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ABSTRACT

Bayesian neural networks, which both use the negative log-likelihood loss func-
tion and average their predictions using a learned posterior over the parameters,
have been used successfully across many scientific fields, partly due to their abil-
ity to ‘effortlessly’ extract desired representations from many large-scale datasets.
However, generalization bounds for this setting is still missing. In this paper, we
present a new PAC-Bayesian generalization bound for the negative log-likelihood
loss which utilizes the Herbst Argument for the log-Sobolev inequality to bound
the moment generating function of the learners risk. We explore the generalization
and calibration properties of the learned posterior on several image classification
benchmarks, showing that the proposed approach provides better generalization
and uncertainty estimates.

1 INTRODUCTION

Deep neural networks are ubiquitous across disciplines and often achieve state of the art results
(e.g., Krizhevsky et al. (2012); Simonyan & Zisserman (2014); He et al. (2016)). Albeit neural
networks are able to encode highly complex input-output relations, in practice, they do not tend to
overfit (Zhang et al., 2016). This tendency to not overfit has been investigated in numerous works
on generalization bounds (Langford & Shawe-Taylor, 2002; Langford & Caruana, 2002; Bartlett
et al., 2017a; 2019; McAllester, 2003; Germain et al., 2016; Dziugaite & Roy, 2017). Indeed,
many generalization bounds apply to neural networks. However, most of these bounds assume
that the loss function is bounded (Bartlett et al., 2017a; Neyshabur et al., 2017; Dziugaite & Roy,
2017). Unfortunately, this assumption excludes the popular negative log-likelihood (NLL) loss,
which is instrumental to Bayesian neural networks that have been used extensively to calibrate model
performance and provide uncertainty measures to the model prediction.

In this work we introduce a new PAC-Bayesian generalization bound for NLL loss of deep neural
networks. Our work utilizes the Herbst argument for the logarithmic-Sobolev inequality (Ledoux,
1999) in order to bound the moment-generating function of the model risk. Broadly, our PAC-
Bayesian bound is comprised of two terms: The first term is dominated by the norm of the gradients
with respect to the input and it describes the expressivity of the model over the prior distribution.
The second term is the KL-divergence between the learned posterior and the prior, and it measures
the complexity of the learning process. In contrast, bounds for linear models or bounded loss func-
tions lack the term that corresponds to the expressivity of the model over the prior distribution and
therefore are the same when applied to shallow and deep models.

We empirically show that our PAC-Bayesian bound is tightest when we learn the mean and variance
of each parameter separately, as suggested by Blundell et al. (2015) in the context of Bayesian neural
networks (BNNs). We also show that the proposed bound holds different insights regarding model
architecture, optimization and prior distribution selection. We demonstrate that such optimization
minimizes the gap between risk and the empirical risk compared to the standard Bernoulli dropout
and other Bayesian inference approximation while being consistent with the theoretical findings.
Additionally, we explore in-distribution and out-of-distribution examples to show that such opti-
mization produces better uncertainty estimates than the baseline.



Under review as a conference paper at ICLR 2020

2 RELATED WORK

Generalization bounds for neural networks were explored in various settings. VC-theory provides
both upper bounds and lower bounds to the network VC-dimension, which are linear in the number
of network parameters (Bartlett et al., 2017b; 2019). While VC-theory asserts that such a model
should overfit as it can learn any random labeling (e.g., Zhang et al. (2016)), surprisingly, neu-
ral networks generally do not overfit. Rademacher complexity allows to apply data dependent
bounds to neural networks (Bartlett & Mendelson, 2002). However, they rely on bounds of the
loss function (Wan et al., 2013; Gao & Zhou, 2016). Rademacher complexity bounds may also
take into account the Lipschitz constant of the network. While this presents an improvement when
its gradient-norms are bounded, these results also require the loss to be bounded. Stability bounds
may be applied to unbounded loss functions and in particular to the negative log-likelihood (NLL)
loss (Bousquet & Elisseeff, 2002; Rakhlin et al., 2005; Shalev-Shwartz et al., 2009; Hardt et al.,
2015; Zhang et al., 2016). However, stability bounds for convex loss functions, e.g., for logistic re-
gression, do not apply to neural networks since they require the NLL loss to be a convex function of
the parameters. Alternatively, Hardt et al. (2015) estimate the stability of stochastic gradient descent
dynamics, which strongly relies on early stopping. This approach results in weaker bounds for the
non-convex setting.

PAC-Bayesian bounds were recently applied to neural networks (Langford & Caruana, 2002;
McAllester, 2013; Dziugaite & Roy, 2017; Neyshabur et al., 2017). In contrast to our work, those
related works all consider bounded loss functions. PAC-Bayesian bounds for the NLL loss in the
online setting were put forward by Banerjee (2006). The online setting does not to consider the
whole sample space and therefore is simpler to analyze in the Bayesian setting. An excellent survey
on PAC-Bayesian bounds was provided by Germain et al. (2016). Alquier et al. (2016) introduced
PAC-Bayesian bounds for linear classifiers with the hinge-loss. Germain et al. (2016) is closer to
our setting and considers PAC-Bayesian bounds for the quadratic loss function, while proving that
the quadratic loss function has exponential decay (sub-gamma) when the data is sampled from a
Gaussian distribution. This result is a PAC-Bayesian generalization bound for the NLL loss of a
regressor which assumes Gaussian model over a continuous label space y. Our work differs from
this work in two important aspects: (1) our work does not consider linear classifiers and apply to
any deep neural networks; (2) our bound considers the NLL loss for classification tasks, for which
the label space y is discrete.

