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Abstract

In this paper, we propose a general theoretical method for analyzing the risk
bound in the presence of adversaries. Specifically, we try to fit the adversarial
learning problem into the minimax framework. We first show that the original
adversarial learning problem can be transformed into a minimax statistical learning
problem by introducing a transport map between distributions. Then, we prove
a new risk bound for this minimax problem in terms of covering numbers under
a weak version of Lipschitz condition. Our method can be applied to multi-class
classification and popular loss functions including the hinge loss and ramp loss. As
some illustrative examples, we derive the adversarial risk bounds for SVMs and
deep neural networks, and our bounds have two data-dependent terms, which can
be optimized for achieving adversarial robustness.

1 Introduction

Machine learning models, especially deep neural networks, have achieved impressive performance
across a variety of domains including image classification, natural language processing, and speech
recognition. However, these techniques can easily be fooled by adversarial examples, i.e., carefully
perturbed input samples aimed to cause misclassification during the test phase. This phenomenon was
first studied in spam filtering [14, 31, 32] and has attracted considerable attention since 2014, when
Szegedy et al. [42] noticed that small perturbations in images can cause misclassification in neural
network classifiers. Since then, there has been considerable focus on developing adversarial attacks
against machine learning algorithms [21, 9, 8, 4, 44], and, in response, many defense mechanisms
have also been proposed to counter these attacks [22, 20, 15, 41, 33]. These works focus on creating
optimization-based robust algorithms, but their generalization performance under adversarial input
perturbations is still not fully understood.

Schmidt et al. [38] recently discussed the generalization problem in the adversarial setting and
showed that the sample complexity of learning a specific distribution in the presence of l∞-bounded
adversaries increases by an order of

√
d for all classifiers. The same paper recognized that deriving

the agnostic-distribution generalization bound remained an open problem [38]. In a subsequent
study, Cullina et al. [13] extended the standard PAC-learning framework to the adversarial setting by
defining a corrupted hypothesis class and showed that the VC dimension of this corrupted hypothesis
class for halfspace classifiers which controlled the sample complexity does not increase in the
presence of an adversary. While their work provided a theoretical understanding of the problem of
learning with adversaries, it had two limitations. First, their results could only be applied to binary
problems, whereas in practice we usually need to handle multi-class problems. Second, the 0-1 loss
function used in their work is not convex and thus very hard to optimize.

In this paper, we propose a general theoretical method for analyzing generalization performance in
the presence of adversaries. In particular, we fit the adversarial learning problem into the minimax
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framework [28]. In contrast to traditional statistical learning, where the underlying data distribution
P is unknown but fixed, the minimax framework considers the uncertainty about the distribution P
by introducing an ambiguity set and then aims to minimize the risk with respect to the worst-case
distribution in this set. Motivated by Lee & Raginsky [28], we first note that the adversarial expected
risk over a distribution P is equivalent to the standard expected risk under a new distribution P ′.
Since this new distribution is not fixed and depends on the hypothesis, we instead consider the worst
case. In this way, the original adversarial learning problem is reduced to a minimax problem, and we
use the minimax approach to derive the risk bound for the adversarial expected risk. Our contributions
can be summarized as follows.

• We propose a general method for analyzing the risk bound in the presence of adversaries.
Our method is general in several respects. First, the adversary we consider is general and
encompasses all lq bounded adversaries. Second, our method can be applied to multi-class
problems and commonly used loss functions such as the hinge loss and ramp loss, whereas
Cullina et al. [13] only considered the binary classification problem and the 0-1 loss.

• We prove a new bound for the local worst-case risk under a weak version of Lipschitz
condition. Our bound is always better than that of Lee & Raginsky [29], and can recover the
usual risk bound by setting the radius εB of the Wasserstein ball to 0, whereas they give a
εB-free bound.

• We derive the adversarial risk bounds for SVMs and deep neural networks. Our bounds
have two data-dependent terms, suggesting that minimizing the sum of the two terms can
help achieve adversarial robustness.

