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Abstract

Characterization of the representations learned in intermediate layers of deep net-
works can provide valuable insight into the nature of a task and can guide the
development of well-tailored learning strategies. Here we study convolutional
neural network-based acoustic models in the context of automatic speech recog-
nition. Adapting a method proposed by Yosinski et al. [2014], we measure the
transferability of each layer between German and English to assess their language-
specifity. We observe three distinct regions of transferability: (1) the first two
layers are entirely transferable between languages, (2) layers 2–8 are also highly
transferable but we find evidence of some language specificity, (3) the subsequent
fully connected layers are more language specific but can be successfully finetuned
to the target language. To further probe the effect of weight freezing, we performed
follow-up experiments using freeze-training [Raghu et al., 2017]. Our results are
consistent with the observation that CNNs converge ‘bottom up’ during training
and demonstrate the benefit of freeze training, especially for transfer learning.

1 Introduction

The acoustic properties of speech vary across languages. This is evidenced by the fact that monolin-
gual acoustic models (AMs) are the de facto standard in automatic speech recognition (ASR), while
multi-lingual AMs are an active area of development [Heigold et al., 2013, Tuske et al., 2013, Sercu
et al., 2016, Watanabe et al., 2017]. Requiring large amounts of training data to build separate AMs
for every language is a barrier to successful ASR systems for low-resource languages. Ideally, AMs
would be designed to strategically leverage off-task data as much as possible. AMs often take the
form of a deep network which learns to map from acoustic features to context-dependent phones in a
language-specific phone set. It is not clear how exactly this transformation is performed or what is
represented in the intermediate layers of such networks. Better characterization of the intermediate
representations of AMs may help to guide data-efficient training procedures. Similar characterizations
of networks trained on visual tasks have inspired new transfer learning procedures. For example,
Yosinski et al. [2014] characterized the task specificity at each layer of a network trained on ImageNet
using transferability as a proxy for task-specificity. This characterization motivated Adaptive Transfer
Networks [Long et al., 2015] where parts of a network are trained on the source domain while other
parts of the network are finetuned, or adapted, to the target domain, preserving the limited target
data for learning highly task-specific parameters. Similar adaptive transfer learning procedures may
also prove to be useful for building AMs for data-poor languages. However, the exact shape of the
transition from task-general to task-specific representations in deep network-based AMs is unknown.
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Much of the previous work on characterizing intermediate layers of deep networks has focused
on relatively solvable tasks in the visual domain (e.g. hand written digit recognition, visual object
recognition). Few studies have characterized the intermediate representations of networks trained on
acoustic tasks [Lee et al., 2009, Golik et al., 2015, Nagamine et al., 2015], which, in practice, are
not always trained long enough to converge completely (test error still slowly decreasing at the end
of training) due to the long training time required. It is not clear to what extent existing methods
developed to probe networks trained on visual tasks will be applicable and useful to study networks
that may be underfitting on difficult acoustic tasks.

Here we studied convolutional neural networks (CNNs) used for acoustic modeling in ASR systems.
We characterized the language-specificity of each layer across languages using an approach inspired
by Yosinski et al. [2014]. Subsets of a network trained on one language were “implanted” into another
network which was trained on a second language. The effect of the implant on performance indicated
the language-specificity of the features in the implant. Our main contribution is the characterization
of the language-specificity of intermediate layers of CNN-based acoustic models. Additionally, we
demonstrate the adaptation of an analysis method originally designed to probe visual networks to
study networks in an underfitting regime on a phone classification task.

2 Experiments

The datasets for this experiment consisted of 68 hours and 83 hours of German (GER) and American
English (ENU) speech respectively, recorded in comparable environments, with corresponding text
transcriptions. We chose these languages because we expected a large degree of transferability
based on their phonetic similarity. Logarithmic Mel filter bank features were calculated, creating
a 45-dimensional feature vector for every 10ms of audio (spectrograms). Each observation was
associated with one of 9000 target context-dependent phone classes. Phonesets consisted of 54 unique
phones for English and 47 unique phones for German.