PAC-Bayesian bounds for the NLL loss function are intimately related to learning Bayesian infer-
ence (Germain et al., 2016). Recently many works applied various posteriors in Bayesian neural
networks. Gal & Ghahramani (2015); Gal (2016) introduce a Bayesian inference approximation us-
ing Monte Carlo (MC) dropout, which approximates a Gaussian posterior using Bernoulli dropout.
Srivastava et al. (2014) introduced Gaussian dropout which effectively creates a Gaussian posterior
that couples between the mean and the variance of the learned parameters. Kingma et al. (2015)
explored the relation of this posterior to log-uniform priors, while Blundell et al. (2015) suggests to
take a full Bayesian perspective and learn separately the mean and the variance of each parameter.
Our work uses the bridge between PAC-Bayesian bounds and Bayesian inference, as described by
Germain et al. (2016), to find the optimal prior parameters in PAC-Bayesian setting and apply it in
the Bayesian setting.

Most of the literature regarding Bayesian modeling involves around a two-step formalism (Bernardo
& Smith, 2009): (1) a prior is specified for the parameters of the deep net; (2) given the train-
ing data, the posterior distribution over the parameters is computed and used to quantify predictive
uncertainty. Since exact Bayesian inference is computationally intractable for neural networks, ap-
proximations are used, including MacKay (1992); Hernandez-Lobato & Adams (2015); Hasenclever
et al. (2017); Balan et al. (2015); Springenberg et al. (2016). In this study we follow this two-step
formalism, particularly we follow a similar approach to Blundell et al. (2015) in which we learn the
mean and standard deviation for each parameter of the model using variational Bayesian practice.
Our experimental validation emphasizes the importance of learning both the mean and the variance.

3 BACKGROUND

Generalization bounds provide statistical guarantees on learning algorithms. They measure how
the learned parameters w perform on test data given their performance on the training data S =
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{(x1,91) -+, (Tm, Ym)}, Where x; is the data instance and y; is its corresponding label. The per-
formance of the learning algorithm is measured by a loss function ¢(w, x,y). The risk of a learner
is its average loss, when the data instance and its label are sampled from their true but unknown dis-

tribution D. We denote the risk by Lp(w) = E(; yy~pl(w, z,y). The empirical risk is the average

training set loss Lg(w) = = > l(w, z;, y;).

PAC-Bayesian theory bounds the risk of a learner E,,~.qLp(w) when the parameters are averaged

over the learned posterior distribution gq. The parameters of the posterior distribution are learned
from the training data S. In our work we focus on the following PAC-Bayesian bound:

Theorem 1 (Alquier et al. (2016)). Ler KL(q|lp) = [ q(w)log(¢(w)/p(w))dw be the KL-
divergence between two probability density functions p, q. For any A > 0 and for any § € (0, 1] and
for any prior distribution p, with probability at least 1 — § over the draw of the training set S, the
following holds simultaneously for any posterior distribution q:

10g By, s~ prm [eMED (W) =Ls ()] K [(g||p) + log(1/5)

Ewng[Lp(w)] < BunglLs(w)] + \ - (M

PAC-Bayesian theory is intimately connected to Bayesian inference when considering the negative
log-likelihood loss function ¢(w, z,y) = — log p(y|z, w) and A = m. Germain et al. (2016) proved
that the optimal posterior in this setting is ¢(w) = p(w|S). Bayesian inference considers the poste-
rior p(y|z, S) = [ p(w|S)p(y|z, w)dw, at test time for a data instance x, which corresponds to the
risk of the optimal posterior. Unfortunately, the optimal posterior is rarely available, and PAC-Bayes
relies on the approximated posterior q.

Coincidently, the approximated posterior and its KL-divergence from the prior distribution are in-
strumental to the evidence lower bound (ELBO), which is extensively used in Bayesian neural net-
works (BNNs) to bound the log-likelihood > | log p(y; |z;):

m

= Tlogp(yilri) < = Eung log p(yilzi, w) + K L(glp) )
1=1

i=1

While the right hand side of a PAC-Bayesian bound, with the negative log-likelihood loss and A =
m, is identical to the right hand side of the ELBO bound in term of learning, they serve different
purposes. One is used for bounding the risk while the other is used for bounding the marginal log-
likelihood. Nevertheless, the same algorithms can be used to optimize BNNs and PAC-Bayesian
intuitions and components can influence the practice of Bayesian neural networks.

4 PAC-BAYESIAN BOUNDS FOR THE NEGATIVE LOG-LIKELIHOOD LOSS

It is challenging to derive a PAC-Bayesian bound for the negative log-likelihood (NLL) loss as it
requires a bound on the log-partition function logE,~p s~pm [e’\(LD(“’)_LS(w))]. In cases where
the loss function is uniformly bounded by a constant, e.g., the zero-one loss, the log-partition func-
tion is bounded as well. Unfortunately, the NLL loss is unbounded, even when y is discrete. For
instance, consider fully connected case, where the input vector of the (k)-th layer is a function of
the parameters of all previous layers, i.e., xx (W, ..., Wi_1). The entries of x}, are computed from
the response of its preceding layer, i.e., Wy _1xy, followed by a transfer function o (-), i.e., Tx11 =
o (Wy—12y). Then, since the NLL is define as — log(p(y|z, w)) = —(Wizk), +log(>_, eWkzk)a),
if the rows in W}, consist of the vector rx; then the NLL loss increases with r, and is unbounded
when r — oo.

Our main theorem shows that for smooth loss functions, the log-partition function is bounded by the
expansion of the loss function, i.e., the norm of its gradient with respect to the data x. This property
is appealing since these gradients often decay rapidly for deep neural networks, as we demonstrate in
our experimental evaluation. Consequently deep networks enjoy tighter generalization bounds than
shallow networks. Our proof technique follows the Herbst Argument for bounding the log-partition
function using the Log-Sobolev inequality for Gaussian distributions (Ledoux, 2001).

