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Abstract

Neural networks in the brain and in neuromorphic chips confer systems with the ability to perform multiple cognitive tasks. However,1

both kinds of networks experience a wide range of physical perturbations, ranging from damage to edges of the network to complete2

node deletions, that ultimately could lead to network failure. A critical question is to understand how the computational properties of3

neural networks change in response to node-damage and whether there exist strategies to repair these networks in order to compensate4

for performance degradation. Here, we study the damage-response characteristics of two classes of neural networks, namely multilayer5

perceptrons (MLPs) and convolutional neural networks (CNNs) trained to classify images from MNIST and CIFAR-10 datasets6

respectively. We also propose a new framework to discover efficient repair strategies to rescue damaged neural networks. The7

framework involves defining damage and repair operators for dynamically traversing the neural networks loss landscape, with the8

goal of mapping its salient geometric features. Using this strategy, we discover features that resemble path-connected attractor sets in9

the loss landscape. We also identify that a dynamic recovery scheme, where networks are constantly damaged and repaired, produces10

a group of networks resilient to damage as it can be quickly rescued. Broadly, our work shows that we can design fault-tolerant11

networks by applying on-line retraining consistently during damage for real-time applications in biology and machine learning.12

1 Introduction13

Living neural networks in the brain and artificial networks engineered on neuromorphic chips [1] perform an array of computational and14

information processing tasks [2, 3, 4]. However, both these networks are susceptible to physical perturbations that lead to a decline in15

functional performance [5]. Understanding how damage of neural units in a network leads to cognitive decline is of great interest to16

biomedical sciences as well as to AI practitioners implementing artificial networks on neuromorphic hardware. In addition, deciphering17

techniques to ‘search’ for neural networks that are resilient to perturbation and strategies that efficiently rescue damaged networks to18

compensate for performance degradation are of great interest to both the communities. So far, researchers have only focused on studying19

resilience of neural nets to perturbation of input signals [6] by generating adversarial examples [7] that highlight the vulnerability of neural20

nets. However, not much has been done towards understanding the decline in performance due to physical perturbation of neural networks21

[8] and unraveling repair strategies to rescue damaged networks.22

In this paper, inspired by the powerful paradigms introduced by deep learning, we attempt to understand the computational and mathematical23

principles that impact the ability of neural networks to tolerate damage and be repaired. We characterize the response of two classes24

of neural networks, namely multilayer perceptrons (MLP’s) and convolutional neural nets (CNN’s) to node-damage and propose a new25

framework that identifies strategies to efficiently rescue damaged networks in a principled fashion.26

Our key contribution is the introduction of a framework that conceptualizes damage and repair of networks as operators of a dynamical27

system in the high-dimensional parameter space of a neural network. The damage and repair operators are used to dynamically traverse the28

landscape with the goal of mapping local geometric features [9, 10] (like, fixed points, limit-cycles or point/line-attractors) of the neural29

networks’ loss landscape. The framework led us to discovering that the iterative application of damage and repair operators results in30

networks that are highly resilient to node-deletions as well as guides us to uncover the presence of geometric features that resemble a31

path-connected attractors set, in many respects, in the neural networks’ loss landscape. Attractor-like geometric features in the networks’32

loss landscape explains why the iterative damage-repair strategy always results in the rescue of damaged networks within a small number of33

training cycles.34

2 Susceptibility of neural networks to damage35

The first question we ask in this paper is how do neural networks respond to physical perturbations and how does it affect their functional36

performance. We characterize the impact of neural damage on ‘cognitive’ performance of neural networks by tracking the performance of37

two classes of artificial neural networks, namely MLPs and CNNs, to deletion of neural units from the network. The MLPs and CNNs were38

trained to perform simple cognitive tasks like image classification on MNIST and CIFAR-10 datasets respectively before the networks were39

perturbed.40
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To damage a node i in the hidden layer of an MLP or in the fully connected layer of a CNN, we zero all connections between node i and the41

rest of the network. And, to damage a node j in the convolutional layer of a CNN, we zero the entire feature map. In this paper, we are42

specifically interested in node-damage as our perturbation because of its similarity in phenomena to neuron death in biological networks43

and node-failures in neuromorphic hardware.44

(a) MLP 1-hidden layer (MNIST) (b) MLP 2-hidden layers (MNIST) (c) CNN (CIFAR-10)

