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ABSTRACT

Visual Active Tracking (VAT) aims at following a target object by autonomously
controlling the motion system of a tracker given visual observations. Previous work
has shown that the tracker can be trained in a simulator via reinforcement learning
and deployed in real-world scenarios. However, during training, such method
requires manually specifying the moving path of the target object to be tracked,
which cannot ensure the tracker’s generalization on unseen object moving patterns.
To learn a robust tracker for VAT, in this paper, we propose a novel adversarial RL
method which adopts an Asymmetric Dueling mechanism, referred to as AD-VAT.
In AD-VAT, both the tracker and the target are approximated by end-to-end neural
networks, and are trained via RL in a dueling/competitive manner: i.e., the tracker
intends to lockup the target, while the target tries to escape from the tracker. They
are asymmetric in that the target is aware of the tracker, but not vice versa. Specifi-
cally, besides its own observation, the target is fed with the tracker’s observation
and action, and learns to predict the tracker’s reward as an auxiliary task. We show
that such an asymmetric dueling mechanism produces a stronger target, which in
turn induces a more robust tracker. To stabilize the training, we also propose a
novel partial zero-sum reward for the tracker/target. The experimental results, in
both 2D and 3D environments, demonstrate that the proposed method leads to a
faster convergence in training and yields more robust tracking behaviors in different
testing scenarios. For supplementary videos, see: https://www.youtube.
com/playlist?list=PL9rZj4Mea7wOZkdajK1TsprRg8iUf51BS

1 INTRODUCTION

Visual Active Tracking (VAT) aims at following a target object by autonomously controlling the
motion system of a tracker given visual observations. VAT is demanded in many real-world applica-
tions such as autonomous vehicle fleet (e.g., a slave-vehicle should follow a master-vehicle ahead),
service robots and drones (e.g., a drone is required to follow a person when recording a video). To
accomplish the VAT task, one typically needs to perform a sequence of tasks such as recognition,
localization, motion prediction, and camera control. However, conventional visual tracking (Babenko
et al., 2009; Ross et al., 2008; Mei & Ling, 2009; Hu et al., 2012; Bolme et al., 2010; Kalal et al.,
2012) aims to solely propose a 2D bounding box of the target frame by frame, and does not actively
take into consideration the control of camera. Thus, compared to the problem of “passive” tracking,
VAT is more practical and challenging.

With the advancement of deep reinforcement learning (Sutton & Barto, 1998; Mnih et al., 2015;
Silver et al., 2016; Mnih et al., 2016), training an end-to-end deep neural network via reinforcement
learning for VAT is shown to be feasible (Luo et al., 2018; Luo et al., 2019). The authors learn a
policy that maps raw-pixel observation to control signal straightly with a Conv-LSTM network. Such
an end-to-end approach could save the effort of tuning an extra camera controller. Meanwhile, it also
outperforms the conventional methods where the passive tracker is equipped with a hand-engineered
camera controller.
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Figure 1: An overview of AD-VAT. Note that TRP is Tracker Reward Predictor.

However, the performance of the deep reinforcement learning based tracker is still limited by the
training methods. Due to the “trial-and-error” nature of reinforcement learning, it is infeasible to
directly train the tracker in the real world. Alternatively, virtual environments are always utilized
to generate sufficient data for training without tedious human labeling. Nevertheless, to deploy the
trained tracker in the real world, one has to overcome the virtual-to-real gap. One solution can
be building numbers of high-fidelity environments (Zhu et al., 2017). However, it is expensive
and tedious to build such environments for VAT. Both the visual rendering (illumination, texture,
etc.) and the physical properties should be carefully designed to emulate the real world. Suppose
we carry out VAT where the target is a pedestrian. To build the environment, one has to not only
model the human’s appearance, but also design physical rules and the pedestrian’s trajectory so
that it moves naturally like a human beings. Recently, (Luo et al., 2018) tried to overcome the
virtual-to-real gap by applying the so-called environment augmentation technique. They diversify the
visual appearance by changing the placement of the background objects and by flipping left-right
the screen frame. However, they neglect another important factor, that is, the motion of the target
for VAT task. Intuitively, the complexity and diversity of the target motion in training will impact
the generalization of the data-driven tracker. For example, if the target only moves forward during
training, the tracker may over fit to move straightly and fail to track other motion patterns, like a
sharp turn.