The remainder of this paper is structured as follows. In Section 2, we discuss related works. Section 3
formally defines the problem, and we present our theoretical method in Section 4. The adversarial
risk bounds for SVMs and neural networks are described in Section 5, and we conclude and discuss
future directions in Section 6.

2 Related work

Our work leverages some of the benefits of statistical machine learning, summarized as follows.

2.1 Generalization in supervised learning

Generalization is a central problem in supervised learning, and the generalization capability of
learning algorithms has been extensively studied. Here we review the salient aspects of generalization
in supervised learning relevant to this work.

Two main approaches are used to analyze the generalization bound of a learning algorithm. The first
is based on the complexity of the hypothesis class, such as the VC dimension [45, 46] for binary
classification, Rademacher and Gaussian complexities [7, 5], and the covering number [53, 52, 6].
Note that hypothesis complexity-based analyses of generalization error are algorithm independent
and consider the worst-case generalization over all functions in the hypothesis class. In contrast,
the second approach is based on the properties of a learning algorithm and is therefore algorithm
dependent. The properties characterizing the generalization of a learning algorithm include, for
example, algorithmic stability [11, 39, 30], robustness [50], and algorithmic luckiness [24]. Some
other methods exist for analyzing the generalization error in machine learning such as the PAC-
Bayesian approach [35, 2], compression-based bounds [27, 3], and information-theoretic approaches
[49, 1, 37].

2.2 Minimax statistical learning

In contrast to standard empirical risk minimization in supervised learning, where test data follow the
same distribution as training data, minimax statistical learning arises in problems of distributionally
robust learning [16, 18, 28, 29, 40] and minimizes the worst-case risk over a family of probability
distributions. Thus, it can be applied to the learning setting in which the test data distribution differs
from that of the training data, such as in domain adaptation and transfer learning [12]. In particular,
Gao & Kleywegt [18] proposed a dual representation of worst-case risk over the ambiguity set of
probability distributions, which was given by balls in Wasserstein space. Then, Lee & Raginsky
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[28] derived the risk bound for minimax learning by exploiting the dual representation of worst-case
risk. However, their minimax risk bound would go to infinity and thus become vacuous as εB → 0.
Despite that the same authors later presented a new bound [29] by imposing a Lipschitz assumption
to avoid this problem, their new bound was εB-free and cannot recover the usual risk bound by setting
εB = 0. Sinha et al. [40] also provided a similar upper bound on the worst-case population loss over
distributions defined by the Wasserstein metric via a Lagrangian penalty formulation, and their bound
was efficiently computable by a principled adversarial training procedure, which provably certified
distributional robustness. However their training procedure required that the penalty parameter should
be large enough and thus can only achieve a small amount of robustness. Here we improve on the
results in Lee & Raginsky [28, 29] and present a new risk bound for the minimax problem.

2.3 Learning with adversaries

The existence of adversaries during the test phase of a learning algorithm may render predictions
made by learning system unthrustworthy. There is extensive literature on analysis of adversarial
robustness [47, 17, 23, 19] and design of provable defense against adversarial attacks[48, 36, 33, 40],
in contrast to the relatively limited literature on risk bound analysis of adversarial learning. A
comprehensive review of works on adversarial machine learning can be found in Biggio & Roli
[10]. Concurrently to our work, Khim & Loh [25] and Yin et al. [51] provided different approaches
to deriving adversarial risk bounds. Khim & Loh [25] derived adversarial risk bounds for linear
classifiers and neural networks using a method called supremum transform. However, their approach
can only be applied to binary classification. Yin et al. [51] gave similar adversarial risk bounds
through the lens of Rademacher complexity. Although they provided risk bounds in multi-class
setting, their work focused on l∞ adversarial attacks and was limited to one-hidden layer ReLU
neural networks. After the initial preprint of this paper, Khim & Loh [26] extended their method to
multi-class setting by considering the binary supremum transform on each component of classifier,
which as a result incurred an extra factor of the number of classes in their bound. Instead we used
covering number analysis to derive the multi-class bound, which can avoid explicit dependence on
this number.

