference evaluation metrics. 
Although some enhanced images can get higher score, the visual quality is poor, the reason is that the metric 
is calculated from the pixels. Therefore, we also employ three full-reference assessment metrics MSE, PSNR, 
and SSIM to evaluate the performance of different methods on synthetic datasets without training. The 
comparison results in Table 4 demonstrate that our proposed method achieves the best results in terms of 
MSE, PSNR, and SSIM. 
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The average inference time of different algorithms are compared in one computer with following 
configuration: Intel i7-8750H CPU, 16GB RAM, and GTX1060 6G GPU. The results are shown in Table 5. 
Our model has the fastest processing speed compared to other methods. Moreover, the model we proposed 
has the fewest Params and FLOPs compared to other deep-learning-based methods. UGAN employs many 
convolution layers with 512 kernels, which causes that there are too many network parameters. WaterGAN 
employs multiple networks, resulting in slow processing speed. 

Table 4: Quantitative results evaluation on synthetic dataset by full-reference metrics: MSE, PSNR, SSIM 
values. The smaller the MSE values, the greater the PSNR and SSIM values, the better the enhanced results, 
with blue representing the best results 
Datasets Assessments Input UCM HE MSRCR Fusion UDCP IBLA UGAN WaterGAN Ours 

Synthesis 
MSE 0.042 0.029 0.045 0.059 0.027 0.072 0.058 0.026 0.014 0.002 
PSNR 20.68 23.46 18.315 13.25 23.13 17.37 19.10 20.63 20.25 30.31 
SSIM 0.869 0.944 0.845 0.580 0.933 0.847 0.832 0.779 0.842 0.966 

 
Table 5: Testing time and parameters of generator of different enhancement methods 

 UCM HE MSRCR Fusion UDCP IBLA UGAN WaterGAN Ours 
Testing time (s) 1.284 0.009 0.076 0.118 2.051 4.561 0.022 10.347 0.008 

Params (M) - - - - - - 54.41 28.62 1.93 
FLOPs (M) - - - - - - 610 8053 3.8 

As indicated by some previous works (Uplavikar P, 2019; Anwar S, 2019; Ding X, 2019), the performance 
of high-level computer vision tasks (such as underwater target detection) on enhanced images is an indicator 
of image enhancement methods. We applied YOLO v3 (Redmon J, 2018) target detector on degraded 
underwater images and their enhanced versions generated by our model. The performance of underwater 
target detection is better on enhanced versions on degraded images. Figure 7 shows the results of YOLO v3 
detector before and after processing the images with our model. 

 
Figure 7: Underwater target detection results before and after enhancement. (A) Real-world underwater 
images and (B) output of our model for the real-world image. Red boxes represent scallops, blue boxes 
represent sea cucumbers, and green boxes represent sea urchins. 

5 CONCLUSION 
Based on an improved underwater imaging model, a generative adversarial network (UWGAN) for 
generating realistic underwater images is proposed in this paper. Then, U-net with combined loss functions 
is used for degraded underwater images enhancement. Our model is validated on both low-level and high-
level underwater computer vision tasks, which demonstrate its effectiveness and robustness. 

ACKNOWLEDGEMENT 
The authors would like to acknowledge the National Key R&D Program of China (Grant No. 
2018YFC0309402) for funding this work. 



 
Under review as a conference paper at ICLR 2020 

9 
 

 

REFERENCES 
Liu Y C, Chan W H, Chen Y Q. Automatic white balance for digital still camera[J]. IEEE Transactions on 
Consumer Electronics, 1995, 41(3): 460-466. 

Rizzi A, Gatta C, Marini D. Color correction between gray world and white patch[C]//Human Vision and 
Electronic Imaging VII. International Society for Optics and Photonics, 2002, 4662: 367-375. 

Pizer S M, Amburn E P, Austin J D, et al. Adaptive histogram equalization and its variations[J]. Computer 
vision, graphics, and image processing, 1987, 39(3): 355-368. 

Ancuti C, Ancuti C O, Haber T, et al. Enhancing underwater images and videos by fusion[C]//2012 IEEE 
Conference on Computer Vision and Pattern Recognition. IEEE, 2012: 81-88. 

He K, Sun J, Tang X. Single image haze removal using dark channel prior[J]. IEEE transactions on pattern 
analysis and machine intelligence, 2010, 33(12): 2341-2353. 

Chiang J Y, Chen Y C. Underwater image enhancement by wavelength compensation and dehazing[J]. IEEE 
Transactions on Image Processing, 2011, 21(4): 1756-1769. 

Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural 
networks[C]//Advances in neural information processing systems. 2012: 1097-1105. 

Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object 
detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 779-
788. 

Kuehne H, Jhuang H, Garrote E, et al. HMDB: a large video database for human motion recognition[C]//2011 
International Conference on Computer Vision. IEEE, 2011: 2556-2563. 

