
Published as a conference paper at ICLR 2018

DISTRIBUTED FINE-TUNING OF LANGUAGE MODELS
ON PRIVATE DATA

Vadim Popov, Mikhail Kudinov, Irina Piontkovskaya, Petr Vytovtov & Alex Nevidomsky
Samsung R&D Institute Russia
Moscow, Russia
v.popov@samsung.com,m.kudinov@samsung.com,
p.irina@samsung.com,p.vytovtov@partner.samsung.com,
a.nevidomsky@samsung.com

ABSTRACT

One of the big challenges in machine learning applications is that training data can
be different from the real-world data faced by the algorithm. In language model-
ing, users’ language (e.g. in private messaging) could change in a year and be
completely different from what we observe in publicly available data. At the same
time, public data can be used for obtaining general knowledge (i.e. general model
of English). We study approaches to distributed fine-tuning of a general model on
user private data with the additional requirements of maintaining the quality on the
general data and minimization of communication costs. We propose a novel tech-
nique that significantly improves prediction quality on users’ language compared
to a general model and outperforms gradient compression methods in terms of
communication efficiency. The proposed procedure is fast and leads to an almost
70% perplexity reduction and 8.7 percentage point improvement in keystroke sav-
ing rate on informal English texts. Finally, we propose an experimental framework
for evaluating differential privacy of distributed training of language models and
show that our approach has good privacy guarantees.

1 INTRODUCTION

Two common problems arising after deployment of a machine learning model on user devices are
discrepancy between training data and actual data stored on user devices, and the need of regular
model updates. In the case of language modeling, it corresponds to the difference between language
and style of the training corpus mined in the Internet and messages of the user, which account for
most of the text generated on the device. Even if the training corpus includes a substantial part of
informal texts (tweets, forum threads, etc.), real user data can be very different. This is a challenge
for word prediction algorithms in software keyboard applications. The most general approach to
improvement of customer experience in typing is integrating a separate user language model trained
on device in an on-line fashion. In the simplest case it is a smoothed n-gram (e.g. Kneser-Ney
n-gram model (Goodman (2001))).

In Yoon et al. (2017) continuously learned personalized language model based on LSTM was pro-
posed but as far as each user generates only a small portion of textual data, such data by itself cannot
be used for updates of the general model. Thus, for a model update, a collection of potentially
sensitive data from many users is needed. As shown in McMahan et al. (2016), collecting data for
training may be avoided. We propose a similar approach for distributed fine-tuning of language
models on private data. In this sense our method can be considered as “federated fine-tuning“ but
we prefer to take more traditional term. In this setting we start with a language model trained on a
large text corpus representing the general language. This model G will be updated continuously on
user devices but with an additional requirement that the model must not go too far from the general
language model, i.e. we don’t overfit on user data.

We pursue two goals: 1) to develop an algorithm of distributed fine-tuning that is fast, communica-
tion efficient and doesn’t need collecting sensitive user data; and 2) to prevent the language model
from forgetting “general English“. Besides, we provide analysis of possibility of privacy violation
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Figure 1: Overview of the approach. The current model is updated on devices and updates Ḡit from
users are stored in a queue. Every K elements Ḡit of the queue are used for one round of averaging.
After each round the server model Gt+1 is sent to the next K elements.

in our model. (Hitaj et al. (2017)) demonstrated an attack on distributed training algorithm leading
to information leakage. This means that privacy analysis in necessary for such algorithms.

Our main contributions are: 1) we propose an efficient procedure of distributed fine-tuning of lan-
guage models immune to the problem of catastrophic forgetting (French (1999)), 2) we provide
experimental evaluation of on-device training time, communication costs and convergence rates of
the general language model in realistic conditions, 3) we compare two most popular strategies of
improving communication efficiency in the context of distributed learning, and 4) we propose an
experimental framework for evaluation of differential privacy of distributed training of language
models, and using this framework, we evaluate privacy guarantees of our approach.

In our research we are focused on improvement of keystroke saving rate (see section 2.4) because
this metric reflects customer typing experience more directly than perplexity or BLEU. We use
LSTM architecture for our language model as described in Zaremba et al. (2014) and evaluate on-
device training time for this architecture. We show that the on-device training time is reasonably
small, thus demonstrating the feasibility of the whole approach.