Theorem 2. Assume (x,y) ~ D and x given y follows the Gaussian distribution. Let £(w, z,y) be
a smooth loss function (e.g., the negative log-likelihood loss). For any 6 € (0,1] and for any real
number A > 0, with probability at least 1 — 0 over the draw of the training set S the following holds
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simultaneously for any posterior probability density function: Eyq[Lp(w)] <

222 [I1V 2w,z f} e da]

m “(z,y)~D @ Y 05 a(—L(w,5,9))
log Eyype F(@.9)~D¢ + K L(q||p) +log(1/6
wavq[[s(’w)] g P ( H ) g( / )

A
3)

The Gaussian assumption for the data generating distribution D can be relaxed to any log-concave
distribution, using Gentil (2005), Corollary 2.5. We use the Gaussian assumption to avoid notational
overhead.

Broadly, the proposed bound is comprised of two terms: The first term is the log-partition
function which is dominated by the norm of the gradients with respect to the input, namely

o l(w,x,y)

%E(myy)wD [||VJE€(w7 z,y)|]2 fol PR ) da}, and it describes the expressivity of the

model over the prior distribution. The second term is the KL-divergence between the learned poste-
rior and the prior, and it measures the complexity of the learning process.

The proof starts with Eq. (1) and uses the Herbst Argument and the Log-Sobolev inequality to bound
the moment-generating function Eg..pm [e)‘(L p(w)=Ls (w))]. Specifically, the proof consists of three
steps. First we use the statistical independence of the training samples to decompose the moment
generating function

[AED @)=L ()] = ey pl(w,2:0) (E ﬁ(—é(w,@,.@))])m_ (4)

Es~pm (#.9)~ple

Then we use the Herbst argument to bound the function M (2) £ E(Q,Q)ND[G%(*K(M@’Q))] and
obtain the following bound:

A log M (0)4(2)2 [} QZM/(Q)—]\/I(Q)IogJ\l(a)da
M(E) —e g ( ) (m) f(] a2 M(a) . (5)

Finally we use the log-Sobolev inequality for Guassian distributions,
aM'(a) — M(a)log M(a) < 2- E(z,y)ND[e_“aw’””y)a2Hvxf(w, z, )% (6)

The above theorem can be extended to settings for which x is sampled from any log-concave dis-
tribution, e.g., the Laplace distribution. The log-concave setting modifies the gradient norm and the
log-Sobolev constant 2 in Eq. (6) that corresponds to Gaussian distributions, cf. Gentil (2005). We
avoid this generalization to simplify our mathematical derivations.

A detailed description of the proof can be found on Section 8.1 in the Appendix.

5 APPLICATION TO LOGISTIC REGRESSION

The bound in Theorem 2 is favorable when applied to deep networks since their gradients w.r.t. data
often decay rapidly. Nevertheless we can also apply our technique to shallow nets trained with NLL
loss. We obtain PAC-Bayesian bounds for multi-class logistic regression.

The NLL loss for multiclass logistic regression takes the form: —logp(y|z,w) = —(Wz), +
log(>_; eW)3) where x € RY is the data instance, y € {1,...,k} are the possible labels, and
W € RF*? is the matrix of parameters. The bound in Theorem 2 takes the form:

Corollary 1. Assume (x,y) ~ D and x € R? given y follows the Gaussian distribution. Let
l(w,x,y) = —log p(y|z, w) be the negative log-likelihood loss for k—class logistic regression. For
any § € (0,1], for any X > 0 and for any prior density function with variance o} < m/16)X*, with
probability at least 1 — § over the draw of the training set S the following holds simultaneously for
any posterior probability density function:

n kdlog(2) + K L(g||p) + 1og(1/5).

Equ[LD(w)] < Ewwq[LS(w)] A

(7

Full proof can be found on Section 8.2 in the Appendix, while we sketch the main steps of the proof
below. The above corollary shows that PAC-Bayesian bound for classification using the NLL loss

4
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Table 1: Different o, values experiments. All models composed of five fully connected layers with
ReLU activation functions.

Model Train loss Testloss Trainacc. Testacc. Gen.loss Bound
e | op= 0.05 0.07 0.08 98.48 97.73 0.02 0.2
v | o,=01 0.02 0.06 99.53 98.27 0.03 0.08
Z op =0.2 0.03 0.08 99.24 97.9 0.05 0.08
= op =0.3 0.09 0.11 97.2 96.66 0.02 0.67
= | op =0.05 0.24 0.32 92.03 88.55 0.09 0.2
..E op=0.1 0.11 0.25 93.28 89.50 0.1 0.13
2| 0p,=02 0.26 0.33 90.12 87.87 0.07 0.86
~ op =0.3 0.37 0.42 86.36 84.26 0.05 21.73

can achieve rate of A = m. This result augments the PAC-Bayesian for regression using the NLL
loss for regression, i.e., the square loss, of Germain et al. (2016).

The PAC-Bayesian bound for logistic regression is derived by applying Theorem 2. We begin by
realizing the gradient of log p(y|z,w) with respect to . We denote by w, the y—th row of the
parameter matrix W. Thus V; log p(y|w, z) = 3, p(§|z, w)(wy — wy), and the gradient norm is
upper bounded as follows: ||V logp(y|w, z)|[* < 23, |lw, . Plugging this result into Eq. (18)
we obtain the following bound:

2
Eunp.sopm[EP@Ls@)] < B, e% Zgllwsl?®, ®)

Finally, whenever Ao, < 1/m/8 we derive the bound

ax2 . 2 m kd
Eyppe ™ g llwgll < (m — 8/\202> )
P

A detailed description of the proof can be found on Section 8.2 in the Appendix.