In this work, we propose a novel adversarial RL method for learning VAT, refereed to as AD-VAT
(Asymmetric Dueling mechanism for learning Visual Active Tracking). In the mechanism, the tracker
and the target object, viewed as two learnable agents, are opponents and can mutually enhance during
competition (See Fig. 1). As the training proceeds, the environments of AD-VAT naturally compose a
curriculum, because the tracker is more likely to compete with a target with the appropriate difficulty
level when both agents are becoming stronger simultaneously. When exploring the escape policy,
the target consequently generates various trajectories to train the tracker. By the dueling/adversarial
mechanism, the target is encouraged to discover the weakness of the tracker more often, which could
serve as a kind of “weakness-finding” that makes the tracker more robust. However, in practice, using
heuristic adversarial RL method for training VAT is unstable and slow to converge.

To address these issues, we derive two components in AD-VAT: partial zero-sum reward(PZR) and
tracker-aware model(TAM) for target. PZR is a hybrid reward structure. It encourages a zero-sum
tracker-target competition in the near range, where the target is close to the expected position to
tracker; whereas, beyond the zero-sum zone, it is a non-zero-sum game, in which the target is
penalized for running too far to track. Such reward structure is inspired by an observed phenomenon,
that when the target quickly learns to be far away from the tracker while the tracker has no chance to
see the target once more and henceforth gets plateaus during training. To learn the optimal policy to
escape, we model the target with a “tracker-aware network”, i.e., besides its own observation, the
observation and actions of the tracker are also fed to the escaping network. In addition, to shape a
better representation about the tracker, we add an auxiliary task for the target, learning to predict the
immediate reward of the tracker. We argue that such an “asymmetric dueling” mechanism is able to
learn a stronger target, which vice versa yields a more robust tracker ultimately.
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The experiment is conducted in various 2D and 3D environments for further studying AD-VAT. The
2D environment is a matrix map where obstacles are randomly placed. In the 2D environments,
we evaluate and quantify the effectiveness of our approach in an ideal condition, free from noise
in observation and action. We also conduct an ablation study to show the effectiveness of the two
important components, “partial zero-sum reward” and “tracker-aware network”. The 3D environments
are built on Unreal Engine 4, a popular game engine for building high-fidelity environments. We
choose a large room for training, where the texture of the background/players and the illumination are
randomized. Three realistic scenarios built by artists are used for further evaluating the robustness.
In the 3D environments, we further demonstrate that the tracker trained in AD-VAT is capable of
generalizing to high-fidelity environments even it is trained in a simple environment.

The contributions of our work can be summarized as follows:

• We propose a novel Adversarial Reinforcement Learning method for VAT task, i.e., the
Asymmetric Dueling mechanism (AD-VAT). In AD-VAT, the target learns to generate
diverse trajectories when competing with the tracker, which in turn helps train a more robust
tracker.

• We provide two techniques to guarantee an efficient yet effective AD-VAT. 1) A partial
zero-sum reward structure, which significantly stabilizes the training. 2) A tracker-aware
network for the target, which yields better escaping policy and consequently better tracking
policy.

2 RELATED WORK

Active Object Tracking. As described above that, active object tracking deals with object tracking
and camera control at the same time. This problem attracts less attention compared with traditional
object tracking (or visual object tracking) (Wu et al., 2013). In general, this problem could be
addressed in a two-step manner or in an end-to-end manner. In the two-step solution, traditional object
tracking and camera control are conducted sequentially to obtain tracking results and manipulate
camera. Great progress has been achieved in traditional object tracking in recent decades (Babenko
et al., 2009; Ross et al., 2008; Mei & Ling, 2009; Hu et al., 2012; Bolme et al., 2010; Kalal et al.,
2012). Thus one can utilize mature visual tracking algorithms (Henriques et al., 2015; Ma et al.,
2015; Choi et al., 2017) to accomplish the passive tracking task. According to the tracking results,
camera control module could be developed to actively follow a target. For example, in (Denzler &
Paulus, 1994) a two-stage method is proposed to handle robot control by motion detection and motion
tracking. Kim et al.(Kim et al., 2005) detect moving objects and track them using an active camera
with pan/tilt/zoom. In (Hong et al., 2018), two modules, a perception module and a control policy
module, are learned separately to train an agent accomplishing both an obstacle avoidance task and a
target following task.

