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ABSTRACT

Reinforcement learning (RL) has led to increasingly complex looking behavior in
recent years. However, such complexity can be misleading and hides over-fitting.
We find that visual representations may be a useful metric of complexity, and both
correlates well objective optimization and causally effects reward optimization. We
then propose curious representation learning (CRL) which allows us to use better
visual representation learning algorithms to correspondingly increase visual repre-
sentation in policy through an intrinsic objective on both simulated environments
and transfer to real images. Finally, we show better visual representations induced
by CRL allows us to obtain better performance on Atari without any reward than
other curiosity objectives.

1 INTRODUCTION

In recent years, reinforcement learning(RL) has lead to increasingly complex behavior from simulated
environments (Silver et al., 2016; OpenAI, 2018; Mnih et al., 2013; Andrychowicz et al., 2018). Yet
despite this, there lacks a quantitative measure of intelligence in these agents. Qualitative measures
can be deceptive. Consider agent Alice and Bob in Minecraft. Alice is capable of a constructing a
house while Bob appears to only be able to navigate around the world. While at face value it may
then appear that Alice is more complex, upon closer inspection we may find that Alice has simply
memorized a set of actions to construct a house in that particular environment!
How can we be certain that our agents are not simply not memorizing a set of moves? One hypothesis
is that the more intelligent an agent is, the more likely the inner representations in its policy will
exhibit disentangled properties of the world. Towards this end, we investigate the emergent visual
representations that occur in RL policies.
We investigate on various objectives and environment conditions, and find that the quality of visual
representation learning correlates well with progress in reward optimization. Similarily, we find
improved visual representations help agents perform better reward optimization. Thus, another natural
question to ask is, how can we enable our agents to have better visual representations?
While there are ways to hardcode reward functions to enable agents perform well, can we come
up with a generic objective that our agents can optimize that will directly lead them to have good
representations? One idea towards this is to use recent work in curiosity. In curiosity, agents are
typically given rewards corresponding to surprisal of state. But another view of curiosity is that of a
minimax game where a curious agent is seeking to maximize the surprisal of an uncertainty model,
while the uncertainty model seeks become less surprised about new states.
Thus, to enable a policy to learn good visual representations, we can treat the uncertainty model as a
representation learning model. We then seek a policy that wants to lower the loss of the representation
learning objective, while the model itself tries to optimize this loss. Under this objective, a policy
must learn good visual representations, so that it is able to find visually surprising inputs for the
vision model. We call this overall objective, Curious Representation Learning (CRL).
By coupling policy learning with representation learning, we find that CRL allows us to get better
policy visual representations simply by applying better visual representation learning algorithms to
the model. As a result, we find that CRL obtains consistently good representations in policies across
environment size and type, often beating many hard-coded domain specific objectives. As an added
bonus, we find that CRL is also able to achieve better visual representation learning than other data
collection methods, as it actively sees diverse inputs that surprise it.
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Figure 1: Overview of CRL (curious representation learning). We use the loss of a representation learning
algorithm as an intrinsic reward for an agent. Correspondingly, we train the representation learning algorithm on
the experience generated by the agent. This forces the agent and model compete in minimax game to learn good
visual representations

In addition, we investigate optimizing visual representation through CRL as a curiosity bonus. We
find that on Atari, CRL is able to obtain better overall performance compared to other approaches
such as Forward Dynamics and RND, when used as a sole intrinsic bonus.
Our contributions are threefold. 1) We first show that visual representation learning corresponds well
to reward optimization in RL policies. 2) We propose CRL, a method that allows us to use better visual
representation algorithms to obtain better visual representation in policies on simulated environments
and real images. 3) We apply CRL to Atari and show that the better visual representation obtained
in policies allows us to out-compete forward dynamics (Burda et al., 2018a) and Random Network
Distillation benchmarks (Burda et al., 2018b).