2 DISTRIBUTED FINE-TUNING OF LANGUAGE MODELS

As usual, our task is to predict the next word wN given a sequence of words w1 . . . wN−1. If the
prediction algorithm of a software keyboard application is based on a language model with low
perplexity on the test data, the application provides a reasonably sorted list of input candidates. Of
course, the test data should be drawn from the same distribution as the user data. In our case we
also want to have only one, continuously improving model on a user device. As far as the user can
always switch to the general English, we have to prevent the model from overfitting on the texts
written on the device, or catastrophic forgetting (McCloskey & Cohen (1989); Goodfellow et al.
(2014); Kirkpatrick et al. (2016)).

Our approach can be summarized as follows (Figure 1): 0) At the first stage we have an initial
language model G0 (at every step t it will be updated to Gt) trained on a large corpus of standard
English; 1) As soon as a user inputs sufficient volume of text, the latest version of Gt is sent from
the server to provide updates, and fine-tuning starts on the device leading to the model Ḡit; 2) When
the training is finished the model Ḡit is sent back to the server; 3) Every time the updated models Ḡit
are received from K different users, a round of model update is run resulting in the model Gt+1

2.1 LEARNING WITHOUT FORGETTING

In its original formulation (Li & Hoiem (2016)), the problem of learning without forgetting (LwF)
consists in re-training of existing model Θ on new data such that its performance on the old data
does not degrade.

More formally, suppose we have a classifier with a set of parameters Θ trained and tested on a
dataset D = {Tr,Ts} where Tr and Ts are train and test sets accordingly. Let D∗ = {Tr∗,Ts∗}
be some new dataset. Our goal is to update the parameters Θ with dataset D′ = {Tr∗,Ts ∪Ts∗}

2



Published as a conference paper at ICLR 2018

i.e. we have to provide the best performance on old and new types of data having only training data
of the new type.

In contrast, joint training (Caruana (1997)) assumes a model update with access to the both datasets:
D′ = {Tr ∪Tr∗,Ts ∪Ts∗}.
As we want to avoid sending user data to the server, classical joint training is impossible. On the
other hand, LwF seems promising. In this case we send the user a current instance of the general
language model Gt with weights θg and fine-tune it producing the model θu, while θg is used for
generating predictions for regularization. The resulting loss at step t and true word wt can be
calculated as follows:

lt(θu) = −
∑
w∈W

y∗t,w log p(w|θu), (1)

where
y∗t,w = λ1{wt = w}+ (1− λ)p(w|θg) (2)

A similar approach is taken in Shin et al. (2016) where predictions of a basic model (in this case θg)
are taken as soft labels.

2.2 TRAINING WITH REHEARSAL

Minimizing loss in (1)–(2) is equivalent to minimizing Kullback-Leibler divergence L(θu) =
KL (Pgr‖Pu) with respect to parameters θu of Pu where density of Pgr is given by:

P (x) = λPTr∗(x) + (1− λ)P (x|θg) (3)

In (3) PTr∗(x) stands for the real distribution on a user device and P (x|θg) is a probability given
by the model of “general English“ θg . It suggests that instead of optimizing L(θu) we can simply
add data from Tr to Tr∗ to obtain the (1−λ) portion. This approach, called random rehearsal, was
presented in Robins (1995).

In practice in the case of fine-tuning with rehearsal a portion of the general English training corpus
(standard English corpus) must be sent to the user device. Volume of typical user data generated
on device is of the order of tens of kilobytes per month, and the size of the training data sent to the
device will be of the same order. Overall, random rehearsal is more efficient, because there is no
need to calculate soft labels.

2.3 SERVER-SIDE MODEL UPDATE

The server-side part of the solution must aggregate models Ḡit from many users and use them to
update the general model Gt. We took simple model averaging as a baseline solution and transfer
learning (Bengio (2011); Tang et al. (2016)) as an alternative approach.

In the case of transfer learning we optimized cross-entropy function (1), with y∗i given by an average
prediction from N aggregated models θku:

y∗i =
1

N

N∑
k=1

p(wi|θku) (4)

Just as in the case of on-device training, transfer learning-based approach is rather inefficient in
terms of time and memory because predictions from all models are needed.