Admittedly, tracking algorithms have been successful while still not perfect. Camera control based
on tracking results is challenging due to factors such as that the correspondence between image space
and camera parameter space is unknown. Additionally, joint tuning of visual tracking and camera
control is expensive and encounters trial-and-errors in real world. In end-to-end methods, direct
mapping between raw input frame and camera action is established. Thus the intermediate visual
tracking results are not necessarily required. For instance, by reinforcement learning, camera is
controlled by signal outputted from a Conv-LSTM network given raw input frame (Luo et al., 2018;
Luo et al., 2019). This end-to-end solution verifies the effectiveness, while not efficient enough to
solve this problem. To improve the generalization potential, environment augmentation is conducted
in this work. However, the target itself, like the path, motion pattern is fixed in their augmented
environments, which is believed to limit the performance. This inspires us to resort to the idea of
dueling in this paper, i.e., the target learns to get rid of the tracker by itself, guiding the learning of
the tracker.

Adversarial Reinforcement Learning. Using an adversarial framework to improve the RL agent’s
robustness is not a new concept. In (Huang et al., 2017), they add nonrandom adversarial noise
to state input for the purpose of altering or misdirecting policies. Mandlekar et al. (Mandlekar
et al., 2017) use adversarial examples to actively choose perturbations during training in physical
domains. In (Pinto et al., 2017), an adversary is introduced to apply adversarial force during training.
It produces an agent whose policy is robust to a wide range of noise at testing time. Sukhbaatar
et al. (Sukhbaatar et al., 2017) pit a virtual agent Alice against another agent Bob, where Alice
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creates steadily more difficult challenges for Bob to complete. In (Held et al., 2017), they optimize
a generator network via adversarial training to make an agent automatically produce tasks that are
always at the appropriate level of difficulty for the agent. Roughly speaking, in these proposed
methods the adversary is viewed as a ghost/virtual player, which is unseen and could only challenge
the protagonist by adding noise in the observation (Huang et al., 2017), action (Pinto et al., 2017) and
the system dynamics (Mandlekar et al., 2017), or by generating the goal/initial position for navigation
task (Held et al., 2017; Sukhbaatar et al., 2017). In this paper, we design a two-agent no-cooperative
game for VAT task, where the tracker intends to lockup the target, while the target tries to escape
from the tracker. Unlike the aforementioned previous work, the adversary (target to be tracked) in
AD-VAT is a physical player, which could fully control the movement of the target at any time step.
In this paper, such two-physical-player-competition is referred to as “dueling”. We argue that such
a fully controllable opponent could bring to the protagonist more challenges during training and
henceforth produces a more robust visual tracker.

The proposed approach is also related to self-play (Silver et al., 2016; 2017; Bansal et al., 2017).
In self-play, two physical players usually compete for the same goal, with symmetric observation
and action space. Usually, both players share the same model so as to ensure each agent seeing an
environmental dynamics at appropriate difficulty level. It is thus viewed as a means to automatically
generate learning curriculum (Bengio et al., 2009; Kumar et al., 2010). Our setting is substantively
different from standard self-play. In AD-VAT, the two players are asymmetric in observation and task.
The target observes more, and is equipped with additional auxiliary task for its adversarial policy.
Thus, the target and tracker could not share the same model while learning in AD-VAT, which would
make the learning become unstable. To address the issue, we propose two techniques which stabilize
the training, as described in Sec. 3.

3 METHOD

In this section, we introduce our proposed method: Asymmetric Dueling mechanism for learning
Visual Active Tracking (AD-VAT). At first the proposed method is formulated as a two-player game.
Then we illustrate the two key components in AD-VAT: partial zero-sum reward structure and a
tracker-aware model for the target.

3.1 FORMULATION

We adopt the Partial Observable Two-Agent Game settings (Srinivasan et al., 2018), which extends
the Markov Game (Littman, 1994) to partial observation. For the notations of our two-agent game,
let subscript 1 denote the tracker (agent 1) and subscript 2 denote the target (agent 2). The game
is governed by the tuple < S,O1,O2,A1,A2, r1, r2,P >, where S,O,A, r,P denote state space,
observation space, action space, reward function and environment state transition probability, re-
spectively. Let subscript t ∈ {1, 2, ...} denote the time step. In the case of partial observation, we
have the observation o1,t = o1,t(st, st−1, ot−1), where ot, ot−1 ∈ O, st, st−1 ∈ S. It reduces to
o1,t = st in case of full observation. The counterpart notation o2,t is defined likewise. When the
two agents take simultaneous actions a1,t ∈ A1, a2,t ∈ A2, the updated state st+1 is drawn from the
environment state transition probability P(·|st, a1,t, a2,t). Meanwhile, the two agents receive rewards
r1,t = r1,t(st, a1,t), r2,t = r2,t(st, a2,t). The policy of the tracker, π1(a1,t|o1,t), is a distribution
over tracker action a1,t conditioned on its observation o1,t. We rely on model-free independent
Reinforcement Learning to learn π1. Specifically, the policy takes as function approximator a Neural
Network with parameter θ1, written as