3 Problem setup

We consider a standard statistical learning framework. Let Z = X × Y be a measurable instance
space where X and Y represent feature and label spaces, respectively. We assume that examples
are independently and identically distributed according to some fixed but unknown distribution P .
The learning problem is then formulated as follows. The learner considers a classH of hypothesis
h : X → Y ′ where Y ′ sometimes differs from Y and a loss function l : Y ′ × Y → R+. The learner
receives n training examples denoted by S = ((x1, y1), (x2, y2), · · · , (xn, yn)) drawn i.i.d. from
P and tries to select a hypothesis h ∈ H that has a small expected risk. However, in the presence
of adversaries, there will be imperceptible perturbations to the input of examples, which are called
adversarial examples. Throughout this paper, we assume that the adversarial examples are generated
by adversarially choosing an example from neighborhood N(x) = {x′ : x′ − x ∈ B} where B is
a nonempty set. Note that the definition of N(x) is very general and encompasses all lq-bounded
adversaries. We next give the formal definition of adversarial expected and empirical risk to measure
the learner’s performance in the presence of adversaries.
Definition 1. (Adversarial Expected Risk). The adversarial expected risk of a hypothesis h ∈ H over
the distribution P in the presence of an adversary constrained by B is

RP (h,B) = E(x,y)∼P [ max
x′∈N(x)

l(h(x′), y)].

If B is the zero-dimensional space {0}, then the adversarial expected risk will reduce to the standard
expected risk without an adversary. Since the true distribution is usually unknown, we instead use the
empirical distribution to approximate the true distribution, which is equal to (xi, yi) with probability
1/n for each i ∈ {1, · · · , n}. That gives us the following definition of adversarial empirical risk.
Definition 2. (Adversarial Empirical Risk ). The adversarial empirical risk of h in the presence of
an adversary constrained by B is

RPn(h,B) =
1

n

n∑
i=1

[
max

x′∈N(xi)
l(h(x′), yi)

]
.
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4 Main results

In this section, we present our main results. The trick is to pushforward the original distribution P
into a new distribution P ′ using a transport map Th : Z → Z satisfying

RP (h,B) = RP ′(h),

where RP ′(h) = E(x,y)∼P ′ l(h(x), y) is the standard expected risk without the adversary. Therefore,
an upper bound on the expected risk over the new distribution leads to an upper bound on the
adversarial expected risk.

Note that the new distribution P ′ is not fixed and depends on the hypothesis h. As a result, traditional
statistical learning cannot be directly applied. However, note that these new distributions lie within
a Wasserstein ball centered on P , which we will show in Section 4.2. If we consider the worst
case within this Wasserstein ball, then the original adversarial learning problem can be reduced to a
minimax problem. We can therefore use the minimax approach to derive the adversarial risk bound.
We first introduce the Wasserstein distance and minimax framework.

4.1 Wasserstein distance and local worst-case risk

Let (Z, dZ) be a metric space where Z = X × Y and dZ is defined as

dpZ(z, z′) = dpZ((x, y), (x′, y′)) = (dpX (x, x′) + dpY(y, y′))

with dX and dY representing the metric in the feature space and label space respectively. For example,
if Y = {1,−1}, dY(y, y′) can be 1(y 6=y′), and if Y = [−B,B], dY(y, y′) can be (y − y′)2. In this
paper, we require that dX is translation invariant, i.e., dX (x, x′) = dX (x− x′, 0). With this metric,
we denote with P(Z) the space of all Borel probability measures on Z , and with Pp(Z) the space of
all P ∈ P(Z) with finite pth moments for p ≥ 1:

Pp(Z) := {P ∈ P(Z) : EP [dpZ(z, z0)] <∞ for z0 ∈ Z}.
Then, the p-Wasserstein distance between two probability measures P,Q ∈ Pp(Z) is defined as

Wp(P,Q) := inf
M∈Γ(P,Q)

(E(z,z′)∼M [dpZ(z, z′)])1/p,

where Γ(P,Q) denotes the collection of all measures on Z × Z with marginals P and Q on the first
and second factors, respectively.