2 RELATED WORK

Visual representation learning has seen a large amount of interest in recent years (Zhang et al., 2016;
Gidaris et al., 2018; Hjelm et al., 2018; Bengio et al., 2013). Approaches towards unsupervised
learning include predicting image rotations (Gidaris et al., 2018), colorizing images (Zhang et al.,
2016), maximizing mutual information between observations and representations (Hjelm et al., 2018),
and many other approaches. Much of the previous visual representation work has focused on a
passive datasets – here we focus on representation learning in active environments where agents must
interact with the environment to obtain data.
Curiosity has also been studied extensively in the past years (Houthooft et al., 2016; Pathak et al.,
2017; Bellemare et al., 2016; Burda et al., 2018b). Such objectives typically encourage agents to
minimize some uncertainty in the world, based off dynamics (Houthooft et al., 2016; Pathak et al.,
2017) or random features (Burda et al., 2018b). Our proposed method for curiosity differs from
past method as we propose curiosity as a minimax game between a generic representation learning
algorithm and a target policy. This formulation can help explain some of the strong results of curiosity
as well as pave a direction towards better curiosity algorithms.
Our work also relates to past work in active learning. Active learning involves sampling datapoints
that maximize an uncertainty/error measure, while the learner itself thereby aims to minimize un-
certainty/error (Settles, 2009; Roy and McCallum). This entails an adversarial game where as learners
get better and better, it becomes increasingly difficult to train on, an idea refered to as curriculum
learning (Bengio et al., 2009). In our work, explicitly formulate this arms race as an explicit minimax
optimization problem with a representation learning model.

3 FORMULATION

In this section we describe our approach towards achieving/measuring visual representations. We
describe visual representation learning and associated algorithms in Section 3.1 and discuss curious
representation learning (CRL) in Section 3.2. We further detail our architectures in Section 3.3 and
describe our environment setup in Section 3.4.
3.1 VISUAL REPRESENTATION LEARNING

To evaluate visual representation learning, we test disentanglement of features at higher layers in
neural network. To test this, we train a linear map on a frozen feature embedding from a backbone
architecture specified in Section 3.3 on a classification task, and report test set accuracy as the visual
representation value. We note that Kolesnikov et al. (2019) shows that linear maps are an adequate
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overall disentanglement of features representation learning. We consider 3 different approaches
towards visual representation learning which we detail below.

Colorization Zhang et al. (2016) propose to predict a color of image from its input luminance. Intu-
itively, by learning accurate to color images, a model must be able to have good visual representation
of objects.

Autoencoding Autoencoding tries to reconstruct an image through a bottleneck Bengio et al. (2013)
. By being forced to compress an image into a compressed representation, a model should learn good
visual representation of objects.

RND Burda et al. (2018b) propose to train a network to predict random features obtained from
another network. Such a task requires a model to learn behavior of another model, and we surprisingly
find this leads reasonable representation learning on VizDoom environments.
We also evaluated rotation prediction based off (Gidaris et al., 2018), but found that it performed
poorly in ViZDoom, due to obvious rotation artifacts.
On the ViZDoom environment, our classification task is a curated dataset of different VizDoom
objects (monsters, health packs, and guns). For the Habitat environment, our classification task is
room scenes from the Places365 dataset (Zhou et al., 2017).
3.2 CURIOUS REPRESENTATION LEARNING

When training agents in reinforcement learning, an agent receives a reward rt at timestep t and seeks
to produce a policy π(st; θp), represented by a neural network that maximizes the expected overall
reward

max
θp

Eπ(st;θp)[Σtrt]. (1)