2.4 KEYSTROKE SAVING RATE

Keystroke saving rate (KSS) (McKenzie & Soukoreff (2002)) is defined as a relative decrease in the
number of characters the user has to type, given suggestions from the software keyboard:

KSS =
Ntotal −Ntyped

Ntotal
× 100%, (5)
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Table 1: Random rehearsal vs learning without forgetting. For LwF mode λ is a coefficient of the
ground truth probability distribution in the loss function (1)-(2). For random rehearsal mode λ is a
portion of user training data in on-device training.

Method
Standard English dataset

(Wikipedia)
User dataset

(Twitter) Av. PPL
PPL KSS, % PPL KSS, %

Initial server model 100.1 67.9 336.0 49.7 192.6
Random rehearsal, λ = 1/4 121.3 66.3 127.9 56.9 124.8
Random rehearsal,λ = 1/2 131.1 65.9 109.7 58.3 119.1
Random rehearsal,λ = 3/4 149.0 64.8 99.7 59.0 119.9
Learning without forgetting, λ = 1/4 128.4 66.0 162.8 54.9 146.0
Learning without forgetting, λ = 1/2 147.0 64.9 121.7 57.5 132.7
Learning without forgetting, λ = 3/4 186.5 63.1 101.1 59.2 133.9
On-device re-training, λ = 1 265.1 60.2 93.4 59.7 150.8

where Ntotal is the total number of non-space characters in the typed text and Ntyped is the number
of characters user still had to type until the correct suggestion was presented. In our experiments we
used top-3 suggestion lists.

From the definition above one can see that KSS is better for customer experience assessment com-
pared to perplexity. Besides, perplexity measure underestimates out-of-vocabulary (OOV) words.
In the presence of OOV words perplexity is ill-defined, so all OOV words must be removed from
the test set. It makes a direct comparison of models with different vocabularies impossible, which is
impractical. Finally, our experiments have demonstrated that a small decrease in perplexity may not
correspond to KSS improvement and doesn’t lead to any practical result. Nevertheless, our method
demonstrates considerable perplexity reduction as well.

2.5 MODEL FINE-TUNING EXPERIMENTS

The goal of our experiments was to find the most efficient pipeline to distributed fine-tuning of
language models. We compared several approaches for client-side and server-side model updates.
In accordance with the problem statement we assumed a substantial difference between the real-
life user corpus and the standard English corpus used for initial training, so we took Twitter and
Wikipedia corpora for the user and standard English corpora correspondingly.

The standard English train dataset contained approximately 30M tokens. The hyperparameters of
the model were initially tuned on the Standard English validation set of 3.8M tokens. The user train
dataset contained approximately 1.7M tokens. Updated models were tested on subsets of the Twitter
and Wikipedia corpora containing 200k and 170k tokens correspondingly. Comparison between the
random rehearsal and LwF training methods were carried out on a single node.

For our experiments we used LSTM architecture from Zaremba et al. (2014) with 2x650 LSTM
layers, a vocabulary size of 30k, dropout 0.5, minibatch size 20, BPTT steps 35. The initial general
English model was trained in 39 epochs.

We report KSS and perplexity on both the standard English test set and the user data test sets. In
the case of the standard English test set KSS was calculated on a subset of 200 sentences (3600
tokens). The initial general English model had a perplexity of 100.1 and 67.9% KSS rate on the
Standard English test and perplexity 336.0 and 49.7% KSS rate on the user data test set. So, the
model experienced a considerable 18.2% drop in performance on the user data test set.

Table 1 summarizes our experiments with on-device model update algorithms. We see that the
performance gap between the standard English and the user test sets can be considerably reduced at
the cost of performance degradation on the first dataset. The best average perplexity is reached with
the random rehearsal method and λ = 0.5. We believe that the reason of the comparably inferior
performance of the LwF method can be explained by the fact that soft labels used by LwF give a
poor approximation of the true word distribution of general English so adding a small portion of true
data gives better results in terms of knowledge preservation.
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Table 2: Averaging vs transfer learning for server-side model update.

Method
Standard English dataset

(Wikipedia)
User dataset

(Twitter) Av. PPL
PPL KSS, % PPL KSS, %

Initial server model 100.1 67.9 336.0 49.7 192.6
TL on generated data (1-cycle) 109.2 67.2 259.7 50.8 174.4
TL on generated data (5-cycles) 112.3 67.0 246.0 51.2 171.6
TL on real data 108.7 67.2 261.2 50.7 174.6
Model averaging (1 round) 102.8 67.7 233.8 51.9 160.3
Model averaging (300 rounds) 105.5 67.3 109.3 58.4 107.5
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Figure 2: Training curves for the general model on the standard English (Wikipedia) and the user
data (Twitter) corpora with random rehearsal (left) and without random rehearsal (right).