Anwar S, Li C, Porikli F. Deep underwater image enhancement[J]. arXiv preprint arXiv:1807.03528, 2018. 

Ancuti C, Ancuti C O, De Vleeschouwer C. D-hazy: A dataset to evaluate quantitatively dehazing 
algorithms[C]//2016 IEEE International Conference on Image Processing (ICIP). IEEE, 2016: 2226-2230. 

Uplavikar P, Wu Z, Wang Z. All-In-One Underwater Image Enhancement using Domain-Adversarial 
Learning[J]. arXiv preprint arXiv:1905.13342, 2019. 

Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Advances in neural 
information processing systems. 2014: 2672-2680. 

Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial 
networks[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2223-2232. 

Li J, Skinner K A, Eustice R M, et al. WaterGAN: Unsupervised generative network to enable real-time color 
correction of monocular underwater images[J]. IEEE Robotics and Automation letters, 2017, 3(1): 387-394. 

Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image 
segmentation[C]//International Conference on Medical image computing and computer-assisted intervention. 
Springer, Cham, 2015: 234-241. 

Silberman N, Fergus R. Indoor scene segmentation using a structured light sensor[C]//2011 IEEE 
international conference on computer vision workshops (ICCV workshops). IEEE, 2011: 601-608. 

Silberman N, Hoiem D, Kohli P, et al. Indoor segmentation and support inference from rgbd 
images[C]//European Conference on Computer Vision. Springer, Berlin, Heidelberg, 2012: 746-760. 

Li C, Guo C, Ren W, et al. An underwater image enhancement benchmark dataset and beyond[J]. arXiv 
preprint arXiv:1901.05495, 2019. 



 
Under review as a conference paper at ICLR 2020 

10 
 

 

Jerlov N G. Marine optics[M]. Elsevier, 1976. 

Iqbal K, Odetayo M, James A, et al. Enhancing the low quality images using unsupervised colour correction 
method[C]//2010 IEEE International Conference on Systems, Man and Cybernetics. IEEE, 2010: 1703-1709. 

Hummel R. Image enhancement by histogram transformation[J]. Computer Graphics and Image Processing, 
1977, 6(2):184-195. 

Rahman Z, Jobson D J, Woodell G A. Multi-scale 10etinex for color image enhancement[C]//Proceedings 
of 3rd IEEE International Conference on Image Processing. IEEE, 1996, 3: 1003-1006. 

Drews P, Nascimento E, Moraes F, et al. Transmission estimation in underwater single 
images[C]//Proceedings of the IEEE international conference on computer vision workshops. 2013: 825-830. 

Peng Y T, Cosman P C. Underwater image restoration based on image blurriness and light absorption[J]. 
IEEE transactions on image processing, 2017, 26(4): 1579-1594. 

Fabbri C, Islam M J, Sattar J. Enhancing underwater imagery using generative adversarial networks[C]//2018 
IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 7159-7165. 

Panetta K, Gao C, Agaian S. Human-visual-system-inspired underwater image quality measures[J]. IEEE 
Journal of Oceanic Engineering, 2015, 41(3): 541-551. 

Hore A, Ziou D. Image quality metrics: PSNR vs. SSIM[C]//2010 20th International Conference on Pattern 
Recognition. IEEE, 2010: 2366-2369. 

Anwar S, Li C. Diving Deeper into Underwater Image Enhancement: A Survey[J]. arXiv preprint 
arXiv:1907.07863, 2019. 

Ding X, Wang Y, Yan Y, et al. Jointly Adversarial Network to Wavelength Compensation and Dehazing of 
Underwater Images[J]. arXiv preprint arXiv:1907.05595, 2019. 

Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Under review as a conference paper at ICLR 2020 

11 
 

 

A LOSS FUNCTIONS 
The most common loss function for image restoration is L2 error. However, which loss function is suitable 
for underwater image enhancement has not been studied. Inspired by a related article, the effect of different 
loss functions in U-net is studied in this paper. Table 6 shows the loss functions we used. 

In mathematical formula, 𝑥𝑥 is an index of pixels in region 𝑋𝑋, 𝑔𝑔(𝑥𝑥) is pixel value in region 𝑋𝑋 of the image 
reconstructed by U-net and 𝑟𝑟(𝑥𝑥) is the pixel value of corresponding ground truth. 𝑥𝑥 is the central pixel 
value of region 𝑋𝑋 . ∇𝑔𝑔(𝑥𝑥) , ∇𝑟𝑟(𝑥𝑥)  respectively represent the gradient of reconstructed images and clear 
images. After several experiments and observations of the best reconstruction results, we set 𝛼𝛼 to 0.8 in this 
paper. 
 

Table 6: Different loss functions for underwater image restoration. Including some basic loss functions 
and their combinations. 