Now we define the local worst-case risk of h at P ,

Rε,p(P, h) := sup
Q∈BWε,p(P )

RQ(h),

where BWε,p(P ) := {Q ∈ Pp(Z) : Wp(P,Q)) ≤ ε} is the p-Wasserstein ball of radius ε ≥ 0 centered
at P .

With these definitions, we next show the adversarial expected risk can be related to the local worst-case
risk by a transport map Th.

4.2 Transport map

Define a mapping Th : Z → Z
z = (x, y)→ (x∗, y),

where x∗ = arg maxx′∈N(x) l(h(x′), y). By the definition of dZ , it is easy to obtain
dZ((x, y), (x∗, y)) = dX (x, x∗). We now prove that the adversarial expected risk can be related to
the standard expected risk via the mapping Th.
Lemma 1. Let P ′ = Th#P , the pushforward of P by Th, then we have

RP (h,B) = RP ′(h).

Proof. By the definition, we have
RP (h,B) = E(x,y)∼P [maxx′∈N(x) l(h(x′), y)] = E(x,y)∼P [l(h(x∗), y)] = E(x,y)∼P ′ [l(h(x), y)] .

So RP (h,B) = RP ′(h).
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By this lemma, the adversarial expected risk over a distribution P is equivalent to the standard
expected risk over a new distribution P ′. However since the new distribution is not fixed and depends
on the hypothesis h, traditional statistical learning cannot be directly applied. Luckily, the following
lemma proves that all these new distributions locate within a Wasserstein ball centered at P .
Lemma 2. Define the radius of the adversary constrained by B as εB := supx∈B dX (x, 0). For any
hypothesis h and the corresponding P ′ = Th#P , we have

Wp(P, P
′) ≤ εB.

Proof. By the definition of Wasserstein distance,

W p
p (P, P ′) ≤ EP [dpZ(Z, Th(Z))] = EP [dpX (x, x∗)] ≤ εpB,

where the last inequality uses the translation invariant property of dX . Therefore, we have
Wp(P, P

′) ≤ εB.

From this lemma, we can see that all possible new distributions lie within a Wasserstein ball of radius
εB centered on P . So, by upper bounding the worst-case risk in the ball, we can bound the adversarial
expected risk. The relationship between local worst-case risk and adversarial expected risk is as
follows. Note that this inequality holds for any p ≥ 1. For ease of exposition, in the rest of the paper,
we only discuss the case p = 1; that is,

RP (h,B) ≤ RεB,1(P, h), ∀h ∈ H. (1)

4.3 Adversarial risk bounds

In this subsection, we first prove a bound for the local worst-case risk. Then, the adversarial
risk bounds can be derived directly by (1). To simplify notation, we denote a function class F by
compositing the functions inH with the loss function l(·, ·), i.e., F = {(x, y)→ l(h(x), y) : h ∈ H}.
The key ingredient of a bound on the local worst-case risk is the following strong duality result by
Gao & Kleywegt [18]:
Proposition 1. For any upper semicontinuous function f : Z → R and for any P ∈ Pp(Z),

RεB,1(P, f) = min
λ≥0
{λεB + EP [ϕλ,f (z)]},

where ϕλ,f (z) := supz′∈Z{f(z′)− λ · dZ(z, z′)}.

We begin with some assumptions.
Assumption 1. The instance space Z is bounded: diam(Z) := supz,z′∈Z dZ(z, z′) <∞.

Assumption 2. The functions in F are upper semicontinuous and uniformly bounded: 0 ≤ f(z) ≤
M <∞ for all f ∈ F and z ∈ Z .
Assumption 3. For any function f ∈ F and any z ∈ Z , there exists λf,z such that f(z′)− f(z) ≤
λf,zdZ(z, z′) for any z′ ∈ Z .