π1(a1,t|o1,t; θ1). (1)

Likewise, the policy of the target can be written as

π2(a2,t|o2,t; θ2). (2)

Note that we further extend the policy to a tracker-aware policy as Eq.(7). The tracker intends to
maximize its expected return

Eπ1,π2

[
T∑
t=1

r1,t

]
(3)

by learning the parameter θ1, where T denotes the horizon length of an episode and r1,t is the
immediate reward of the tracker at time step t. In contrast, the target tries to maximize
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Eπ1,π2

[
T∑
t=1

r2,t

]
(4)

by learning θ2.

3.2 REWARD STRUCTURE

The conventional adversarial methods (Bansal et al., 2017; Pinto et al., 2017) usually formulate the
policy learning as a zero-sum game. In the zero-sum game, the sum of the reward of each agent is
always 0, e.g., r1,t+r2,t = 0. However, such kind of formulation is not suitable for VAT. Considering
a case that, when the two opponents are too far to observe each other, their taken actions can hardly
influence the observation of their opponents directly under the partial observable game. In this case,
the sampled experiences are usually meaningless and ineffective for improving the skill level of
the agent. So constraining the competition in the observable range would make the learning more
efficient. Motivated by this, we shape a partial zero-sum reward structure, which utilizes the zero-sum
reward only when the target is observed by the tracker, but gives penalties to each agent when they
are far. In the following, we will introduce the details of the partial zero-sum reward structure for
visual active tracking.

Reward for tracker. The reward for tracker is similar to that in (Luo et al., 2018), composing of a
positive constant and an error penalty term. Differently, we do not take the orientation discrepancy
between the target and the tracker into consideration. Considering the model of the camera observa-
tion, we measure the relative position error based on a polar coordinate system, where the tracker is
at the origin (0, 0). In this tracker-centric coordinate system, the target’s real and expected position
are represented by (ρ2, θ2) and (ρ∗2, θ

∗
2), respectively. Note that ρ is the distance to the tracker, θ is

the relative angle to the front of the tracker. With a slight abuse of notation, we can now write the
reward function as

r1 = A− ζ |ρ2 − ρ
∗
2|

ρmax
− ξ |θ2 − θ

∗
2 |

θmax
, (5)

here A > 0, ζ > 0, ξ ≥ 0 are tuning parameters, ξ = 0 in the 2D environment. We do not use the
direction error as part of the penalty, in the reason that the observation is omnidirectional in the 2D
environments. ρmax is the max observable distance to the tracker. θmax is the max view angle of the
camera model. which equals to the Field of View (FoV). Besides, the reward is clipped to be in the
range of [−A,A] to avoid over punishment when the object is far away from the expected position.

Reward for target. The reward for the target object is closely related to the reward of the tracker,
written as:

r2 = −r1 − µ ·max(ρ2 − ρmax, 0)− ν ·max(|θ2| −
θmax
2

, 0) , (6)

where r1 is the reward of the tracker as defined in Eq. (5), µ > 0, ν ≥ 0 are tuning parameters
controlling the factor of each penalty term. ν is 0 in the 2D environment, as the angular penalty factor
ξ in Eq. (5). The target is in the nearly observable range, where ρ2 < ρmax and |θ2| < θmax. In the
observable range, the reward function is simplified to r2 = −r1, which means that the target and
tracker play a zero-sum game. When the target gets out of the observable range, the penalty term will
take effect on the reward. The farther the target goes out of the range, the larger the penalty it gets.
By applying this reward function, the optimal policy for the target we expect should be escaping and
disappearing from the observable range of the tracker but keeping close to the edge of the range. r2
is also clipped in the range of [−A,A]. Furthermore, we provide the details of each parameters and
the visualization of the r1 + r2 in Appendix A .