A CNN consisting of nine convolutional layers followed by three fully connected layers was trained
to recognize context-dependent phones from each language. The architecture was as follows, where
the triplets specify the filter size and number of feature maps in each conv layer and the singletons
specify how many units in each of the fully connected layers: (7, 7, 1024), (3, 3, 256), (3, 3, 256), (3,
3, 128), (3, 3, 128), (3, 3, 128), (3, 3, 64), (3, 3, 64), (3, 3, 64), (600), (190), (9000). This resulted
in a total of approximately 7.2 million parameters. Both networks were trained using the ADAM
optimizer [Kingma and Ba, 2015] as implemented in Tensorflow [Abadi et al., 2016] with a minibatch
size of 256, a starting learning rate of 10e−5 and rectified linear units. Approximately 98% of the
data was used for training and the remaining 2% for testing. All model parameters were replicated
on four GPUs. Different minibatches were given to each GPU, their gradients averaged to calculate
updates. As a balance between training time and accuracy, each network was trained for a fixed
period of 100 epochs (which took approximately two weeks).

The subsequent experimental setup was similar to that described in Yosinski et al. [2014]. Several
‘network surgeries’ were performed. The first n layers of a network trained on Language A were
implanted into a new network of identical architecture where the layers after layer n were randomly
initialized. This ‘chimera’ network was further trained in four different ways. It was either trained on
language A (self-transfer or ‘selfer’ network) or language B (transfer network) and the implanted
parameters were either fixed or allowed to be finetuned during training. This process was repeated ∀
1 ≤ n ≤ 11 and for both English and German resulting in 88 networks total (see Figure 1 in Yosinski
et al. [2014] for a graphical depiction of a similar experimental setup). The selfer networks served
as a control to capture any changes in performance associated with the surgery but unrelated to the
transfer. All networks were trained for 100 epochs. Training parameters were identical to those of the
baseline models.

3 Results

We found representations throughout the networks to be highly transferable between English and
German. Top-1 test phone classification accuracy for each network is plotted as a function of the
layer at which the surgery was performed in Figure 1. Phone classification accuracy is measured
with respect to per frame phone-labels established in a forced alignment. The only models that
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(a) German to English (b) English to German

Figure 1: Test accuracy as a function of depth after 100 epochs. The plus sign indicates that the implanted
pretrained layers were finetuned. Dashed black line indicates the performance of the monolingual baseline
model. Up to the ninth layer, layers trained on German could be used as they were (without finetuning) in a
network whose subsequent layers were trained on English with no loss in performance compared to baseline.
Selfer networks without finetuning show an improvement compared to baseline. Freeze trained transfer networks
yielded the best overall performance. The pattern is the same for the reverse transfer (from English to German).

performed considerably worse than the monolingual baseline models were the transfer networks
without finetuning whose surgery occurred at one of the fully connected layers (the penultimate
two layers). Transfer networks cut at any of the convolutional layers performed as well as the
monolingual baseline model, regardless of whether the implanted layers were finetuned or not. We
observed a slight improvement over the monolingual baseline (~1.5 percentage points (pp)) for
transfer networks with finetuning chopped at one of the fully connected layers. All selfer networks
with finetuning performed at the same level as the mono-lingual baseline. Somewhat unexpectedly,
the selfer networks without finetuning performed best overall among the chimera networks. Selfer
networks chopped at late layers whose implants were not finetuned showed an improvement of 3+
pp. Previous work has shown that random, untrained weights can often perform remarkably well
in certain scenarios [Jarrett et al., 2009, Rahimi and Recht, 2007]. Figure ?? shows accuracy as
a function of the layer at which training began, meaning that layers below layer n were randomly
initialized and never updated. Subsequent layers (layer n and above) were trained for 100 epochs
with the same training parameters as the baseline models. We observed a gradual drop in performance
as a function of depth. Random weights in early layers did not have a large impact on performance.
Using random weights for all but the last layer resulted in near-chance performance. This verifies the
non-triviality of the success of our transfer networks without finetuning. The training of our selfer