To compare model averaging and transfer learning for a server-side model update, we carried out a
small experiment with 10 nodes and 1 iteration of the server-side update. Each model was trained
on a mobile phone with a quad-core mobile CPU with a clock frequency 2.31 GHz. We used
a minibatch size 10, number of BPTT steps 20, learning rate 0.75 and 1 epoch. Training took
approximately 140 seconds on 20 kilobytes of text (user-generated and rehearsal data). Note that we
used mobile CPU only, so computation time may be reduced by using mobile GPU. Due to absence
of the frameworks that make backpropagation on a device possible we had to implement our own
training on the phone. After training the updated user models were used for general model update
on the server.

For the server-side model update algorithm we also tried the approach proposed in Shin et al. (2016).
In this case the new model is trained on the texts generated by its previous round of update. We tested
both 1 generation per epoch and a single time generation before the first epoch. We carried out at
most 6 epochs so we had 1 and 5 cycles of text generation correspondingly.

Results of the experiment are summarized in Table 2. We saw no significant differences between
transfer learning on real and generated data. The difference between transfer learning and averaging
is more sound but still not large. At the same time model averaging is much more computationally
efficient, as long as transfer learning requires calculation of labels from each of the teacher models.
After 300 rounds of model updates with 3000 nodes (10 nodes per round) we ended up with an 8.7
absolute gain in KSS on the user data test with only a 0.6 absolute KSS drop on the standard English
data test.

Figure 2 shows that the model starts to perform reasonably well after 100 rounds of updates. It also
shows the importance of rehearsal for preventing catastrophic forgetting.

2.6 COMMUNICATION COSTS

There are several strategies that help to make distributed learning communication efficient. The
most successful ones can be divided into two classes: 1) strategies that increase computation on
nodes thus sending data to the server less frequently (McMahan et al. (2016)), and 2) strategies that
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Table 3: Uploaded data analysis

Number of parameters Size of the model Nodes per round Uploaded data per round
4.57 · 107 174.43Mb 10 1.70Gb

Table 4: Communication costs comparison

Communication efficiency improving scheme Perplexity Uploaded data Number of uploads
Several epochs of on-device training 71.06 21.29Gb 112

DGC (Lin et al. (2017)) 72.24 21.85Gb 5.3 · 104

transmit only some part of data from devices to the server in a single round of averaging Lin et al.
(2017); Konečný et al. (2016). One of the most impressive results was reached by the Deep Gradient
Compression (Lin et al. (2017)). It belongs to the second class – its key idea is to send only the most
important weight updates obtained during on-device training while accumulating the remaining ones
in order to send them when the sum becomes large enough.

It was shown that Deep Gradient Compression method (DGC) allows to send a very small part
of weight updates (0.1%) in a single round of averaging without loss in the quality of the model.
For language modeling task, the gradient compression ratio of 462x was obtained using gradient
accumulation strategy for small updates. However, DGC supposes that in each round of averaging
only one user’s model update is made for every node while methods from the first class increase
computation on nodes to several epochs before model averaging. In our experiments (2.5) we chose
to train models on devices for one epoch rather than using DGC-style strategy. As shown in Table 3,
this results in a total amount of 1.7Gb of data transmitted from nodes to the server in a single round
(this amount certainly depends linearly on the size of the model). We used a classical 2-layer LSTM
model from Zaremba et al. (2014) but there are models that perform similarly or better but have less
parameters (e.g. Inan et al. (2016), Press & Wolf (2017)), so in practice we can improve the results
shown in Table 3.

To prove competitiveness of our approach, we made the experiment (see Table 4) in the settings pre-
sented in Lin et al. (2017). We compared two strategies for improving communication efficiency:
increasing computation on nodes and DGC. The models were trained on a popular language mod-
eling benchmark PTB. The neural network architecture (2-layer LSTM with 1500 units, tied input
and output embeddings and variational dropout with probability 0.65) as well as the results for DGC
were taken from Lin et al. (2017). As for the first strategy, we trained the model for 28 rounds.
During the first round, a randomly initialized model was trained on the first node, then sent to the
second node, trained there, and so on. When training on the last (fourth) node was finished, the up-
dated model was sent to all four nodes and the second round started. The remaining 27 rounds were
standard rounds of model averaging. We had to make the first round so specific because we needed
to simulate some kind of ”pretraining” (which the task itself didn’t suggest) in order to make model
averaging perform well. Since we had only one training corpus, no rehearsal was applied during
training on nodes. The number of training epochs on a node and learning rate decreased from 10-20
and 1.0 correspondingly in the first rounds to 1-3 and 0.27 in the last ones. We used minibatch size
20 and 35 BPTT steps.

