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Abstract

We introduce Contrastive Multivariate Singular Spectrum Analysis, a novel unsu-
pervised method for dimensionality reduction and signal decomposition of time
series data. By utilizing an appropriate background dataset, the method transforms
a target time series dataset in a way that evinces the subsignals that are enhanced
in the target dataset, as opposed to only those that account for the greatest variance.
This shifts the goal from finding signals that explain the most variance to signals
that matter the most to the analyst. We demonstrate our method on an illustrative
synthetic example, as well as show the utility of our method in the downstream
clustering of electrocardiogram signals from the public MHEALTH dataset.

1 Introduction

Figure 1: Schematic illustrat-
ing the relations among PCA,
cPCA, MSSA, and cMSSA.

Unsupervised dimensionality reduction is a key step in many ap-
plications, including visualization [8] [10], clustering [5] [11], and
preprocessing for downstream supervised learning [13]. Principal
Component Analysis (PCA) is one well-known technique for dimen-
sionality reduction, which notably makes no assumptions about the
ordering of the samples in the data matrix X ∈ RN×D. Multivariate
Singular Spectrum Analysis (MSSA) [7] is an extension of PCA for
time series data, which been successfully applied in applications
like signal decomposition and forecasting [6] [9] [12]. In MSSA,
each row is read at a certain time step, and thus is influenced by the
ordering of the samples. MSSA works primarily by identifying key
oscillatory modes in a signal, which also makes it useful as a general-
purpose signal denoiser. However, MSSA (and PCA) is limited to
finding the principal components that capture the maximal variance
in the data. In situations where the information of interest explains
little overall variance, these methods fail to reveal it. Recently, ex-
tensions like contrastive PCA (cPCA) [1] have shown that utilizing
a background dataset Y ∈ RM×D can help better discover structure
in the foreground (target) X that is of interest to the analyst.

Contrastive Multivariate Singular Spectrum Analysis (cMSSA) gen-
eralizes cPCA and applies it to time series data. Figure 1 visualizes the relationships between the
four methods. As a contrastive method, cMSSA emphasizes salient and unique sub-signals in time
series data rather than just those that explain most of the signal variance. While standard MSSA is
useful for denoising a signal, cMSSA additionally “denoises” signals of structured but irrelevant
information.
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2 Contrastive Multivariate Singular Spectrum Analysis

2.1 Standard MSSA

Consider a centered one-channel times series x ∈ RT . We construct a Hankel matrix Hx ∈ RT ′×W

with window size W as follows:

Hx =


x1 x2 . . . xW
x2 x3 . . . xW+1

...
...

. . .
...

xT ′ xT ′+1 . . . xT


where T ′ = T − W + 1. To extend to the multivariate case, let X ∈ RT×D be a D-channel
time series that runs for T steps. We construct the Hankelized matrix HX with window W by
horizontally concatenating the per-channel Hankel matrices into a T ′-by-DW matrix: HX =
[Hx(1) ;Hx(2) ; . . . ;Hx(D) ]. Next we compute the covariance matrix CX ∈ RDW×DW for HX . The
next step is to perform the eigendecomposition on CX , yielding DW eigenvectors. Of these we take
the top K vectors with the largest corresponding eigenvalues. We denote e(k) as the eigenvector with
the kth largest eigenvalue. We collect the vectors into a matrix E ∈ RDW×K .

To transform our original time series X , we have two options: (a) Project X into the principal
component (PC) space defined by E: A = HXE or (b) use A to compute the kth reconstructed
component (RC) R(k) as done in the SSA literature:

R
(k)
tj =

1

Wt

Ut∑
t′=Lt

At−t′+1,k · e(k)(j−1)W+t′

where Lt = max(1, t − T +W ), Ut = min(t,W ), and Wt = Ut − Lt + 1. Summing up the
reconstructed components reproduces a denoised version of the original signal. For our purposes,
we opt instead to take the horizontal concatenation of the reconstructed components as the second
transform: R = [R(1);R(2); . . . ;R(K)]. To handle multiple time series, we vertically stack each
Hankelized matrix. The algorithm proceeds identically from there.

2.2 Contrastive MSSA

The modification to MSSA we introduce is via a new variable α ≥ 0 we call the contrastive
hyperparameter. We construct HY for another D-channel times series Y (the background data) via
the same process. It is not required that X and Y run for the same number of time steps, only that
their channels are aligned. We compute a contrastive covariance matrix C = CX −αCY and perform
the eigendecomposition on C instead of CX . The intuition for this is that by subtracting out a portion
of the variance in Y , the remaining variance in X is likely to be highly specific to X but not Y . This
is the key additional mechanism behind cMSSA — if α = 0, then no contrast is performed, and
cMSSA reduces down to just MSSA.

The choice of α is non-trivial. We outline a routine for auto-selecting a small number of promising
values for α in the appendices.