Note that Assumption 3 is a weak version of Lipschitz condition since λf,z is not fixed and depends
on f and z. It is easy to see that if the function f ∈ F is L-Lipschitz with respect to the metric dZ ,
i.e., |f(z)− f(z′)| ≤ LdZ(z, z′), Assumption 3 automatically holds with λf,z always being L. Now
we give an equivalent expression for Assumption 3 which is easier to use in our proofs.
Lemma 3. Assumption 3 holds if and only if for any function f ∈ F and any empirical distribution
Pn, the set {λ : ψf,Pn(λ) = 0} is nonempty, where ψf,Pn(λ) := EPn(supz′∈Z{f(z′)−λdZ(z, z′)−
f(z)}).

The proof of Lemma 3 is contained in Appendix A.

We denote the smallest value in the set as λ+
f,Pn

:= inf{λ : ψf,Pn(λ) = 0}. In order to prove the
local worst-case risk bound, we need two technical lemmas.
Lemma 4. Fix some f ∈ F . Define λ̄ via

λ̄ := arg min
λ≥0
{λεB + EPn [ϕλ,f (Z)]}.
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Then

λ̄ ∈


[0,

M

εB
] if εB ≥

M

λ+
f,Pn

[λ−f,Pn , λ
+
f,Pn

] if εB <
M

λ+
f,Pn

, (2)

where λ−f,Pn := sup{λ : ψf,Pn(λ) = λ+
f,Pn
· εB} if the set {λ : ψf,Pn(λ) = λ+

f,Pn
· εB} is nonempty,

otherwise λ−f,Pn := 0.

Remark 1. We can show that limεB→0 λ
−
f,Pn

= λ+
f,Pn

by using (ε, δ) language as follows. ∀ε > 0,

define δ =
ψf,Pn (λ+

f,Pn
−ε)

λ+
f,Pn

. Then, for any εB < δ, we have ψf,Pn(λ+
f,Pn
− ε) > λ+

f,Pn
· εB. By the

definition of λ−f,Pn , ψf,Pn(λ−f,Pn) = λ+
f,Pn
· εB. Since ψf,Pn(λ) is monotonically non-increasing, we

have λ−f,Pn > λ+
f,Pn
− ε. Therefore, limεB→0 λ

−
f,Pn

= λ+
f,Pn

.

Lemma 5. Define the function class Φ := {ϕλ,f : λ ∈ [a, b], f ∈ F} where b ≥ a ≥ 0. Then, the
expected Rademacher complexity of the function class Φ satisfies

Rn(Φ) ≤ 12C(F)√
n

+
6
√
π√
n

(b− a) · diam(Z),

where C(F) :=
∫∞

0

√
logN (F , || · ||∞, u/2)du andN (F , ||·||∞, u/2) denotes the covering number

of F .

The proofs of Lemma 4 and 5 is contained in Appendix B.

We are now ready to prove the local worst-case risk bound. Let λ̄ ∈ [ζ−f,Pn , ζ
+
f,Pn

] denotes expression
(2), [ζ−, ζ+] :=

⋃
f,Pn

[ζ−f,Pn , ζ
+
f,Pn

] and ΛεB := ζ+ − ζ−. It is straightforward to check that
[ζ−, ζ+] ⊂ [0,M/εB] from expression (2). The generalization bound for local worst-case risk is
given by the following lemma.

Lemma 6. If the assumptions 1- 3 hold, then for any f ∈ F , we have

RεB,1(P, f)−RεB,1(Pn, f) ≤ 24C(F)√
n

+M

√
log( 1

δ )

2n
+

12
√
π√
n

ΛεB · diam(Z)

with probability at least 1− δ.

Remark 2. Lee & Raginsky [29] proved a bound with ΛεB ≡ L under the Lipschitz assumption
where L represents the Lipschitz constant. Our result improves a lot on theirs. First, our Assumption
3 is weaker than their Lipschitz assumption. Second, even under the weaker assumptions, our bound
is always better than their results since [ζ−, ζ+] ⊂ [0, L] by expression (2) and the definition of λ+

f,Pn
.

Finally, by setting εB = 0, the term
12
√
π√
n

ΛεB · diam(Z) in our bound will vanish, recovering the

usual risk bound, whereas they gave a εB-free bound with ΛεB always being the constant L.