The first strategy achieved better perplexity with the same amount of data sent from nodes to the
server compared to DGC. The important thing is that the number of communications for it was 112
which is much less than 53k for DGC. Since communication efficiency involves not only the data
that is transmitted from devices to the server but also the time that is necessary to set up connections,
we can conclude that increasing computation on nodes perfroms better in terms of communication
efficiency than gradient compression methods. This is why we chose the first strategy in our ap-
proach. Moreover, in our scheme the data on a device is used only once and can be deleted after the
on-device training whereas in DGC and many other distributed learning schemes the data on each
device is used many times (once per epoch).
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Certainly, the two classes of strategies for improving communication efficiency are not mutually
exclusive – we can apply DGC or, for example, methods that are described in Konečný et al. (2016)
to further reduce communication costs but this is out of the scope of the present paper.

3 PRIVACY ANALYSIS

3.1 METHODOLOGY

Our analysis is based on the experimental evaluation of differential privacy. The notion of differ-
ential privacy (Dwork & Roth (2014)) appears naturally in many applications when it comes to
estimating of the possibility of privacy violation. In particular, it can be applied to language models
trained on private user data.

Loosely speaking, if we have a mechanism that takes some input data and produces some output
then differential privacy measures how a single input unit influences the total output. In order to
achieve differential privacy, some randomness must be introduced into the mechanism.
Definition 1. A randomized mechanismM with domain D and range S satisfies (ε, δ)-differential
privacy if for any two inputs d, d′ ∈ D that are adjacent (i.e. differ in one record) and for any subset
of outputs S ⊆ S it holds that:

P (M(d) ∈ S) ≤ eεP (M(d′) ∈ S) + δ

In our case D is the set of all subsets of users and a randomized mechanismM(d) is a mechanism
that generates texts according to a certain language model trained on d ∈ D. Note that for any d we
need to have ∑

s∈S
P (M(d) = s) = 1

Thus it is necessary for S to be the set of all possible texts of some fixed length rather than the set
of all texts of an arbitrary length. In our analysis we will consider only the space of texts containing
10 words. This is reasonable because it is close to the average length of a sentence in our user data
corpus and it seems that if user’s privacy is violated then 10 consequent words are already enough
for an adversary to retrieve important information.

Let us fix two adjacent sets of users d and d′, train models θ and θ′ on them and introduce random
variable c(s). It is defined by the expression

c(s) =
P (s|θ)
P (s|θ′)

(6)

for any s ∈ S. Since a language model Θ assigns some positive probability to any sequence of
words, c(s) is defined correctly for all s ∈ S.

Parameter δ in the Definition 1 stands for the probability that two probabilities P (s|θ) and P (s|θ′)
differ much. This fact is formalized by the following proposition:
Proposition 1. If P (s ∈ S : c(s) > eε |θ) ≤ δ then P (S|θ) ≤ eεP (S|θ′) + δ for any S ⊆ S

Proof. Let B = {s ∈ S : c(s) > eε}. Then for any S ⊆ S

P (S|θ) = P (S ∩B|θ) + P (S ∩B|θ) ≤ P (B|θ) + eεP (S ∩B|θ′) ≤ δ + eεP (S|θ′)

The proposition implies that it is sufficient to estimate the tail of the distribution of c(s) under
measure P(·|θ). Furthermore, Figure 3 suggests that the tail of the empirical distribution function of
the observed variable c(s) has the Pareto distribution. This seems natural as far as words in human
language follow Zipf’s law which is a discrete analogue of the Pareto distribution.