Figure 1: Damage of neural units in artificial neural networks (Phase transition) (a) Performance of MLP with 1 hidden layer in
MNIST classification (b) Performance of MLP with 2 hidden layers in MNIST classification (c) Performance of CNN in CIFAR-10
classification

We observe a steep increase in the rate of decline of functional performance as we incrementally delete nodes from either an MLP with 145

hidden layer (Fig-1a), an MLP with 2 hidden layers (Fig-1b) or a CNN with 2 convolutional layers, a pooling layer and 2 fully connected46

layers (Fig-1c). We refer to this discrete jump in the rate of decline of performance as a phase transition.47

The existence of a phase transition shows that neural nets (MLP’s and CNN’s) damaged above their respective critical thresholds are not48

resilient to any further perturbation. We are interested in deciphering strategies that enable the quick rescue of damaged neural nets and also49

want to identify networks that are more resilient to perturbation.50

3 Can we rescue these damaged networks?51

We ask whether it is fundamentally possible to rescue damaged networks in order to compensate for their performance degradation. To do52

so, we re-train damaged networks via two strategies mentioned below: (Strategy-1: Functional sub-network retraining) Purely re-train53

the ’functioning’ sub-network, ie the weights connecting damaged nodes are kept at zero, while enabling plasticity for weights connecting54

the remaining undamaged nodes. (Strategy-2: Node replacement) Replace the damaged units with ‘embryonic’ nodes and retrain the55

network such that ‘embryonic’ nodes are more plastic than the nodes in the functioning sub-network.56

(a) Repair strategy-1 (b) Repair strategy-2 (c) Retrain cycles

Figure 2: Repairing damaged networks (a,b) The red line is the accuracy of the network after m nodes have been damaged. The green
line is the accuracy of network after it has been retrained using one of two strategies. (a) [Strategy-1] Purely retraining the functioning
sub-network. (b) [Strategy-2] Replacing damaged nodes with ‘embryonic’ nodes and selectively retraining only the newly replaced nodes.
(c) The number of training cycles required for repairing a damaged network with m nodes via both strategies.

The plots in figure-2 show that damaged neural networks can be rescued to regain their original functional performance when re-trained57

via both strategies 1 and 2. However, they require a large number of training cycles (epochs) to be effectively rescued (figure-2c). The58

requirement of a large number of training cycles for the effective rescue of a neural network reduces the feasibility of either strategy as it59

isn’t ideal for both, living neural networks in the brain or artificial networks implemented on neuromorphic hardware to be re-trained for60

extended periods of time to recover from small damages to its network.61

4 Iterative repair of networks v/s batch repair of networks62

Inspired by the dynamic recovery paradigm adopted by most biological systems, where networks are constantly being perturbed and63

repaired, we propose an iterative damage-repair strategy and test whether this produces networks that are more resilient to perturbation as64

well as if it allows us to rescue damaged networks with much lesser training cycles.65

2



Figure 3: Iterative damage-
repair strategy enables swift re-
covery of the network, when
compared to batch-recovery of
the network achieved by either
strategy 1 or 2.

Figure-3 demonstrates that the iterative damage-repair paradigm can rescue neural networks to their66

original functional performance within 15 training cycles! This is in stark contrast to the batch recovery67

of networks, either via strategy 1 or 2, as they need up to 35 training cycles to repair networks with small68

damages. It is important to note that although iterative-rescue constantly damages and repairs networks,69

the repair operation doesn’t revive any of the damaged nodes, ie the damaged nodes and its weights70

remain 0. We stress that the constant perturbation and repair strategy allows us to reach a favorable71

‘space’ in the networks’ loss manifold that contains high performing, more resilient, sparser networks.72

As the iterative process of damage and repair always enabled the fast recovery of a damaged network73

(irrespective of the number of damaged units), this was surprising to us and we were interested in74

determining if the loss landscape manifold had ‘special’ geometric features that enabled this rescue.75

To map geometric features of a neural networks’ loss landscape, we formally conceptualize the iterative76

damage-repair paradigm as a dynamical system that involves the application of a damage and repair77

operator (r) on a neural network (w).78

We define w to be a feed-forward neural network with n nodes and N total connections.79

w = [ ~w1, ~w2, ..., ~wi, ..., ~wn]

Here, ~wi is the set of connections made by node i with the previous layer in the network. By definition, ~wi = φ, if node i is in the first layer.80