This leads to our main theorem for the adversarial expected risk.

Theorem 1. If the assumptions 1- 3 hold, for any f ∈ F , we have

RP (f,B) ≤ 1

n

∑n
i=1 f(zi) + min

λ≥0
{λεB + ψf,Pn(λ)}+

24C(F)√
n

+
12
√
π√
n

ΛεB · diam(Z) +M

√
log( 1

δ )

2n
(3)

and

RP (f,B) ≤ 1

n

∑n
i=1 f(zi) + λ+

f,Pn
εB +

24C(F)√
n

+
12
√
π√
n

ΛεB · diam(Z) +M

√
log( 1

δ )

2n
(4)

with probability at least 1− δ.
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Remark 3. We are interested in how the adversarial risk bounds differ from the case in which the
adversary is absent. Plugging εB = 0 into inequality (3) or (4) yields the usual generalization bound
of the form

RP (h) ≤ 1

n

∑n
i=1 f(zi) +

24C(F)√
n

+M

√
log(1/δ)

2n
.

So the effect of an adversary is to introduce an extra complexity term 12
√
πΛεB · diam(Z)/

√
n and

an additional term on εB which contributes to the empirical risk.

Remark 4. The extra complexity term will decrease as εB gets bigger if εB ≥ M/λ+
f,Pn

by
expression (2), indicating that a stronger adversary might have a negative impact on the hypothesis
class complexity. This is intuitive, since different hypotheses might have the same performance in
the presence of a strong adversary and, therefore, the hypothesis class complexity will decrease. We
emphasize that this phenomenon does not occur in concurrent works [25, 51]. In both of their work,
this term will increase linearly as εB grows.

Remark 5. There are two data dependent terms 1/n
∑n
i=1 f(zi) and minλ≥0{λεB + ψf,Pn(λ)} (or

λ+
f,Pn

εB) in bound (3) (or (4)), corresponding to the empirical risk and the effect of adversary on
empirical risk, respectively. Although the bound (3) is tighter, it is hard to optimize because of the
inner minimization problem. The bound (4) cannot be directly minimized either because λ+

f,Pn
is

computationally intractable in practice. But we can consider an upper bound for λ+
f,Pn

. For example,
if f is L-Lipschitz, by the definition of λ+

f,Pn
, we have λ+

f,Pn
≤ L. See Section 5 for more examples.

This upper bound for λ+
f,Pn

can be used in optimization, as we will discuss in Section 6. In particular,
if ψf,Pn(λ) ≡ 0 for any λ ≥ 0, we get λ+

f,Pn
= 0, and the additional term λ+

f,Pn
εB in inequality (4)

will disappear.

5 Example bounds

In this section, we illustrate the application of Theorem 1 to two commonly-used models: SVMs and
neural networks.

5.1 Support vector machines

We first start with SVMs. Let Z = X × Y , where the feature space X = {x ∈ Rd : ||x||2 ≤ r} and
the label space Y = {−1,+1}. Equip Z with the Euclidean metric

dZ(z, z′) = dZ((x, y), (x′, y′)) = ||x− x′||2 + 1(y 6=y′).

Consider the hypothesis space F = {(x, y) → max{0, 1 − yh(x)} : h ∈ H}, where H = {x →
w · x : ||w||2 ≤ Λ}. We can now derive the expected risk bound for SVMs in the presence of an
adversary.
Corollary 1. For the SVMs setting considered above, for any f ∈ F , with probability at least 1− δ,

RP (f,B) ≤ 1

n

∑n
i=1 f(zi) + λ+

f,Pn
εB +

144√
n

Λr
√
d+

12
√
π√
n

ΛεB · (2r + 1) + (1 + Λr)

√
log( 1

δ )

2n
,

where λ+
f,Pn
≤ max

i
{2yiw · xi, ||w||2}.

The proof of Corollary 1 can be found in Appendix E.