With curiosity, this reward can be decomposed into components rei which is extrinsic and rii , which is
an intrinsic reward that is dependent on separate model θm, so that we seek parameters θm, θp, so
that we have

max
θp

Eπ(st;θp)[Σtfθm(st)]; min
θm

Eπ(st;θp)[Σtgθm(st)] (2)

for some surprisal objective fθm and modeling objective gθm. This suggests that by setting a surprisal
objective fθm to be the same as the modeling objective gθm , we obtain a Minimax objective

max
θp

min
θm

Eπ(st;θp)[Σtgθm(st)] (3)

between an agents policy θp and some world model θm.
The above formulation of curiosity now gives us a natural method to improve visual representation
learning in both policy and models. By replacing gθm(st) with the loss of a generic visual repre-
sentation learning algorithm Lrep, we can now simultaneously make both the models and policies
have good visual representation in an environment. This is because the representation learning model
θm is able learn on more diverse data from a policy optimized explore data that confuse the model,
while the policy θp is forced to focused to learn good visual representations to confuse the chosen
representation learning model. We provide an illustration of the above object in Figure 1.
3.3 ARCHITECTURE SETUP

To balance capacity and enable comparison between representation learning models and between
policies, we use identical base architecture for both RL policies and representation learning models.
For both, we use 7x7 convolution with stride, followed by a max-pooling layer, followed by 2 residual
blocks (with down-pooling), with residual blocks having 64 and 128 filters. We then evaluate linear
classification performance performance after flattening the 128 filter residual block. Models are
trained and evaluate on 168x168 images.
For reinforcement learning policies, when training the base architecture, we flatten observations
from the 128 filter residual block and then apply an LSTM cell to which we apply MLPs to decode
action and value heads. We use proximal policy optimization (Schulman et al., 2017) to train our
policies, using the default hyper-parameters from Atari Environments. In representation learning
models, for RND, we flatten then residual block and then apply an MLP to predict the random target.
For colorization, we apply 3 additional convolutions to the 128 filter residual block to colorize. For
autoencoding, we use a 128 hidden units bottleneck with 2 residual blocks of upsampling.
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3.4 ENVIRONMENTS

We evaluate visual representations on two different visual environments:

VizDoom We first evaluate on the ViZDoom (Kempka et al., 2016) environment. We use the a ran-
dom level generator Oblige to generate diverse different Doom environments and report configuration
details in the appendix. Agents have the ability to move forward, backwards, left and right, turn left
and right, attack, speed, and interact with different objects.
Agents are spawned in maps with a large number of rooms (greater than 10), with a starting room and
ending room through which agents must interact to leave/enter. There are a large number of monsters
scattered across the rooms, and agents must either avoid or shoot monsters, as well avoid hazardous
traps.
We evaluate agent performance on varying numbers of randomly generated training maps. Environ-
ments with different number of maps assess our visual representation learning algorithms in different
ways. On a single environment, to obtain the best visual representation, it is necessary to explore over
the entire space. In contrast, in the setting with a large number of environments, to obtain a good
visual representation, agents may need just a directed way to explore the environments. We compare
with a set of designed objective listed below:

1. (Counts Based): Agents are given a counts based reward based off 1 divided by the square
root of the visitation count at the state. States are based off a discretized grid and discretized
rotation requirement absolute position and orientation of an agent.

2. (Movement Distance): Agents are given a reward based off the maximum distance from
start location. Agents are given a positive reward every time it moves further from the origin
than before and otherwise returns 0 reward.

3. (Shooter Optimization): Agents are given a reward based off damage dealt to enemies,
number of enemies killed, and any health gained.

Habitat We further investigate visual representation learning in the Habitat (Manolis Savva* and
Batra, 2019) environment, using the Matterport and Gibson house scans. The Habitat simulator
consists of sets of rooms in houses. Under this setting, agents have the ability to move forward or
turn left and right. We compare performance with the explicit objective called PointNav (Manolis
Savva* and Batra, 2019), in which agents are given a relative distance to a goal they must reach.

Atari As a benchmark for measuring the intrinsic curiosity, we also evaluate on the Atari benchmark,
using CRL as the only intrinsic reward. We evaluate on Atari environments of BeamRider, Breakout,
Montezuma’s Revenge, Pong, Abert, Riverraid, Seaquest and SpaceInvaders as done in (Burda et al.,
2018a).