3.3 TRACKER-AWARE TARGET

By tracker-awareness, the target would be “stronger” than the tracker, as it knows what the tracker
knows. This idea manifests an ancient Chinese proverb, “know the enemy, know yourself, and in
every battle you will be victorious”, from the masterpiece Sun Tzu on the Art of War Sun (2008). The
conventional adversary usually uses only its own observation Bansal et al. (2017) or shares the same
observation as the protagonist Pinto et al. (2017). Recall the target policy π2(a2,t|o2,t; θ2) written as
in Eq. (2). However, the imperfect/partial o2,t observation seriously degrades the performance of
the adversary. Thus, we propose a “tracker-aware” model for the target. Besides the target’s own
observation, we additionally feed the observation and action from the tracker into the target network,
in order to enrich the input information of the target. Moreover, we add an auxiliary task, which
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predicts the immediate reward of the tracker (see the TRP module in Fig. 1). This auxiliary task can
be treated as a kind of “opponent modeling”, and alleviate the difficulty in its own policy learning.
By doing so, we can write the output heads of such a “tracker-aware” policy as:

π2 (a2,t, r̂1,t|o1,t, a1,t, o2,t; θ2) (7)
where r̂1,t is the predicted immediate reward for the tracker and o1,t, a1,t are respectively the
observation and the action of the tracker. Empirical results show that the tracker-aware target
yields more diversified escaping policy and finally helps producing a more robust tracker. Note
that we cannot apply the trick for a tracker, as the tracker has to use its own observation during
testing/deployment.

4 EXPERIMENTS

The following experiments explore our approach for the VAT task from 2D to 3D environments.

4.1 ENVIRONMENTS

2D Environments. Although 2D environments exhibit unreality to some extent, they are ideal for
evaluating and quantifying the effectiveness of each method, sidestepping the uncontrolled noise in
observation and action. In the 2D Environment, maps are represented by a 80× 80 matrix, where
0 denotes free space, 1 denotes an obstacle, 2 denotes the tracker, and 4 denotes the target. We
randomly generate the maps of two patterns, “maze” and “block” (see examples in the top row of Fig.
2). We use the “block” maps for training and both kinds of maps for testing. The observation of each
agent is a matrix of size 13× 13 around the agent. The tracker’s goal is placing the target as close
to the center of the observed matrix as possible. During each episode, the tracker starts from a free
space in the map randomly, and the target starts around the tracker in a 3× 3 tracker-centric matrix.
At each step, the agent could take an action to move toward one of four directions. The experiments
in the 2D environments are dedicated to evaluate and quantify the effectiveness of our approach in
ideal conditions.

3D Environments. The 3D environments show high fidelity, aiming to mimic the real-world active
tracking scenarios. The 3D environments are built on the Unreal Engine, which and could flexibly
simulate a photo-realistic world. We employ UnrealCV (Qiu et al., 2017), which provides convenient
APIs, along with a wrapper (Zhong et al., 2017) compatible with OpenAI Gym (Brockman et al.,
2016), for interactions between RL algorithms and the environment. The observation is an image
of the first-person view of the world as seen by the agent. The actions space is discrete with seven
candidate motions, move-forward, move-backward, turn-left, turn-right, turn-left-and-move-forward,
turn-right-and-move-forward, and no-op. For training, we build a Domain Randomized Room(DR
Room) with two controllable players (target and tracker). The domain randomization techniques
could help agents learn better feature representation in terms of visual observation. In testing, we
focus on the transferring ability of the tracker to different unseen environments. We use three realistic
scenarios, Urban City, Snow Village and Parking Lot, to mimic real-world scenes for evaluating. The
bottom row in Fig. 2 shows the snapshots of the four 3D environments used.

Details of the four environments are:

• DR Room is a plain room comprised of floor and walls only, but the textures and illumination
conditions are randomized. For the textures, we randomly choose pictures from a texture
dataset (Kylberg, 2011) and place them on the surface of the walls, floor, and players. For
the illumination condition, we randomize the intensity and color of each light source as well
as each position, orientation.
• Urban City is a high-fidelity street view of an urban city, including well-modeled buildings,

streets, trees and transportation facilities. Besides, there are some puddles on the road,
reflecting the objects and buildings.
• Snow Village consists of bumpy snowfields with several trees, bushes and some cabins.

Occasionally, the target will be occluded by trees and bushes, and the tracker will be
distracted by the snowflake and halo.
• Parking Lot is an underground parking lot with complex illumination condition. The lack of

light source makes the illumination uneven, i.e., some places are bright but the others are
dark. Besides, the pillars may occlude the target to track.
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Figure 2: The environments used for training and testing.

4.2 BASELINES

We provide two kinds of base target agent to randomly generate trajectories as baselines to compare
with, Rambler (Ram) and Navigator (Nav). Agent Ram walks randomly without any purpose like a
man. Technically, it randomly samples actions from the action space and keeps executing the action
n times, where n is also a random integer in the range of (1, 10). Agent Nav is a navigator, which
plans the shortest path to a specific goal. Thus, it could navigate to most of free space in the map.
To randomize the trajectories, the goal coordinate and the initial coordinate are randomly sampled.
In most of case, Ram prefers to walk around a local area repeatedly. In contrast, Nav would like to
explore the map globally, shown as the yellow trajectories in Fig. 2. Thus we regard trajectories from
the Ram as easier cases, and trajectories from Nav as more difficult cases for tracker.