6 EXPERIMENTS

In this section we study the derived bound empirically. We start with an ablation study of the
proposed bound using classification and regression models. Next, we present our results for multi-
class classification tasks using different datasets and different architectures. We conclude the section,
with an analysis of the models’ uncertainty estimates using for in-distribution examples and out-
of-distribution examples. All suggested models follows the a Bayesian Neural Networks (BNN)
perspective, in which we learn the mean and standard deviation for each learnable parameter in the
network where we define N (0, 013[ ) to be the prior over weights.

6.1 ABLATION

Effect of o,,. We start by exploring the effect of o}, on the models’ performance and the proposed
generalization bound. For that, we trained several models using o, € {0.05,0.1,0.2, 0.3} using the
MNIST (LeCun & Cortes, 2010) and Fashioin-MNIST Xiao et al. (2017) datasets. All results were
obtained using fully connected layers with ReLU as non-linear activation function. We optimized
the NLL loss function using Stochastic Gradient Descent (SGD) for 50 epochs with a learning rate
of 0.01 and momentum of 0.9. For each model we compute the average train and test loss and
accuracy together with the absolute difference between the training loss and the test loss, denoted as
Generalization Loss. Moreover, we compute the generalization bound as stated in Eq. (18) for all
settings. Results are summarized in Table 1.

Although o, = 0.2 reaches slightly better generalization bound on MNIST dataset, o, = 0.1
performs better over all calculated metrics, i.e., average loss and accuracy, both on MNIST and
Fashion-MNIST. Notice, for Fashion-MNIST we observed slightly better generalization gap while
using o, = 0.05, however, its loss and accuracy are worse comparing to o, = 0.1.

Effect of \. Recall, we bound the moment generating function using the norm of the functions’
gradient with respect to the data x (Eq. (18)). To construct tighter generalization bounds, we would
like to set A — m. However, in Eq. (18) X\ appears in both numerator and denominator. It is
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Table 2: Different depth level experiments. For fair comparison all models have roughly the same
number of parameters (~80K for MNIST, ~800K for Fashion-MNIST, ~1500 for regression). All
models composed of fully connected layers with ReL.U activation function.

Model Train loss Testloss Trainacc. Testacc. Gen.loss Bound
One layer 0.253 0.267 92.89 92.49 0.015 3.69
£ | Two layers 0.045 0.073 98.89 97.82 0.028 2.28
Z | Three layers 0.029 0.063 99.41 98.15 0.033 0.82
= | Four layers 0.024 0.065 99.49 98.14 0.041 0.13
Five layers 0.023 0.058 99.52 98.27 0.035 0.08
One layer 0.38 0.46 86.86 84.2 0.07 5.68
g | Two layers 0.21 0.31 92.52 88.9 0.1 4.9
£ | Three layers 0.21 0.31 92.34 88.7 0.1 1.08
& | Four layers 0.21 0.30 92.49 88.8 0.09 0.22
Five layers 0.19 0.29 93.3 89.6 0.1 0.13
One layer 45.7 106.5 - - 60.8 378.7
g | Two layer 8.6 15.7 - - 7.1 286.3
z Three layers 8.2 12.9 - - 4.7 105.3
m | Four layers 10.4 14.1 - - 3.7 45.9
Five layers 12.0 12.1 - - 0.1 319

hence not clear whether the bound will converge, which depends on the model architecture, which
is represented by the norm of its gradient. In other words, models with lower gradient norm could
benefit from larger values of A, hence tighter generalization bounds.

To further explore this property we trained five different models with different number of layers (1-
5). We look into both classification models while optimizing the NLL loss function, and regression
tasks while optimizing the Mean Squared Error (MSE) loss function. For classification we used
MNIST and Fashion-MNIST datasets, while for regression we use the Boston Housing dataset (for
the regression models, results were obtained using 5-fold cross validation). Except for the linear
models, we force all models to have roughly the same numbers of parameters (~80K for MNIST,
~800K for Fashion-MNIST, ~1500 for regression). For all models we set ReLU as non-linear
activation functions. We optimize all models for 50 epochs using SGD with learning rate of 0.01
and momentum of 0.9. Based on results of the prior paragraph, in all reported settings we set
op =0.1.

Results are reported in Table 2. It can be seen that deeper models produce tighter generalization
bounds on all three datasets. When considering model performance on down-stream classification
task we notice that in general, models with better generalization bounds perform slightly better in
terms of loss and accuracy. One possible explanation is that deeper models have smaller gradients
w.r.t. the input. To validate that we further computed the average squared gradient norm w.r.t. the
input as a function of the model depth, for both MNIST and Fashion-MNIST datasets. It can be seen
from Figure 1a that indeed the gradients decay rapidly as we add more layers to the network.

Next, we present in Figure 1b the generalization bound as a function of A for MNIST models. We
explored A € [\/m, m] and stopped the plot once the bound can no longer be computed. Experiments
using Fashion-MNIST produce similar plot and can be found on Section 8.7 in the Appendix.

Weights visualization. Since we consider Bayesian Neural Networks (BNNs) and optimize the KL-
divergence between the prior and the posterior over the weights, we can visualize the average mean
and standard deviation (STD) of the posterior as a function of the model depth. Figure 2a presents
this for MNIST and Fashion-MNIST models using four and five depth levels. As expected, we can
see that the average mean over the weights is zero for all layers while weights STD approaches 0.1.
For the MNIST models (Figure 2a top row), we observed the standard deviation are ~(.7 and not
0.1. We suspect this behaviour is due to fast optimization, hence the models do not have much signal
to push the model towards the prior distribution. Notice, in all settings the average STD of the model
weights decreases on the last layer. We observed a similar behavior also for the other models.