4 EXPERIMENTS
We provide empirical and qualitative evaluations of our hypothesis. First, we evaluate the correspon-
dence between policy learning and the visual representation learning of the policy in Section 4.1 on
different objectives. Next we evaluate visual representations that emerge in CRL on both synthetic
environments and real images. Finally, we evaluate CRL’s ability to enable good performance on
Atari with no extrinsic reward in Section 4.3.
4.1 HOW DOES VISUAL REPRESENTATION LEARNING CORRESPOND WITH POLICY

PERFORMANCE?
We measure the relationship of visual representations and policy reward on ViZDoom (Section 3.4).
We systematically varied the number of different training levels generated to train policies with
different complexities. We see from Table 1 that across different objectives and different environment
numbers (as a proxy of environment complexity), there is a strong correlation that is consistent
between both the criterion and environment number.
We provide a example visualization of the trend of representation learning with score optimization
in Figure 2. In general, we find that visual representations correlate well with initial increases
with objective (steps before 1e7). However, once the maximum score is achieved and training
has plateaued, then the visual representation correspondingly decreases slightly (steps after 1e7),
suggesting that it may be beneficial to stop RL policy training once reward performance stops.
We further investigated the opposite effect on whether better visual representations would lead to
better objective optimization. To test this, we optimize the movement distance training objective
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Figure 2: An visualization of objective optimization with corresponding perceptual representation learning on
the maximum distance from origin objective with 10 environments.

Environment Counts Movement Shooter
Number Based Distance Opt.

1 0.794 0.719 0.573
10 0.911 0.733 0.549
100 0.970 0.922 0.647
1000 0.689 0.826 0.635

Table 1: Correlation coefficient of measured represen-
tation accuracy and objectives (reward across different
environment numbers in ViZDoom evaluate across 3
different seeds). P values are all in the 1e-6 - 1e-12
range.

CRL Training Classification
Model Reward Performance

Autoencoding 47.63 0.799
RND 15.61 0.721
Colorization 29.69 0.766
Random 19.61 0.468

Table 2: Relative performance on the Movement
Distance (10 levels) objective when using CRL ini-
tialized with curious policies with different repre-
sentation learning values indicated compared with
random policy after 1M frames of training.

with policies initialized with different visual representations from CRL. We report the the relative
magnitude of overall reward compared with initializing from random policy after 1 million frames of
training in Table 2. Overall, we find that better visual representations obtained from CRL are able to
lead to better relative performance after 1 million frames, with policy initialization with CRL with an
autoencoding objective outperforming a policy from scratch by 242% in relative performance.
This result suggests that better visual representations both naturally emerge through RL policy
training, and further may be a generic objective to optimize to lead to faster reinforcement learning
on many different tasks.

4.1.1 WHAT VISUAL REPRESENTATIONS EMERGE FROM CURIOUS REPRESENTATION
LEARNING?

Environment Policy Representation Model
Number Autoencode Colorization RND Autoencode Colorization RND

1 0.748 (0.016) 0.676 (0.022) 0.672 (0.014) 0.864 (0.014) 0.746 (0.018) 0.751 (0.024)
10 0.794 (0.005) 0.733 (0.010) 0.746 (0.013) 0.872 (0.002) 0.742 (0.017) 0.789 (0.020)
100 0.811 (0.006) 0.762 (0.007) 0.810 (0.012) 0.863 (0.013) 0.767 (0.010) 0.792 (0.020)
1000 0.819 (0.011) 0.747 (0.005) 0.806 (0.011) 0.855 (0.002) 0.770 (0.002) 0.793 (0.019)

Table 3: Correspondence between both better representations in policies and representation learning models
(RND = random network distillation) under CRL. Value evaluated across 3 different seeds with standard error
in parentheses. These result show stronger visual representation learning algorithms give stronger visual
representations in policies.