4.3 IMPLEMENTATION DETAILS

Each agent is trained by A3C (Mnih et al., 2016), a commonly used reinforcement learning algorithm.
The code for A3C is based on a pytorch implementation (Griffis). Multiple workers are running in
parallel when training. Specifically, 16 workers are used in the 2D experiment, and 4 workers are
used in the 3D experiment.

Network Architecture. For the tracker, we follow the end-to-end Conv-LSTM network architecture
as (Luo et al., 2018). Differently, there is no fully-connected layer between the Conv-Net and the
LSTM-Net in this paper. The Conv-Net is a two-layer CNN for the 2D experiments and four-layer
CNN for the 3D experiments. In the 3D experiments, the input color images are transformed to gray
image and the pixel values are scaled to [−1, 1]. we also develop the same Conv-LSTM network
architecture for the target, but different in the input and output, shown as Fig. 1. The network
parameters are updated with a shared Adam optimizer.

Hyper Parameters. For the tracker, the learning rates δ1 and δ′1 in 2D and 3D environments are
0.001 and 0.0001, respectively. The reward discount factor γ = 0.9, generalized advantage estimate
parameter τ = 1.00, and regularizer factor for tracker λ1 = 0.01. The parameter updating frequency
n is 20, and the maximum global iteration for training is 150K. Comparing to the tracker, a higher
regularizer factor is used for encouraging the target to explore, λ2 = 0.2 in 2D and λ′2 = 0.05 in 3D.
The more exploration taken by target, the more diverse the generated trajectories are. It is useful for
the learning of the tracker. Validation is performed in parallel and the best validation network model
is applied to report performance in testing environments. Note that the validation environment is of
the same settings as training, except that the target is controlled by a Nav agent. Compared with the
Ram agent, the Nav agent is more challenging, thus is more suitable for validation.

Metric. Two metrics are employed for the experiments. Specifically, Accumulated Reward (AR) and
Episode Length (EL) of each episode are calculated for quantitative evaluation. AR is a comprehensive
metric, representing the tracker’s capability about precision and robustness. It is effected by the
immediate reward and the episode length. Immediate reward measures the goodness of tracking, and
EL roughly measures the duration of good tracking. Because the episode is terminated when the
tracker loses the target for continuous 10 steps or reaches the max episode length.
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Figure 3: Cumulative reward curves for tracker trained in AD-VAT versus the baseline methods
when tested in the validation environment. For both 2D (left) and 3D (middle) settings, AD-VAT
improves the sample-efficiency and achieves higher reward. The right figure is the learning curve of
the ablation study in 2D environment.

Table 1: Results on the 2D environments.
Environment Accumulated Reward(AR) Episode Length(EL)

Map Target Ram Nav AD-VAT Ram Nav AD-VAT

Maze Ram 350±23 287±99 353±22 500±0 439±131 500±0
Nav 243±128 257±126 264±108 412±175 409±173 431±143

AD-VAT 244±129 213±125 315±25 433±145 412±154 500±0

Block Ram 352±53 303±67 362±16 491±64 462±83 500±0
Nav 265±134 246±144 308±60 414±178 386±194 488±69

AD-VAT 195±170 190±101 318±32 375±180 410±147 500±0
Average 275±131 249±120 320±63 438±148 420±153 487±70

4.4 RESULTS ON THE 2D ENVIRONMENT

We quantitatively evaluate the performance of our approach, comparing to the two baselines. Fur-
thermore, we conduct an ablation study to show the effectiveness of the partial zero-sum reward and
tracker-aware model.

Quantitative Evaluation. We test the active tracker trained with different target agents in four testing
settings, showing the effectiveness of AD-VAT. Considering the random seed of the environments,
we conduct 100 runs in each and report the mean and standard deviation of AR and EL, shown in
Table 1. The max episode length is 500, so the upper bound of EL is 500. Thus, when EL equals to
500, we could infer that the tracker performs perfectly, without losing the target.