5.2 Neural networks

We next consider feed-forward neural networks. To demonstrate the generality of our method, we
consider a multi-class prediction problem. Let Z = X × Y , where the feature space X = {x ∈ Rd :
||x||2 ≤ B} and the label space Y = {1, 2, · · · , k}; k represents the number of classes. The network
uses L fixed nonlinear activation functions (σ1, σ2, · · · , σL), where σi is ρi-Lipschitz and satisfies
σi(0) = 0. Given L weight matrices A = (A1, A2, · · · , AL), the network computes the following
function

HA(x) := σL(ALσL−1(AL−1σL−2(· · ·σ2(A2σ1(A1x)·)),
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whereAi ∈ Rdi×di−1 andHA : Rd → Rk with d0 = d and dL = k. LetW = max{d0, d1, · · · , dL}.
Define a margin operatorM : Rk × {1, 2, · · · , k} → R asM(v, y) := vy − maxj 6=y vj and the
ramp loss lγ : R→ R+ as

lγ :=

{
0 r < −γ
1 + r/γ r ∈ [−γ, 0]
1 r > 0

.

Consider the hypothesis class F = {(x, y) → lγ(−M(HA(x), y)) : A =
(A1, A2, · · · , AL), ||Ai||σ ≤ si, ||Ai||F ≤ bi}, where || · ||σ represents spectral norm and || · ||F
denotes the Frobenius norm. The metric in space Z is defined as

dZ(z, z′) = dZ((x, y), (x′, y′)) = ||x− x′||2 + 1(y 6=y′).

Now we derive the adversarial expected risk for neural networks.
Corollary 2. For the neural networks setting defined above, for any f ∈ F , with probability of 1− δ,
the following inequality holds

RP (f,B) ≤ 1

n

∑n
i=1 f(zi) + λ+

f,Pn
εB +

288

γ
√
n

∏L
i=1 ρisiBW

(∑L
i=1

(
bi
si

) 1
2

)2

+

12
√
π√
n

ΛεB · (2B + 1) +

√
log(1/δ)

2n

,

where λ+
f,Pn
≤ max

j

{
2

γ

L∏
i=1

ρi||Ai||σ,
1

γ

(
M(HA(xj), yj) + maxHA(xj)−minHA(xj)

)}
.

The proof of this Corollary is provided in Appendix F.

Remark 6. Setting εB = 0, we obtain a risk bound for neural networks:

RP (f) ≤ 1

n

∑n
i=1 f(zi) +

√
log(1/δ)

2n
+

288

γ
√
n

∏L
i=1 ρisiBW

(∑L
i=1

(
bi
si

)1/2
)2

. (5)

The bound is in terms of the spectral norm and the Frobenius norm. Although inequality (5) is similar
to the results in Bartlett et al. [6] and Neyshabur et al. [35], since our proof technique is different, our
approach may provide a different perspective on the generalization of deep neural networks.

6 Conclusions

In this paper, we propose a theoretical method for deriving adversarial risk bounds. Our method
is general and can easily be applied to multi-class problems and most of the commonly used loss
functions. The bound may be loose in some cases, since we consider the worst case distribution in
the Wasserstein ball to avoid computing the transport map. However, for some problems, it may be
possible to derive the transport map and thus get tighter bounds. Furthermore, our bounds may be
made tighter by relying on the expected Rademacher complexity directly instead of using covering
numbers.

In the future, one interesting problem is to develop adversarial robust algorithms based on our results.
For example, our bounds suggest that minimizing the sum of empirical risk and the term λ+

f,Pn
εB can

help achieve adversarial robustness. However, since λ+
f,Pn

is computationally intractable in practice,
instead of using the exact λ+

f,Pn
in the objective function, we may consider the data-dependent upper

bound for λ+
f,Pn

which is usually easier to obtain and a regularization parameter η ∈ [0, 1] selected
via grid search. For a fixed η, we multiply it by the upper bound for λ+

f,Pn
and use this product as a

surrogate of the true λ+
f,Pn

in the objective function. Afterward, we minimize this surrogate objective
function and obtain the optimal solution for this specific η. Each such η corresponds to a solution.
Finally we choose the best one from these candidates.
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