6.2 CLASSIFICATION

Next, we compare BNN models against two commonly used baselines. The first baseline is a soft-
max model using the same architecture as the BNN while adding dropout layers. The second base-

6
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Figure 1: Analysis of the proposed bound as a function network depth. In (a) we show the squared
gradient norm as a function of the layers of the model. In (b) we report the the generalization bound
as a function of ) for different deep net depth levels using the MNIST dataset.

1)
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Figure 2: In (a): average mean and STD of model weights as a function of depth level. Top row is
for MNIST, bottom row is for Fashion-MNIST. In (b): ECE and MCE metrics for Softmax, MC-
Dropout and BNN models using MNIST, Fashion-MNIST, and CIFAR10 (lower is better).

line is a Bayesian approximation using Monte Carlo Dropout (Gal & Ghahramani, 2015), denoted
as MC-Dropout, using different dropout rates and weight decay value of le-5.

To evaluate these approaches we conducted multi-class classification experiments using three clas-
sification benchmarks: MNIST, Fashion-MNIST, and CIFAR-10 (Krizhevsky & Hinton, 2009). We
report train set and test set loss and accuracy, together with their generalization gaps (e.g., the dif-
ference between the test and training loss and accuracy). Notice, as oppose to Dziugaite & Roy
(2017) our results are reported for multi-class classification and not for binary classification. For
completeness, we report binary classification results on Section 8.4 in the Appendix. The premise
beyond these type of experiments is to preset the benefit of learning the mean and STD separately
for each of the models’ parameters.

Results are reported in Table 7. For BNN and MC-Dropout models, we sample 20 times from
the posterior distribution and average their outputs to produce the model output. We also sampled
more times, however, we did not see any significant differences. We observe that BNN models
achieve comparable results to both baselines but with lower loss and accuracy generalization gaps.
Throughout the experiments we use dropout value of 0.3 for Softmax and MC-Dropout models and
op = 0.1 for BNN models. We chose these values after grid search over different dropout values
for all baseline models. A detailed description of all implementation details together with results for
more dropout rates can be found on Sections 8.4, 8.5, and 8.3 in the Appendix.

6.3 UNCERTAINTY ESTIMATES
Lastly, we evaluated the uncertainty estimates of BNN models against softmax models and MC-
Dropout models. We experimented with both in-distribution and out-of-distribution examples. The

purpose of the following experiments is to demonstrate that following the Bayesian approach to-
gether with the carefully picked prior can lead to better uncertainty estimates.

7
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Table 3: Results for multi-class image classification benchmarks. We report both loss and accuracy
metrics for the training set and test set, together with the generalization loss and accuracy.

Model Train loss Train acc. Testloss Testace. Gen.loss Gen. acc.
~ | Softmax 0.003 1.0 0.066 0.983 0.06 0.016
% MC-Dropout 0.003 1.0 0.066 0.983 0.06 0.016
= | BNN 0.034 0.995 0.064 0.982 0.03 0.012
g Softmax 0.143 0.947 0.288 0.906 0.14 0.041
2 | MC-Dropout 0.145 0.946 0.288 0.905 0.14 0.041
= BNN 0.251 0.905 0.321 0.881 0.07 0.024
2. Softmax 0.492 0.831 0.541 0.817 0.05 0.013
Eé MC-Dropout 0.493 0.829 0.544 0.818 0.05 0.011
% BNN 0.453 0.844 0.479 0.836 0.02 0.007

Table 4: Results for the out-of-distribution experiments. We report both loss and accuracy measures
for the training set and test set, together with entropy values. We explore training on MNIST (MN)),
Fashion-MNIST (FMN), and CIFAR-10. Testing was done on MNIST (MN), Fashion-MNIST
(FMN), NotMNIST, and SVHN. Reported losses and accuracies are computed using the out-of-
distribution dataset.

Model In-dis. Out-dis. Trainloss Train acc. Testloss Testacc. Trainent. Testent.
Softmax FMN MN 8.33 0.113 8.21 0.114 0.42 0.41
MC-Dropout FMN MN 7.84 0.112 7.74 0.112 0.45 0.45
BNN FMN MN 4.64 0.105 4.57 0.108 0.78 0.74
Softmax FMN NotMNIST 8.64 0.155 7.78 0.152 0.43 0.41
MC-Dropout FMN NotMNIST 8.39 0.123 7.82 0.087 0.54 0.55
BNN FMN NotMNIST 4.70 0.085 4.59 0.1 0.89 0.92
Softmax CIFAR-10 SVHN 3.55 0.112 3.60 0.106 1.51 1.52
MC-Dropout  CIFAR-10 SVHN 3.55 0.112 3.60 0.105 1.51 1.52
BNN CIFAR-10 SVHN 2.47 0.112 2.49 0.099 2.15 2.16

In-Distribution Examples. In the context of in-distribution examples we follow the suggestion
of Guo et al. (2017) and calculate the Expected Calibration Error (ECE) and Maximum Calibration
Error (MCE) for all three models. Figure 2b provides visual representation of the results. Results
suggest that BNNs produce better calibrated outputs for all settings, with two exception of ECE for
MNIST and MCE for CIFAR10.

Out-of-Distribution Examples. Next, we evaluated the uncertainty estimates using OOD examples.
We apply a model trained using dataset A to OOD examples from dataset B. We trained models on
MNIST, Fashion-MNIST and CIFAR-10 and assess prediction confidence using OOD examples
from MNIST, Fashion-MNIST, NotMNIST (Cohen et al., 2017), and SVHN (Netzer et al., 2011).
Results are summarized in Table 8. More OOD experiments using different dropout and prior rates
can be found on Sections 8.3, 8.6 in the Appendix.