We note that, at the beginning of the learning, the adversarial target usually walks randomly around
the start point, performing similar policy as Ram. Such target is easier to be found and observed, even
though the tracker is in exploration. Thus, the tracker could warm up faster. With the growth of the
tracker, the target gradually explores other motion patterns, which could further reinforce the tracker.
Such a learning process is close to the curriculum learning, but the curriculum is automatically
produced by the target via adversarial reinforcement learning. We also report the learning curve as
the mean of cumulative rewards in the validation environment, shown as the left sub-figure in Fig. 3.
It consistently shows the advantage of the proposed AD-VAT.

Ablation Study. In Section 3, we introduced two components to implement AD-VAT: partial zero-
sum reward (PZR) and tracker-aware model (TAM) for target. These two components are important
as they influence the natural curriculum for the tracker. Thus, we report an ablation study result to
show the effectiveness of these two components, shown in Fig. 3. The naive method is an intuitive
idea that target only uses its own observation with auxiliary task, guided by a zero-sum reward.
As shown in the right sub-figure of Fig. 3, using each component separately could improve the
sample-efficiency, comparing to the naive method. Besides, PZR contributes to the improvement of
the tracking performance more significant than TAM. Moreover, when combining PZR and TAM,
both sample-efficiency and the tracking performance are significantly boosted, comparing to the other
three settings.
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Figure 4: Results on the 3D environment. The higher is the better.

Figure 5: Hard examples produced by the adversarial target.

4.5 RESULTS ON THE 3D ENVIRONMENT

In the 3D experiments, we test the generalization of the model in unseen realistic scenarios, showing
the transfer potential in real-world scenarios. We train three models with different target models (Ram,
Nav, and AD-VAT) in the DR Room. And then, we directly run the three trackers in the validation
and testing environments, 100 episodes for each, and report AR and EL in Fig. 4

The result in DR Room demonstrates again that even though the target is unseen for our AD-VAT
tracker, it still outperforms the others. Note that the DR Room for validation is of the same settings
as the training of Nav tracker. The results in the other environments show that the three models
are able to transfer to realistic environment. We believe that the domain randomization method
and the Conv-LSTM network endow the trackers the ability of transferring. However, the tracker’s
performance is also highly related to the behavior of the targets during training, especially in complex
environments (Snow Village and Parking Lot). Compared with the two baselines, the adversarial
behavior of the target could significantly improve the capability of the tracker in these challenging
environments. We infer that the target in AD-VAT could explore the environment more acvtively to
discover more difficult cases. For example, in DR Room, the target would prefer to move close to the
wall that is similar to itself to fool the tracker (see Fig. 5). By competing with the target, the tracker
consequently becomes stronger. In Appendix. C, we further evaluate the capability of our tracker in
the real-world video clips, qualitatively.

5 CONCLUSION AND FUTURE WORK

In this paper, we have proposed an asymmetric dueling mechanism for visual active tracking (AD-
VAT). Within AD-VAT, agents of tracker and target are learned in an adversarial manner. With
the design of the partial zero-sum reward structure and tracker-aware model, the reinforced active
tracker outperforms baseline methods. Experiments including ablation study in both 2D and 3D
environments verify the effectiveness of the proposed mechanism.

As future work, we would like to: 1) investigate the theoretical justification of applying modern
Multi-Agent RL methods (Lanctot et al., 2017; Srinivasan et al., 2018) to solving Partially Observable
Markov Game and finding Nash Equilibrium. 2) further develop the mechanism/model for active
tracking in more complex environment (e.g., environments with a number of obstacles and moving
distractors); 3) adapt the mechanism to other tasks (e.g., learning to grab a moving object).
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A DETAILS OF THE PARTIAL ZERO-SUM REWARD

A ζ ξ µ ν ρ∗2 ρmax θ∗ θmax
2D 1 2 0 1 0 0grid 6grid \ 360◦

3D 1 2 2 2 2 2.5m 5.0m 0 90◦

Table 2: The details of parameters of the rewards in the 2D and 3D experiments.

To help better understand the reward structure given in Eq. (5) and (6), we visualize the sum r1 + r2
as heatmap in x− y plane. See Fig. 6.

For the 2D experiment, the observations for both the tracker and target are bird-views. We want to
penalize that the target gets too far away from the tracker. Therefore, the zero-sum area is a circle
(Fig. 6, Left), where the tracker is in the centre. With the increasing of the distance, the penalty term
in r2(see Eq. (6)) starts taking effect on the sum. It causes the sum to reduce gradually until the target
reaches the dark area, where r2 = −A.