We next analyze the effect of CRL in inducing good visual representations. In Figure 4 we show a
scatter plot of policy representation and model representation under CRL. In Table 3, we provide
quantitative numbers of visual representations from CRL on both policies and representation learning
models. We find that better representation learning algorithms lead to significantly better policy
representations, with autoencoding being the best representation learning algorithm in VizDoom.
We see identical rankings between policy visual representations and representation learning models
visual representations. These results help suggest that the search for generic representation learning
models can corresponding lead to policies with even better visual representations.
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Figure 3: Plots of policy visual representa-
tions when trained under different objectives
with different number of environments

Figure 4: Plots of policy visual representations
with representation model visual representation un-
der CRL from 10, 100, 1000 environments. There
is a good correlation between policy representation
and model representation

Environment Counts Movement Shooter CRL
Number Based Distance Optimization Autoencode Colorization RND

1 0.749 (0.028) 0.717 (0.017) 0.772 (0.019) 0.748 (0.016) 0.676 (0.022) 0.672 (0.013)
10 0.783 (0.046) 0.780 (0.010) 0.679 (0.025) 0.794 (0.011) 0.733 (0.010) 0.746 (0.010)
100 0.818 (0.019) 0.778 (0.013) 0.723 (0.010) 0.811 (0.012) 0.762 (0.007) 0.810 (0.012)
1000 0.623 (0.079) 0.832 (0.002) 0.763 (0.006) 0.819 (0.021) 0.747 (0.005) 0.805 (0.012)

Table 4: Comparison of visual representations learned in policies from CRL and other objectives. We find
that CRL with an autoencoding objective consistently gives relatively good visual representations while other
objective, such counts based may sporadically give better visual representation, but are not consistently across
environments.

Environment Counts Movement Shooter CRL Random
Number Based Distance Optimization Policy

1 0.858 (0.008) 0.862 (0.003) 0.820 (0.005) 0.864 (0.014) 0.834 (0.012)
10 0.865 (0.006) 0.862 (0.001) 0.851 (0.004) 0.872 (0.003) 0.855 0.002
100 0.862 (0.002) 0.860 (0.001) 0.847 (0.002) 0.863 (0.002) 0.853 (0.003)

Table 5: Table of visual representations learned from an autoencoding model from data collected from different
policies trained in different number of ViZDoom environment. CRL incentives the policy to generate diverse
data that allows the best model representations across different environment numbers.

In Table 4, we compare visual representations learned in policies trained on fixed objectives to
those that emerge in CRL. We provide a qualitative graph in Figure 3. We find that CRL with
an autoencoding objective obtains the best or close to the best visual representations in policies
across different environment. While on different environments numbers, either shooter optimization,
movement distance, or count based may obtain slightly better policy visual representations, CRL
with autoencoding objective has significantly lower variance in observed visual representations, and
performs consistently well across different environment numbers. Furthermore, we note that CRL
does not require any specification of source of task and works generically on any environment, while
other objective may require significant manual specification.
We also compare visual representations of representation learning models under different objectives
in Table 5. For non CRL objectives, we train an autoencoding model (best performing representation
learning model on VizDoom) on data collected by a policy. We compare CRL model representations
with autencoding models trained on data from policies initialized from scratch or trained on counts
based, movement distance, shooter optimization, and CRL objectives. We find, regardless of the
environment number, that CRL allows the representation learning model to have best possible visual
representation in the environment.
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Figure 5: Comparison of random policy with CRL (curious representation learning) on a test level. CRL (with
autoencoding objective) is able to induce diverse paths that explore different sets of rooms.

We further qualitatively evaluate the effectiveness of CRL in inducing exploration of the surrounding
environment. Figure 5 shows that CRL is able to lead to effective exploration schemes throughout a
large mapped environment compared to random policy and a test level.
4.2 DO VISUAL POLICY REPRESENTATIONS TRANSFER TO REAL IMAGES?
We next evaluate on Habitat (Section 3.4) to see if the visual representations learned through CRL
transfer to real images from rooms in the Places dataset. We compare representations learned through
CRL on RND, autoencoding, and colorization objectives as well as the PointNav objective.