To make a confident estimation of differential privacy parameters, we consider 20 different pairs of
adjacent sets of users d and d′. For each one, we consider a composite null hypothesis that the tail of
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Figure 3: Left: Empirical histogram of random samples of c(s). Magenta line represents theoretical
distribution of the Pareto law with parameters that are estimated on these samples. Right: Difference
between two distributions on the left plot expressed in number of samples ∆(x). The parameters of
the Pareto law were estimated on the samples that lie in the region {log c(s) > 0.35} (blue line).
Black lines represent standard errors. The left plot is built in logarithmic Y-axis while the right one
is built in linear Y-axis.

the random variable c(s) defined in (6) has the Pareto distribution with the shape parameter equal to
its Hill’s estimator (M. Hill (1975)). Then we apply the Lilliefors test and accept the null hypothesis
at a significance level of 5%. Quantiles of the Pareto distribution can be written down explicitly thus
giving the following formula for estimation of parameters ε and δ:

ε =
1

α
log

C

δ
, (7)

where α and C are parameters of Pareto distribution defined in statistical tests (see Appendix).

Finally, for a given δ we take the largest value of ε amongst all the experiments.

3.2 EXPERIMENTAL EVALUATION

The critical value for the Lilliefors test at 5% significance level is 1.08. In 19 cases out of 20 the
Lilliefors test fails to reject the null hypothesis. This conclusion, together with sample visual repre-
sentation in Figure 3, allows us to state that the random variable c(s) indeed has tails that decrease
like the Pareto distribution tails with quite a big shape parameter. Exact values of KS statistics and
Hill’s estimators of this parameter for different pairs of users are provided in the Table 5.

Table 6 shows the results for different values of δ calculated by formula (7). In this table the value
of ε is the largest value of this parameter in all 20 experiments. The total number of users is 3 · 103

so it is reasonable to put δ = 10−4. For this choice of δ parameter ε equals to 0.67. It means that
our algorithm offers reasonable privacy guarantees (see (Papernot et al., 2017)). Additionally we
provide values of ε for smaller values of δ.

The results shown in Table 6 demonstrate that our scheme provides a very good level of privacy
protection. However, it is necessary to say that we only aim to produce an empirical estimation of
differential privacy which inevitably holds with some high probability but not almost surely (this
fact makes our approach close to the so-called random differential privacy introduced in Hall et al.
(2011)). In many machine learning algorithms, the outcome is initially deterministic and some well-
known distribution is used to generate noise in order to make the algorithm differentially private
(e.g. Papernot et al. (2017)). In our mechanism the source of randomness lies inside the neural
network and the output distributions can’t be written explicitly. This is the reason why we are able
to provide only empirical estimations of differential privacy parameters.
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Table 5: Results of the Lilliefors test
Experiment 1 2 3 4 5 6 7 8 9 10

α̂ 15.8 20.9 15.1 16.6 16.5 17.6 14.9 19.2 15.6 15.2

Ĉ 3.25 5.64 2.02 2.48 2.70 4.19 1.47 3.31 1.65 1.83
KS statistic 0.49 0.91 0.48 0.62 0.83 0.59 1.39 0.41 0.93 0.51
Experiment 11 12 13 14 15 16 17 18 19 20

α̂ 16.5 14.4 19.5 18.2 16.2 17.2 17.3 14.8 17.1 20.5

Ĉ 3.00 1.53 3.67 2.20 3.42 2.66 1.68 2.18 2.87 4.60
KS statistic 0.76 0.89 0.66 0.94 0.67 0.85 0.73 0.97 0.65 0.94

Table 6: Differential privacy results

δ 10−4 10−5 10−6

ε 0.67 0.83 0.99

4 CONCLUSION

We have presented our results in distributed fine-tuning of neural language models. We paid special
attention to preventing a catastrophic forgetting of the general language after a model fine-tuning on
the user devices. Our experiments showed that the performance of an initial model of the general
English on user data can be improved significantly almost without a performance degradation on
the standard English training data. We found that a combination of on-device training with random
rehearsal and server-side model averaging provides the best performance for such distributed fine-
tuning. Users’ models were trained for the whole epoch that reduced communication costs while at
the same time being quite fast – it took less than 3 minutes with a realistic assessment of volume
of the available user data. Finally, we provided an experimental evaluation of differential privacy of
our method and showed that the method has a reasonable level of differential privacy compared to
other solutions. We still have to note that we provided an empirical estimation of differential privacy
which holds with some high probability but not almost surely.
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A EXPERIMENTAL EVALUATION OF DIFFERENTIAL PRIVACY FOR TEXTS

One can usually identify that samples come from a power-law distribution by looking at its tail
distribution function F (x) = 1 − F (x) where F (x) is a cumulative distribution function (e.g.
Newman (2005) describes this method). If F (x) = C/xα then logF (x) = logC − α log x, i.e. the
plot should be linear on logarithmic axes.