For the 3D experiment, the observations for both the tracker and target are front-views. We want to
penalize that the target gets too far away from the tracker or that the target cannot be seen by the
tracker. Thus, the zero-sum area is a sector area (Fig. 6, Right), which approximately fits the Field
of View (FoV) of the tracker’s camera. Note that the FoV in our experiment is 90 degree. Both the
relative angle θ and distance ρ contribute to the penalty term in r2. Thus the sum decreases like a
divergence sector.

Figure 6: Visualizing r1 + r2 as heatmap in x − y plane with the tracker in the image center.
Left: The reward adopted in our 2D environment experiment. Right: The reward adopted in our 3D
environment experiment. See the Appendix text for more explanations.

B VISUALIZING THE TRAINING PROCESS

For a better understanding of the training process, we record trajectories of the target and the tracker
during different training stages. Specifically, we have 6 stages, ranging from early training to late
training. For each stage we record 100 episodes. In Fig. 7, we plot the target position distribution,
instead of the trajectory itself. For ease of visualization, we adopt a relative coordinate system for the
target position when drawing the distribution, because the start locations for both the tracker and the
target are random upon each episode. In Fig. 7, the distributions are in a start point-centric coordinate
system, while in Fig. 8 the distributions are in a tracker-centric coordinate system.

At early training stages (see the left of Fig. 7), AD-VAT and Ram generate similar trajectories, which
are randomly walking around the start point. In contrast, for Nav method the target usually goes
along a straight line to the goal position, causing the tracker to get lost quickly at beginning. The
random walking trajectories help the tracker observe the target appearing in various positions, and
henceforth sample more diverse experiences. As a result, a better exploration is achieved during the
early training stage, which is not the case for the Nav method.
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AD-VAT

Ram

Nav

Figure 7: Target position distribution in a start point-centric coordinate system. Evolution from early
training to late training is arranged from left to right. The darker, the bigger the counts.

AD-VAT

Ram

Nav

Figure 8: Target position distributions in a tracker-centric coordinate system. Evolution from early
training to late training is arranged from left to right. The darker, the bigger the counts.

With the evolution of the tracker during training, the target will gradually seek more difficult cases to
defeat the tracker. In this regard, the target for both Ram and Nav usually explores possible directions
uniformly. The minor difference is that the Nav tends to explore the map globally, while the Ram is in
local (see the right of Fig. 7). As for our AD-VAT method, however, the reinforced target could adapt
to the capability of the tracker, resulting in different direction choosing patterns at different stage. For
example, the target tends to move bottom-right at the third stage, but top-left at the fourth stage. See
Fig. 7. Besides, it seems that the reinforced target could balance the two exploration modes of Nav
and Ram naturally. Sometimes it explores the map, and sometimes it duels with the tracker locally.
By the dueling mechanism, the target could find the weakness of the tracker more often (see the right
of Fig. 8), which seems to serve as a kind of importance sampling that enhances the tracker efficiently
during training. Such a “weakness-finding” seems absent for the Nav and Ram algorithms.

C TESTING TRACKER ON REAL-WORLD VIDEO CLIPS

To demonstrate the capability of our tracker in real-world scenarios, we conduct a qualitative
evaluation as Luo et al. (2018). In this evaluation, we feed the video clips from VOT dataset (Kristan
et al., 2016) to the tracker and observe the network output actions. Note that the tracker could not
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really control the camera movement, hence we regard the test as “passively”. However, the tracker’s
output action is expected to be sensitive to the position and the scale of the target in the image. For
example, when the target appears in the right (left) side, the tracker tends to turn right (left), trying
to fictitiously move the camera to “place” the target in the image center. By visualizing whether
the output action is consistent with the position and scale of the target at each frame, we are able to
demonstrate the potential of transferring the tracking ability to real-world.

We plot three “Action” maps, shown in Fig. 9, Fig. 10, and Fig. 11, respectively. Note that the
meaning of each axis is the same as (Luo et al., 2018) except that we normalize the values for better
understanding. In details, the horizontal axis indicates the normalized x-axis position of the target in
the image, with a positive (negative) value meaning that a target is in the right (left) side. The vertical
axis indicates the normalized size of the target, i.e., the area of the ground truth bounding box. We
use seven marks to represent the seven actions respectively, as shown in the legend.

More results on other VOT videos are available at: https://youtu.be/jv-5HVg_Sf4.

Figure 9: The Action map from AD-VAT tracker feed by the VOT2015-iceskater sequences.

Figure 10: The Action map from AD-VAT tracker feed by the VOT2013-iceskater1 sequences.
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Figure 11: The Action map from AD-VAT tracker feed by the VOT2015-girl sequences.
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