We also have:81

n∑
i=1

Dim( ~wi) = N and w ∈ RN

To damage a neural network, we define a damage operator Di, that damages node i in the network.82

Di : RN −→ RN

w′ = Di(w)

{
~w′
i = 0,
~w′
j = ~wj

To repair a neural network, we define a rescue operator r{i,j}. Here {i, j} refers to the set of damaged nodes. The rescue operator forces the83

network to descend the loss manifold, while fixing nodes within the set and their connections to zero. Rescue of the network is achieved by84

performing a constrained gradient descent on the networks’ loss manifold.85

r{i,j} : RN −→ RN

w′ = r{i,j}(w)

{
~w′
i = 0, ~w′

j = 0,
~w′
k = ~wk − η ∂L

∂ ~wk

where, η is the gradient step-size and ∂L
∂ ~wk

is the gradient of the loss function of the neural network along ~wk86

A damage-repair sequence involves the application of a damage operator followed by a repair operator.87

w′ = r{i}(Di(w))

A stochastic damage-repair sequence involves the random sampling of a damage operator from D, followed by the application of an88

appropriate repair operator (ensuring that gradient descent is performed on remaining undamaged nodes).89

w′ = r{i}(Di(w)) where, i ∼ P (i) = 1

n

We define a random variable D to sample an operator Di from the set of all possible damage operators = {Di : i ∈ {1, ..., n}}. An iterative90

damage-repair sequence is the repeated application of a random damage operator D coupled with a deterministic repair operator r{i,j,k,...},91

that ensures all damaged nodes maintain a zero edge-weight, while other weights are plastic. Here, we show the long-hand and short-hand92

notation for the iterative application of damage-repair operators.93

w′ = r{i,j,k}(Dk(r{i,j}(Dj(r{i}(Di(w)))))) where, i, j, k ∼ P (i, j, k) = 1

n3

w′ = (r ◦D)3(w)

We hypothesize that ∃ an open set of networks U , that constitutes an invariant set, where:94

if w ∈ U, then
(r ◦D)m(w) ∈ U ∀m
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We also claim that the invariant set U is path-connected, ie given any two points from this topological space (U ), there exists a path (γ)95

that connects the two points, starting at one point and ending at the other.96

For any two points, w1 and w2 ∃γ : [0, 1] −→ U, such that:
γ(0) = w1, γ(1) = w2 and γ(t) ∈ U ∀t ∈ [0, 1]

Our numerical results strongly suggests the presence of an invariant, path-connected topological space U in the neural networks’ loss97

manifold. In our experiments, the invariant, path-connected set is a collection of trained networks, whose image corresponding to the98

application of a damage and repair operator lies in the same set, visualized by the thick black arc (as shown in figure-4) obtained by tSNE99

embeddings of the high-dimensional network (w). We observe that iterative application of the damage-repair operator on a network sampled100

from U results in a series of networks that belong to the same set U . This is observed in fig-4b & fig-4d. The red lines indicate damage of101

network, while the green lines correspond to repair of damaged networks. This hints at the possibility that U is an invariant set. We also102

interpolated between all pairs of networks sampled from U and observed that all the interpolated networks were present in U as well.103

(a) (b) (c) (d)

Figure 4: Geometric features of the neural networks’ loss landscape: The x,y axes are tSNE embedding and z axes is the loss of the
network (a,b) [tSNE] MLP with 1-hidden layer network (c,d) [tSNE] of MLP 2-hidden layers network (b,d) The green and red lines refer to
repair and damage of networks respectively.

5 Discussion104

In this paper, we address a pertinent question of how neural networks in the brain, or in engineered systems respond to damage of their units105

and whether there exists efficient strategies to repair damaged networks. We observe a phase transition behavior as we incrementally delete106

nodes from the neural network as the rate of decline of performance steeply increases after crossing a critical number of node deletions.107

We discover that damaged networks can be rescued and the iterative damage-rescue strategy produces networks that are highly resilient108

to perturbations, and can be rescued within a small number of training cycles. This is enabled by the putative presence of an invariant,109

path-connected set in the networks’ loss manifold. Although we have shown numerical results that strongly suggest the presence of invariant110

sets in the loss manifold, our future work will focus on analytically proving the presence of these topological spaces in the loss manifold,111

through the formalization presented in the paper, and the use of the Koopman operator machinery, amongst others.112
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