Figure 2: Using random weights up to layer n. The leftmost points represent the baseline models. Performance
decays gradually as more layers are left untrained, only reaching near-chance performance when nearly all layers
are random.
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networks without finetuning somewhat resembles the freeze training procedure proposed by Raghu
et al. [2017]. According to this procedure, layers are successively frozen over the course of training,
gradually reducing the number of parameters to be updated until, by the end of training, only the
last layer is being updated. We hypothesized that weight freezing partly explained the success of
our selfer networks without finetuning, so we created freeze trained versions of both our selfer and
transfer networks. Starting with a pre-trained network, layers 1–11 (excluding layer 0) were trained
for 5 epochs. Then, for the next 5 epochs, only layers 2–11 were trained. From then on, another layer
was removed from the trainable parameters every 10 epochs for a total of 100 training epochs. The
freeze trained models are represented by the coloured dashed lines in Figure 1. The freeze training
led to better overall performance, especially among the transfer networks.

4 Discussion

Our results suggest that, despite a large degree of transferability of intermediate acoustic features
between languages, naive approaches to transfer (e.g. initializing with parameters from another
language) are not the most efficient. In particular, early layers need not be finetuned on the target
language at all. Subsequent layers benefit greatly from freeze training on the target language. These
freeze trained transfer networks outperform networks trained solely on the target language, which
demonstrates the improved generalization that can be achieved when incorporating data from multiple
sources.

The performance of the networks with finetuning is largely consistent with Yosinski et al. [2014].
However, the performance of networks without finetuning deviates considerably. The transfer
networks without finetuning in Yosinski et al. [2014] show a gradual drop in performance, starting at
the 4th convolutional layer and eventually dropping nearly 8 pp by the penultimate layer (see Figure
2 from Yosinski et al. [2014]). Our transfer networks without finetuning, on the other hand, show a
sharp drop in performance that starts only at the first fully connected layer (layer 9). For the selfer
networks without finetuning, we did not observe a performance drop when networks were chopped
at middle layers, as was reported in Yosinski et al. [2014]. Instead, our selfer networks without
finetuning outperformed all other models, with accuracy increasing nearly monotonically with the
depth at which the network was chopped. Yosinski et al. [2014]’s experiments with random weights
quickly drop to near-chance performance by layer 3, whereas our networks with random weights
decline gradually with depth, only approaching near-chance performance when all but the last layer
are random.

The success of our selfer networks without finetuning is at least partly explained by the fact that we
are in an underfitting regime. Unlike in Yosinski et al. [2014], our baseline model has not converged
completely and we would expect continued training to improve performance. However, if that were
the only factor at play, then we would expect our selfer networks with finetuning to also improve
but they do not. Something about freezing all but the last layer(s) facilitates a ~3 pp improvement
over baseline in the selfer but not the transfer networks. This suggests that there is some important
language-specific information in the layers that show a difference between the selfer and transfer
networks without finetuning (layer 3+). Layers 10 and 11 show worse than baseline performance for
the transfer network without finetuning, indicating a larger degree of language-specificity in these
representations.

Our freeze training results corroborate the interpretation that weight freezing is responsible for the
success of our selfer networks without finetuning. Furthermore, our freeze-trained transfer networks
performed best overall, demonstrating that freeze training can actually recover the language-specific
information lacking in our transfer networks without finetuning, yielding improved generalization.
This likely reflects the observation from Raghu et al. [2017] that CNNs converge ‘bottom-up’ during
training, with early layers stabilizing earlier in training. Relatedly, Alain and Bengio [2016] state the
proposition that no intermediate layer of a multi-layer neural network will contain more target-related
information than the raw input, which requires a ‘bottom-up’ flow of information; intermediate layers
cannot pass on target-related information that they do not receive. Thus we conclude that freezing the
weights of a given layer can improve performance iff that layer already passes on the target-related
information in a representation that can be disentangled by subsequent layers. This was not generally
the case in our transfer chimera networks because important language-specific information was not
being conveyed. The progressive freeze training regime, proposed by Raghu et al. [2017], allowed
this important language-specific information to be learned, whereas generic fine-tuning did not. In
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this way, making fewer parameter updates actually led to significant performance gains. This may be
partly explained by the fact that smaller networks train faster [Saxe et al., 2015]. Perhaps generic
fine-tuning would eventually achieve the same accuracy, but after many more iterations.
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