3 Experiments

3.1 Synthetic example

To illustrate cMSSA, we present a simple synthetic example. We generate an artificial one-channel
signal Y by sampling 500 sinusoids with different frequencies, amplitudes, phases, and vertical shifts.
White Gaussian noise sample from N (0, 1) is added in as well. We generate X in the same manner,
but add in a very specific sub-signal (Figure 2a) that has comparatively low variance compared to
the whole time series. The signals X and Y are generated independently as to rule out simple signal
differencing as an explanation. We take X as foreground and Y as background.

We set W = 100, α = 2, and use only the top K = 2 RCs. Figure 2 displays the reconstructions
computed by MSSA versus cMSSA, alongside the sub-signal that was injected into X . Specifically,
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(a) Sub-signal specific to the foreground data X .

(b) Without contrast: X . (c) After contrast.

Figure 2: Results of synthetic experiment. (a) The sub-signal that is present in the foreground X .
(b) The non-contrastive reconstruction of X , which simply resembles the original sum-of-sinusoids
signal. (c) The contrastive reconstruction of X , which teases out the desired sub-signal after using Y
as background.

we see that the cMSSA reconstruction shown in Figure 2c yields a noisy approximation of the
subsignal of interest, Figure 2a. Note that the variance of the noise is comparable to the variance of
the sub-signal—more noise would eventually overpower cMSSA’s ability to extract the sub-signal.

3.2 Clustering of electrocardiograms

Data: The data used in our experiments is taken from the public MHEALTH dataset [3]. In the
dataset, 10 individuals were asked to perform 12 physical activities as various sensors recorded
various motion data. In addition, the researchers also collected two-lead electrocardiogram (ECG)
readings, which we take as dual-channel time series data. In addition to the 12 activities, there is a
13th NULL class that represents ECG signals collected between each activity but which don’t have
labels themselves. To increase the number of individual time series, we partition each one in half.

For our experiments, the foreground data are all time series labelled as either JOGGING, RUNNING,
JUMPING, or CYCLING, 20 time series each for a total of 80. These four, being the more cardio-
intensive of the 12, had much more signal activity that would be needed to be sifted through, exactly
the type of environment cMSSA is intended to handle. For background data, we take all 272 time
series belonging to the NULL class.

Setup: To evaluate the effectiveness of cMSSA over its non-contrastive counterpart, we run both
cMSSA and MSSA with a variety of hyperparameter settings. For each fitted model, we trans-
form the foreground data to both the PC and RC spaces. Once the transformations are had, we
perform spectral clustering into 4 clusters and compare the resulting clusters to the activity la-
bels on the time series data, which were hitherto withheld from the algorithms. There are 3
hyperparameters: the window size W ∈ {8, 16, 32, 84, 18}, the number of desired components
K ∈ {1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20}, and the contrastive parameter α. We set K only if the value
is less than or equal to DW (where D = 2 in this case). For α, we used our automatic routine to
compute five key values to try for each setting of W and K. Of these five, one of them is zero,
representing standard MSSA. Altogether, we run 530 experiments, 106 of which are standard MSSA,
and the remaining cMSSA.

The spectral clustering requires an affinity matrix S ∈ RN×N which contains the similarities between
any pair of time series, where N is the number of times series we wish to cluster. Let X(i) and X(j)

be two time series. Using the FastDTW metric [14] with a euclidean norm1, we define the similarity
Sij to be 1

FASTDTW(X(i),X(j))+1
. The cluster evaluation uses the well-rounded BCubed metric [2] to

compute the precision, recall, and F1 harmonic mean for a particular cluster prediction. We also
perform the evaluation in the model-free sense where we simply cluster the time series with no
transformation as a basic baseline.

1FastDTW is not a symmetric metric, so we take the minimum between the two orderings of the operands.
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Table 1: Best cMSSA and MSSA results in terms of maximum F1 score. Model-free clustering
baseline also included. The transform column indicates which transform was applied before clustering.
Best metric per column is bolded.

Model W K Transform Precision Recall F1

Model-free - - None 50.49 48.82 49.54
MSSA 16 16 A 57.67 64.63 60.95
cMSSA (α = 12.41) 128 1 A 65.44 75.88 70.27

Figure 3: Plot of paired F1 scores. Each
point is for a particular setting of W
and K. The contrastive F1 score used
is the maximum of the four runs (one
per α tried) for that setting of the hyper-
params. x = y line drawn as guidance.
The points look at only those where the
transform used is A.

Results: Table 1 reports the best representative con-
trastive and non-contrastive models, comparing both to the
model-free baseline. We observe a number of things. First,
both MSSA and cMSSA outperform the model-free base-
line. Second, cMSSA has 9-10 point gains over cMSSA
in each of precision, recall, and F1. Third, both find that
using A over R as the transform yielded better results.
Finally, and most interestingly, is the number of PCs used.
Of the DW number of PCs available, MSSA gets its best
performance using half (16 out of 32). The ratio is very
different for cMSSA, which only uses one PC out of the
maximum of 256 available. This highlights an interest-
ing efficiency of cMSSA. By filtering out unnecessary
components, the remaining not only account for less sig-
nal variance, but provide diminishing returns with each
subsequent component used.