Random CRL

Query
Image

Query
Image

Nearest 
Neighbors

Nearest 
Neighbors

Figure 6: Illustration of nearest neighbors on room scene in Places of a CRL model trained on Habitat compared
to a random network. CRL training in simulation transfers to real scene as seen in the beds in the last row.

On real world images, similar to the VizDoom enviroment, we find that CRL is able to enable good
visual features in Table 6. Trends between better model and visual representation hold, similar to in
VizDoom with CRL, with the most effective representation learning algorithm being colorization. We
find that CRL enables us to train representation learning models and policies to have significantly
better visual features then agents optimizing the PointNav goal, with linear classification accuracy of
0.193 compared to 0.086 in PointNav for policies and 0.253 compared to 0.211 for the representation
learning model. These linear classification accuracies are significantly better than random (0.084)
and somewhat close to the linear classification accuracy of a colorization model directly trained on
Places room scenes (0.324).
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- PointNav CRL (AE) CRL (CL) CRL (RND) CL (oracle) Random

Policy 0.086 0.175 0.193 0.164 - -
Model 0.211 0.1066 0.253 0.085 0.324 0.084

Table 6: Comparison on linear finetuning classification accuracy on room scenes in Places using policies and
representation learning models (using colorization or specified CRL objective) trained from data from Point
Navigation and different CRL objectives. We also compare with a colorization model trained on data from
Places room scenes and a randomly initialized model.

To qualitatively study the visual representations in Habitat, we construct nearest neighbors in embed-
ding space of a trained CRL colorization model and a random model in Figure 6. We find that CRL
trained models on Habitat are able cluster certain images in Places room scenes together such as beds.
4.3 DOES INCENTIVIZING BETTER VISUAL REPRESENTATIONS LEAD TO MORE CURIOUS

BEHAVIOR?

Figure 7: Comparison of CRL (curious representation learning with autoencoding objective) vs RND vs
Dynamics on Atari using only intrinsic reward across 3 different seeds. CRL performs favorably and gets the
highest score in 6 of the 8 evaluated environments.

Next we investigate whether using CRL as a intrinsic reward gives better performance than other
curiosity models, We compare with Random Network Distillation and Forward Dynamics in Figure 7
across 3 different random seeds. We choose the autoencoding objective in CRL for the representation
learning objective, as we find it gets the best visual representations on VizDoom.
Overall, we find that CRL performs favorably compared to both RND and forward dynamics, and
gets the best overall score on 6 of the 8 evaluated environments. This suggests that obtaining best
visual representations may also be a manner to improve curiosity.

5 CONCLUSION

In this paper, we have shown visual representations correspond and help reward optimization.
Motivated by this insight, we propose a new method, CRL, that allows us to get improved visual
representations in policies through better visual representations in model. We further illustrate that
these better visual representation can provide incentives to explore more in no reward scenarios. We
hope that our results will inspire further exploration on both better visual representation learning
models/policies and better reward optimization.
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A APPENDIX

A.1 DOOM SETUP

We use the following setup for setting the Oblige random map generator.

Configuration Value

Length Regular
Size Regular
Health Normal
Weapons Very Soon
Theme Jumble
Game Doom 2
Mons More
Ammo More
Strength Harder
Outdoors Mixed
Doom Level 5

Table 7: List of configurations used for the Oblige game engine.

A.2 NEAREST NEIGHBORS DOOM

Random CRL

Query
Image

Nearest 
Neighbors

Query
Image

Nearest 
Neighbors

Figure 8: Illustration of nearest neighbors in Doom of a CRL(AE) policy trained on Habitat compared to a
random network. Nearest neighbor in CRL space is able to cluster more visually similar images

We further show nearest neighbor images on VizDoom in Figure 8. The leftmost column is the query
image while the other 4 columns are the 4 nearest neighbors in embedding space. Training through
CRL allows clustering of various doom objects.
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