All models performed at the chance level (~ 10% for 10 classes) for both OOD train and test sets.
When considering the loss, we observe significantly higher values for the softmax and MC-Dropout
models. These two findings imply that the softmax and MC-Dropout models are overly confident
and tend to output a high probability for the max label. Hence, we measure the average entropy
for all models. We expect BNNs to have higher entropy, due to the fact that it produces better
uncertainty estimates, i.e., its’ predictions for OOD samples are closer to a uniform distribution.
Indeed, results reported in Table 8 confirm this intuition.

7 DISCUSSION AND FUTURE WORK

In the following study we present a new PAC-Bayesian generalization bound for learning a deep
net using the NLL loss function. The proof relies on bounding the log-partition function using the
squared norm of the gradients with respect to the input. Experimental validation shows that the
resulting bound provides insight for better model optimization and prior distribution search. We
demonstrate that learning the mean and STD for all parameters together with optimize prior over the
parameters leads to better uncertainty estimates over the baselines and makes it harder to overfit.
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8 APPENDIX

8.1 PAC-BAYESIAN BOUNDS FOR THE NEGATIVE LOG-LIKELIHOOD LOSS - PROOF

Proof. We begin by using the statistical independence of the training samples to decompose the
following function:

ESNDm[e)\(LD(w)_LS(w))] _ eALD(w)]ESNDm[eA% ?;1(—e(w,z,;,y7:))] (10)
= o) HE(xmyi)ND[6%(4(%%%))] an

i=1
—  Alp(w) (E(m’y)ND[e%(—é(w,m,yi))])m_ (12)

Next we represent the moment generating function M (%) £ Egq, y)ND[em( {w,2.9))] ys-
ing K(o) £ LlogM(a). The fundamental theorem of calculus asserts K(2) — K(0) =

Is Am g ()da = A/m fo K'(a)da, where the last equality follows from a change of integra-

tion variable and the integral hmlts K'(a) refers to the derivative at . We then compute K’ («)
and K (0):

aM'(a) — M(a)log M («)

K'(a) = o2 (o) , (13)
K(0) = ali%l+ 1og];4(oz) I"Hopital M’(O)l/M(O) — M(0) = —Lp(w). (14)

Concluding the Herbst argument we obtain the following equality:

M(i) B em K(2) _ . 2 K(0)4(2)? [ K (a)da _ efﬁLD(w)jL(% S aM’ (a)anﬁ?‘i;ogMW)da (15)
m
Combining Eq. (12) with Eq. (15) we derive:

ESNDW [eA(LD(w)—LS(w))] — eALD(w) ( LD(w)J,-( A ) fl oM’ ((!)Qﬂig?;)log Al(a)da) (16)

A2 1 aM/(o)— I\/I(a)logJVI(a)d
m

0 a2 M (a) . (17

Finally we apply the log-Sobolev inequality for Gaussian distributions (cf. Ledoux (2001), Chapter
2), as described in Eq. (6). To complete the proof we combine Eq. (6) with Eq. (17) to obtain:

= €

22 1 E(y y)~ple” @0 a2 ve(w,z.y) |12

]ESNDm[e)‘(LD(w)fLS(w))] < GT 0 “Zar () o (18)
BB~ Ve, | ) < da (19)
O

8.2 APPLICATION TO LOGISTIC REGRESSION - PROOF

Proof. To apply Theorem 2 we start by realizing the gradient of logp(y|z,w) with respect to
x. We denote by w, the y—th row of the parameter matrix W. Thus V,logp(ylw,z) =
> P(Jlz, w)(wy — wy). Using the convexity of the norm function we upper bound the gradient
norm:

IV log p(ylw, z)[|* < Y~ p(ile, w)wy —wy|* < llwy* + Y Jwgl® <2 flwg* (20)

Next we use the fact that the gradient norm upper bound is independent of z to simplify the moment
generating function bound in Theorem 2. Since ¢(w, z,y) = — log p(y|z,w), we use the bound in
Eq. (20):

e—ozf(w,.r,y) —ol(w,z,y)

1 1
E ~D€
E:p N V;DE , T, 2/ __ <2 2/ (z,y) d
(z,y) D“| (w T y)” ) E(i,Q)NDea(_é(w7w’y)) E ”wa 0 ea( {(w,2,9))

G~
2n

12

Q
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Thus we are able to simplify Theorem 2 as follows

2
log Eype m 2 191" 4 K L(g||p) + log(1/5)
. .

Finally, we recall that p is the prior density function N (0, o ) Since the parameters are statistically
independent, this expectation decomposes to its kd parameters

]Ew~q[LD (w)] < Ew~q[LS (w)] + (22)

ax2 4/\
Ew pe ™ Z quH H HEw% SN0, 02)6 ey wly (23)
g=11i=1
ax2 2
And the result follows from the fact E,, ., N(0,02)€ ™ V= /%:
o0 1 75”*22 a2 2 /oo 1 71}2(%74* _ a2
e *remV duv= e e T dy = — e 207 (24)
/700 V2no, —0 V270, oo V2mp

2
for p* = m Whenever Ao, < /m/8 then /m < /2 and the result follows. O

8.3 ARCHITECTURES

The architechtures described in this sub-section are used for the multi-class, binary, and uncertainty
estimates experiments. We use multilayer perceptrons for the MNIST dataset, while we use convo-
lutional neural networks (CNNs) for both Fashion-MNIST and CIFAR-10. A detailed description
of the architectures is available in Table 5. We optimize the NLL loss function using SGD with a
learning rate of 0.01 and a momentum value of 0.9 in all settings. We use mini-batches of size 128
and did not use any learning rate scheduling. For the MC-Dropout models we experienced with dif-
ferent weight decay values, however found that le-5 provides the best validation loss, hence choose
this value.