Figure 3 shows a more granular view of the general gains
to be had from using cMSSA. For a particular setting of
W and K, we plot the F1 score for the non-contrastive
case vs the contrastive case. Due to the four values of αs
used in the contrastive case, we take the model that had
the greatest F1. The line is a visual guide – points below
the line mean that the contrast was useful for a particular
setting of the hyperparameters.

4 Conclusion

We have developed cMSSA as a general tool for dimen-
sionality reduction and signal decomposition of temporal data. By introducing a background dataset,
we can efficiently identify subsignals that are enhanced in one time series data relative to another.
In an empirical experiment, we find that for virtually any setting of the hyperparameters, cMSSA
is more effective at unsupervised clustering than MSSA, contingent on appropriate choices for the
foreground and background data.

Some basic heuristics should be kept in mind when choosing to use cMSSA as an algorithm. First,
the data ideally should exhibit periodic behavior, as MSSA (and by extension, cMSSA) is particular
well suited to finding oscillatory signals. Second, X and Y should not be identical, but should share
common structured signal such that the contrast retains some information in the foreground. As an
example, the ECG foreground data consisted of subjects performing very specific activities, whereas
the background consisted of a corpus of unlabelled ECG signals in which the participants performed
no specific activity. We would expect a good amount of overlap in signal variance, but signals specific
to the four activities would be under-represented in the background. Thus contrast is a plausible way
to extract this signal.

Finally, we note that the only hyper parameter of cMSSA is the contrast strength, α. In our default
algorithm, we developed an automatic scheme for selecting the most informative values of α (see
the Appendix A). The experiments performed for this paper use the automatically generated values,
and we believe this default will be sufficient in many use-cases of cMSSA. The user may also input
specific values for α if more fine-tuned exploration is desired.
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Appendices
A Routine for candidate α generation

Algorithm 1 Procedure for generating several candidate αs.
Require: Minimum α to consider αmin, maximum α to consider αmax, total number of αs to

consider n, and number of αs to return m, foreground signal X , background signal Y , window
W , and number of components K.

1: procedure GENERATEALPHAS(αmin, αmax, n, m, X , Y , W , K)
2: C ← LOGSPACE(αmin, αmax, n) . Get n αs spaced evenly in log-space.
3: C ← C ∪ {0} . Include zero in candidate set.
4:
5: for α(i) ∈ C do
6: E(i) ← GETEIGEN(X , Y , W , K, α(i)) . Use cMSSA to compute eigenvectors.
7: end for
8:
9: S ← EMPTY(Rn+1×n+1) . Initialize affinity matrix.

10: for i ∈ {1, . . . , n+ 1} do
11: for j ∈ {i, . . . , n+ 1} do
12: s←

∥∥∥E(i)TE(j)
∥∥∥
∗

. Take nuclear norm of matrix product.
13: Si,j ← s
14: Sj,i ← s
15: end for
16: end for
17:
18: Z ← SPECTRAL(S, C, m) . Get m clusters.
19:
20: C∗← {0} . Set of best αs to return. Zero always included.
21: for z ∈ Z do
22: if 0 /∈ z then . We ignore all αs that were clustered with zero.
23: α∗ ← MEDIOD(z, S) . Get α with greatest mean affinity in its cluster.
24: C∗ ← C∗ ∪ {α∗}
25: end if
26: end for
27: return C∗, set of m best αs, including zero.
28: end procedure
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B Extra figures

Figure 4: Box plots showing the distributions of F1 scores for particular values of W , differentiating
between contrastive (orange) and non-contrastive (blue) runs.

Figure 5: Box plots showing the distributions of F1 scores for particular values of K, differentiating
between contrastive (orange) and non-contrastive (blue) runs.
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(a) Cycling

(b) Jumping

(c) Jogging

(d) Running

Figure 6: Per-activity random time series samples from the MHEALTH dataset. The dual channels
are overlayed.
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(a) Cycling

(b) Jumping

(c) Jogging

(d) Running

Figure 7: Per-activity random time series samples from the MHEALTH dataset, after performing
MSSA with W = 128 and K = 1. The dual channels are overlayed.
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(a) Cycling

(b) Jumping

(c) Jogging

(d) Running

Figure 8: Per-activity random time series samples from the MHEALTH dataset, after performing
cMSSA with W = 128, K = 1, and α ≈ 12.41. The dual channels are overlayed.
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(a) Cycling

(b) Jumping

(c) Jogging

(d) Running

Figure 9: Per-activity random time series samples from the MHEALTH dataset, after performing
MSSA with W = 16 and K = 16. The dual channels are overlayed.
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