Name Mathematical formula 

The 𝐿𝐿1 loss error ℒ𝑙𝑙1(𝑋𝑋) =
1
𝑁𝑁
� |𝑔𝑔(𝑥𝑥) − 𝑟𝑟(𝑥𝑥)|
𝑥𝑥∈𝑋𝑋

 

The 𝐿𝐿2 loss error ℒ𝑙𝑙2(𝑋𝑋) =
1
𝑁𝑁
��𝑔𝑔(𝑥𝑥) − 𝑟𝑟(𝑥𝑥)�2

𝑥𝑥∈𝑋𝑋

 

The 𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆 loss error ℒ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋) =
1
𝑁𝑁
� 1 − 𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆(𝑥𝑥)
𝑥𝑥∈𝑋𝑋

 

The 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆 loss error ℒ𝑆𝑆𝑆𝑆−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋) = 1 −𝑆𝑆𝑆𝑆_𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆(𝑥𝑥) 

The 𝐺𝐺𝐺𝐺𝐿𝐿 error ℒ𝑔𝑔𝑑𝑑𝑙𝑙(𝑋𝑋) =
1
𝑁𝑁
� |∇𝑔𝑔(𝑥𝑥) − ∇𝑟𝑟(𝑥𝑥)|
𝑥𝑥∈𝑋𝑋

 

𝐿𝐿1 + 𝐿𝐿2 ℒ𝑙𝑙1_𝑙𝑙2(𝑋𝑋) = 𝛼𝛼 ⋅ ℒ𝑙𝑙2 + (1 − 𝛼𝛼) ⋅ ℒ𝑙𝑙1 
𝐿𝐿1 + 𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆 ℒ𝑙𝑙1_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋) = 𝛼𝛼 ⋅ ℒ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + (1 − 𝛼𝛼) ⋅ ℒ𝑙𝑙1 

𝐿𝐿1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆 ℒ𝑙𝑙1_𝑆𝑆𝑆𝑆−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋) = 𝛼𝛼 ⋅ ℒ𝑆𝑆𝑆𝑆−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + (1 − 𝛼𝛼) ⋅ ℒ𝑙𝑙1 
𝐿𝐿1 + 𝐺𝐺𝐺𝐺𝐿𝐿 ℒ𝑙𝑙1_𝑔𝑔𝑑𝑑𝑙𝑙(𝑋𝑋) = 𝛼𝛼 ⋅ ℒ𝑔𝑔𝑑𝑑𝑙𝑙 + (1 − 𝛼𝛼) ⋅ ℒ𝑙𝑙1 

B ABLATION STUDY 

 
Figure 8: The visual quality of the sample image in RealC dataset with different loss functions. From (a) to 
(i) are respectively enhanced results of the loss function 𝐿𝐿1, 𝐿𝐿2, 𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆, 𝐺𝐺𝐺𝐺𝐿𝐿, 𝐿𝐿1 + 𝐿𝐿2, 𝐿𝐿1 +
𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆, 𝐿𝐿1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆, and 𝐿𝐿1 + 𝐺𝐺𝐺𝐺𝐿𝐿. 
Ablation study is mainly to reveal the effects of different loss functions. We use different loss functions to 
train the network and test it on RealC, and synthetic datasets. The sample image is selected from the RealC 
dataset, as shown in Figure 8, the enhanced results range from (a)~(i) are obtained with different loss 
functions, and images in the second row show the details in the red box area of the image. It can be seen from 
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the results in the second row, (a), (b), (f) appear striped artifacts. (c), (d), (g) cause color unevenness. The 
details of (e) are natural but it lacks sufficient saturation. (h), (i) show proper enhanced results, the color in 
(h) is more vivid but with slightly striped artifacts. 

The enhanced result using the 𝐿𝐿1  or 𝐿𝐿2  loss function appears stripe-like artifacts while the 𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆  or 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆 loss function causes color unevenness. The enhanced result of the 𝐺𝐺𝐺𝐺𝐿𝐿 loss function is natural 
but lacks sufficient saturation. We calculated the MSE, PSNR, and SSIM metrics on the synthetic dataset. 
The quantitative scores in Table 7 demonstrate that a combination of multiple loss functions can achieve 
better enhancement results. 
 
Table 7: Quantitative results of different loss functions evaluation on synthetic dataset by full-reference 
metrics: MSE, PSNR, SSIM values. 
 
Datasets Assessments Input L1 L2 SSIM MSSSIM GDL L1+L2 L1+SSIM Ll+MSSSIM L1+GDL 

Synthesis 
MSE 0.0417 0.002 0.002 0.002 0.002 0.009 0.001 0.001 0.002 0.002 
PSNR 20.68 29.91 28.72 29.99 28.27 25.21 32.97 32.82 30.31 30.81 
SSIM 0.867 0.962 0.959 0.974 0.960 0.944 0.971 0.979 0.966 0.968 
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