Figure 3 shows the empirical tail distribution function of the observed variable c(s). We generated
n = 3 · 104 samples (10-word sequences) with the model with parameters θ that relates to a certain
user to get observations of c(s). It can be seen that the tail of c(s) is linear on logarithmic axes like
the tail of the Pareto distribution in the region {log c(s) > 0.35}.

So we suppose that F (x) = C/xα for big values of x. More precisely, we suppose that the distribu-
tion function of c(s) for x > x0 can be represented by the following formula:

F (x) = 1− F (x0) ·
(x0
x

)α
(8)

for some x0. Parameter α plays the most important role in the further analysis of differential privacy.
A common way to estimate it is to use Hill’s estimator:

α̂ =
k∑k

i=1 log c
(i)
n

c
(k)
n

(9)

where c(i)n are the order statistics c(1)n ≥ c
(2)
n ≥ ... ≥ c

(k)
n ≥ ... ≥ c

(n)
n and n is the number of

samples. This estimator is described in M. Hill (1975). It is a maximum likelihood estimator and
it converges in probability to α when n → ∞, k = k(n) → ∞ and k(n)/n → 0. Note that the
estimator depends only on outliers of c(s). This is a very helpful property because it allows us to
use it even when we need to estimate only the tail distribution F (x) for large values of x rather than
the whole distribution. In the experiments we take k(n) = 2 b

√
nc. We put x0 = c

(k)
n . For different

pairs of adjacent sets of users d and d′ values of α̂ vary from 14.4 to 20.9. Values of x0 vary from
1.33 to 1.43, so log x0 lies in the interval [0.28; 0.36] in our experiments.

Then we tested the null hypothesis that the cumulative distribution function F (x) of the random
variable c(s) is of the Pareto law with the shape parameter α̂ for all x > x0. The Kolmogorov-
Smirnov (KS) test is often used for this purpose (Koning & Peng (2008) illustrates this approach).
Since we tested a composite hypothesis, we needed to use modification of the KS test that is called
the Lilliefors test. In the same way as in Koning & Peng (2008) we introduced new random variables
ri = log c

(i)
n /c

(k)
n for i = 1, .., k. Since c(i)n are order statistics, we have c(i)n /c

(k)
n ≥ 1 for i = 1, .., k

and it can be shown that these variables are jointly equal in distribution to ordered samples from
Pareto law with the shape parameter α and the scale parameter 1. So, under the null hypothesis
{ri}1,..,k are exponential with the parameter α and we can apply the Lilliefors test to check whether
these samples really come from an exponential distribution with an unknown mean estimated by
r = 1/α̂.

The method that we use (the Lilliefors test for exponential distributions) is described in Gibbons &
Chakraborti (2010). Essentially, we calculate a KS statistic for the exponential distribution with a
mean that’s equal to 1 and an empirical distribution function Fk(r) of the values {ri/r}1,..,k:

√
k sup
r≥1
|Fk(r)− (1− e−r)| (10)
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This statistic doesn’t converge to the Kolmogorov distribution as shown in W. Lilliefors (1969). It
converges to the distribution with smaller critical values at the same significance levels because we
overfit on the sample data when the estimator r is plugged in. We chose a 5% significance level and
critical value for it is 1.08. In 19 cases out of 20 the Lilliefors test failed to reject the null hypothesis
at a 5% significance level. Table 5 provides exact values obtained during the application of the
statistical test. Relying on these values along with data visualization in 3 we can state that random
variable c(s) has tails that decrease like the Pareto distribution tails.

The hypothesis that we accepted suggests that the cumulative distribution function of c(s) is given
by the formula (8). It means that the tail distribution function for all x > x0 is given by

F (x) =
F (x0)xα0
xα

=
C

xα
(11)

We chose x0 = c
(k)
n , so F (x0) is just the ratio k/n. Thus, C can be estimated by

Ĉ =
k

n
· (c(k)n )α̂ (12)

Values of Ĉ are given in the Table 5. Finally, from formula (11) and proposition 1 it is easy to derive
that (ε, δ)-differential privacy is provided by the values ε, δ that satisfy

ε =
1

α
log

C

δ
(13)
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