Table 5: Model architectures. A description of the model architectures for MNIST, Fashion-MNIST
and CIFAR-10. The numbers inside the parenthesis indicate the layer output dimension. For all
models we use a ReLU activation function after each layer containing trainable weights.

Dataset No. of layers Architecture
MNIST 2 FC(300) — FC(10)
. Conv(10) — MaxPool(2) — Conv(20) —
Fashion-MNIST > MaxPool(2) — FC(120) —s FC(82) —s FC(10)
CIFAR-10 6 Conv(64) — Conv(64) — MaxPool(2) — Conv(64) —

MaxPool(2) — Conv(64) — MaxPool(2) — FC(128) — FC(10)

8.4 BINARY CLASSIFICATION

Experiments in this sub-section were conducted to show consistency with Dziugaite & Roy (2017).
We follow the same setting in which we use the MNIST dataset, where we group digits [0, 1, 2, 3,
4] into label zero, and labels [5, 6, 7, 8, 9] into label one. All experiments in this subsection were
conducted using multilayer perceptrons with one hidden layer consisting of 300 hidden neurons. We
use the Rectified Linear Unit (ReLU) as our activation function (Glorot et al., 2011). We optimize
the negative log-likelihood loss function using stochastic gradient descent (SGD) with a learning
rate of 0.1 and a momentum value of 0.9. We did not use any learning rate scheduling. SGD is run
in mini-batches of size 128. Each model was trained for 20 epochs.

We compared BNN to softmax models with dropout (Srivastava et al., 2014) rates chosen from the
set {0.0,0.3,0.5}. Hereby, a dropout with a rate of 0.0 means no dropout at all. In addition to
the training set and test set loss and accuracy, we measure the generalization loss, while setting
L p(w) to be the average test set loss. In the same manner, we measure the generalization accuracy,
while using the zero-one loss instead of the negative log-likelihood loss. Table 6 summarizes the
results. All models achieve comparable accuracy levels, however the softmax models suffer from
larger generalization errors both in terms of loss and accuracy. Notice, as expected, using higher
Bernoulli-dropout rates mitigates the generalization gap.

13
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Table 6: Results for experiments on a binary classification variant of MNIST. We report both loss and
accuracy metrics for the training set and test set, together with the generalization loss and accuracy.
Additionally, we report the KL-divergence value for the BNN models. We compare BNN to softmax
models trained with Bernoulli dropout. Dropout rates and o, values are in parenthesis next to model
name, e.g., ‘softmax (0.3)” refers to a softmax model with Bernoulli dropout of rate 0.3.

Model Train loss Train acc. Testloss Testacc. KL  Gen.loss Gen. acc.
Softmax (0.0) 0.001 1.0 0.076 0.983 - 0.0746 0.017
Softmax (0.3) 0.011 1.0 0.055 0.983 - 0.0439 0.013
Softmax (0.5) 0.021 0.993 0.059 0.982 - 0.0379 0.010

BNN (0.1) 0.046 0.984 0.064 0.979 4950 0.0187 0.005
BNN (0.3) 0.047 0.983 0.081 0.975 4196 0.0331 0.008

8.5 MULTI-CLASS CLASSIFICATION

Here we report results for multi-class classification for BNN and the baselines. Table 7 summarizes
the results. The main purpose of these additional experiments is to explore more dropout and o,
values for different models.

Table 7: Results for multi-class image classification benchmarks. We report both loss and accuracy
metrics for the training set and test set, together with the generalization loss and accuracy. Addition-
ally, we report the KL-divergence for the BNN models. We compare BNN to softmax models and
MC-Dropout models, trained with Bernoulli dropout. Dropout rates and o, values are in parenthesis
next to the model name, e.g., ‘softmax (0.5)” refers to a softmax model with Bernoulli dropout of
rate 0.5.

Model Train loss Train acc. Testloss Test acc. KL Gen. loss Gen. acc.
MNIST
Softmax (0.0) 0.0003 1.0 0.0699 0.983 - 0.070 0.02
Softmax (0.1) 0.0008 1.0 0.0651 0.984 - 0.064 0.016
Softmax (0.5) 0.0103 1.0 0.0682 0.983 - 0.058 0.014
Softmax(0.7) 0.012 1.0 0.0658 0.983 - 0.054 0.013
Softmax(0.9) 0.1026 0.97 0.1385 0.962 - 0.036 0.008
MC-Dropout (0.1) 0.0009 1.0 0.0651 0.984 - 0.064 0.016
MC-Dropout (0.5) 0.0111 1.0 0.0678 0.982 - 0.057 0.015
MC Dropout(0.7) 0.0178 0.99 0.0781 0.979 - 0.0603 0.016
MC Dropout(0.9) 0.1373 0.96 0.1771 0.953 - 0.0398 0.007
BNN (0.3) 0.0448 0.986 0.0647 0.98 4251 0.02 0.006
Fashion-MNIST
Softmax (0.0) 0.0159 0.995 0.6415 0.896 - 0.62 0.098
Softmax (0.1) 0.0899 0.966 0.3644 0.902 - 0.27 0.064
Softmax (0.5) 0.1941 0.927 0.3106 0.895 - 0.12 0.032
Softmax(0.7) 0.2361 0.915 0.333 0.892 - 0.097 0.023
Softmax(0.9) 0.8366 0.643 0.866 0.639 - 0.03 0.004
MC-Dropout (0.1) 0.0913 0.965 0.3587 0.901 - 0.27 0.064
MC-Dropout (0.5) 0.1973 0.926 0.3097 0.897 - 0.11 0.029
MC Dropout(0.7) 0.2535 0.913 0.3387 0.887 - 0.0852 0.026
MC Dropout(0.9) 0.908 0.608 0.9318 0.602 - 0.0238 0.006
BNN (0.3) 0.1841 0.932 0.2640 0.904 4869 0.08 0.028
CIFAR-10

Softmax (0.0) 0.3361 0.881 0.4974 0.841 - 0.16 0.039
Softmax (0.1) 0.4170 0.858 0.5064 0.828 - 0.09 0.351
Softmax (0.5) 0.5299 0.821 0.5712 0.804 - 0.04 0.017
Softmax(0.7) 0.4366 0.852 0.5494 0.815 - 0.113 0.037
Softmax(0.9) 1.2778 0.495 1.3491 0.499 - 0.071 -0.004
MC-Dropout (0.1) 0.4189 0.856 0.5071 0.830 - 0.09 0.026
MC-Dropout (0.5) 0.5293 0.821 0.5711 0.807 - 0.04 0.014
MC Dropout(0.7) 0.4595 0.843 0.5878 0.811 - 0.128 0.033
MC Dropout(0.9) 1.3045 0.483 1.3935 0.482 - 0.089 0.001
BNN (0.3) 0.5643 0.807 0.5699 0.806 18237 0.005 0.001
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8.6 UNCERTAINTY ESTIMATES

Additional experimental results for out-of-distribution examples can be found in Table 8.

Table 8: Results for the out-of-distribution experiments. We report both loss and accuracy measures
for the training set and test set, together with entropy values. We explore training on MNIST (MN),
Fashion-MNIST (FMN), and CIFAR-10. Testing was done on MNIST (MN), Fashion-MNIST
(FMN), NotMNIST, and SVHN. Reported losses and accuracies are computed using the out-of-
distribution dataset.

Model In-dis. Out-dis. Train loss Trainacc. Testloss Testacc. Trainent. Test ent.
Softmax (0.0) FMN MN 10.32 0.136 10.04 0.146 0.34 0.34
Softmax (0.1) FMN MN 9.41 0.114 9.28 0.116 0.42 0.41
Softmax (0.5) FMN MN 8.16 0.114 7.97 0.114 0.42 0.41
MC-Dropout (0.1) FMN MN 9.12 0.113 8.99 0.113 0.44 0.43
MC-Dropout (0.5) FMN MN 7.68 0.113 7.50 0.113 0.46 0.45
BNN (0.3) FMN MN 5.31 0.096 5.22 0.098 0.79 0.75
Softmax (0.0) MN FMN 14.94 0.109 15.03 0.104 0.28 0.29
Softmax (0.1) MN FMN 16.27 0.098 16.33 0.092 0.29 0.29
Softmax (0.3) MN FMN 18.07 0.094 18.15 0.089 0.30 0.31
Softmax (0.5) MN FMN 18.78 0.077 18.89 0.075 0.38 0.38
MC (0.1) MN FMN 16.28 0.098 16.34 0.093 0.29 0.29
MC (0.3) MN FMN 18.09 0.093 18.16 0.090 0.31 0.31
MC (0.5) MN FMN 18.83 0.076 18.93 0.076 0.37 0.38
BNN (0.1) MN FMN 6.69 0.102 6.70 0.099 0.72 0.73
BNN (0.3) MN FMN 8.67 0.069 8.71 0.069 0.55 0.57
Softmax (0.0) MN NotMNIST 13.48 0.078 13.84 0.085 0.27 0.27
Softmax (0.1) MN NotMNIST 15.45 0.061 16.03 0.065 0.23 0.24
Softmax (0.3) MN NotMNIST 19.38 0.071 19.25 0.085 0.20 0.18
Softmax (0.5) MN NotMNIST 21.61 0.063 21.89 0.048 0.18 0.18
MC (0.1) MN NotMNIST 15.46 0.061 16.05 0.065 0.23 0.24
MC (0.3) MN NotMNIST 19.44 0.072 19.23 0.076 0.20 0.18
MC (0.5) MN NotMNIST 21.73 0.062 21.92 0.053 0.19 0.19
BNN (0.1) MN NotMNIST 5.67 0.087 5.52 0.085 0.79 0.74
BNN (0.3) MN NotMNIST 7.71 0.060 7.99 0.070 0.57 0.57
Softmax (0.0) FMN NotMNIST 12.46 0.152 11.92 0.13 0.29 0.27
Softmax (0.1) FMN NotMNIST 9.71 0.080 9.71 0.074 0.32 0.38
Softmax (0.5) FMN NotMNIST 8.79 0.122 8.22 0.087 0.5. 0.52
MC-Dropout (0.1) FMN NotMNIST 9.45 0.079 9.45 0.076 0.34 0.4
MC-Dropout (0.5) FMN NotMNIST 8.23 0.156 7.47 0.157 0.46 0.44
BNN (0.3) FMN NotMNIST 4.74 0.123 4.72 0.11 0.79 0.81
Softmax (0.0) CIFAR-10 SVHN 4.93 0.115 5.13 0.109 0.94 0.96
Softmax (0.1) CIFAR-10 SVHN 3.78 0.123 3.86 0.115 1.51 1.54
Softmax (0.5) CIFAR-10 SVHN 3.11 0.121 3.19 0.131 1.73 1.75
MC-Dropout (0.1)  CIFAR-10 SVHN 3.79 0.123 3.87 0.115 1.50 1.53
MC-Dropout (0.5)  CIFAR-10 SVHN 3.10 0.122 3.17 0.132 1.74 1.77
BNN (0.3) CIFAR-10 SVHN 3.45 0.091 3.54 0.094 1.71 1.75

8.7 FIGURES

Additional figures for various experiments.
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Figure 3: Analysis of the proposed bound as a function network depth. We report the the gen-
eralization bound as a function of X for different deep net depth levels using the Fashion-MNIST
dataset.
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