Targeted Dropout

Aidan N. Gomez Ivan Zhang Kevin Swersky
Google Brain FOR.ai Google Brain
aidan.gomez@cs.ox.ac.uk ivan@for.ai kswerskyQgoogle.com
Yarin Gal Geoffrey E. Hinton
University of Oxford Google Brain
yarin@cs.ox.ac.uk geoffhinton@google.com
Abstract

Neural networks are extremely flexible models due to their large number of pa-
rameters, which is beneficial for learning, but also highly redundant. This makes
it possible to compress neural networks without having a drastic effect on perfor-
mance. We introduce targeted dropout, a strategy for post hoc pruning of neural
network weights and units that builds the pruning mechanism directly into learning.
At each weight update, targeted dropout selects a candidate set for pruning using a
simple selection criterion, and then stochastically prunes the network via dropout
applied to this set. The resulting network learns to be explicitly robust to pruning,
comparing favourably to more complicated regularization schemes while at the
same time being extremely simple to implement, and easy to tune. |

1 Introduction

There has been a great deal of work on developing strategies to sparsify neural networks [10, [7}
S, 2L 1311301121 90 [18]]. Sparsification involves removing weights (corresponding to setting them
to 0) or entire units from the network, while maintaining predictive performance. Sparsity can be
encouraged during learning by the use of sparsity-inducing regularizers, like L' or L° penalties. It
can also be imposed by post hoc pruning, where a full-sized network is trained, and then sparsified
according to some pruning strategy. Ideally, given some measurement of task performance, we would
prune the weights or units that provide the least amount of benefit to the task. Finding the optimal
set is in general a difficult combinatorial problem, and even a greedy strategy would require an
unrealistic number of task evaluations, as there are often millions of parameters in a modern neural
network architecture. Common pruning strategies therefore focus on fast approximations, such as
removing weights with the smallest magnitude [6]], or ranking the weights by the sensitivity of the
task performance with respect to the weights and removing the least-sensitive ones [LL0].

Our approach is based on the observation that dropout regularization 8 [17] itself enforces sparsity
during training, by sparsifying the network with each forward pass. This encourages the network
to learn a representation that is robust to a particular form of post hoc sparsification — in this case,
where a random set of units are removed. Our hypothesis is that if we plan to do explicit post hoc
sparsification, then we can do better by specifically applying dropout to the set of units that we
a priori believe are the least useful. We call this approach fargeted dropout. The idea is to rank
weights or units according to some fast, approximate measure of importance (like magnitude), and
then apply dropout primarily to those elements with low importance. Similar to the observation
with regular dropout, we show that this encourages the network to learn a representation where the
importance of weights or units more closely aligns with our approximation. In other words, the
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network learns to be robust to our choice of post hoc pruning strategy. The advantage of targeted
dropout compared to other approaches is that it leads to a converged network that is extremely robust
to post hoc pruning. It is simultaneously easy to implement, consisting of a two-line change using
neural network frameworks such as Tensorflow [1]] or PyTorch [14]. Furthermore, it is explicit: the
desired level of sparsity is provided by the user, and enforced throughout training.

2 Targeted Dropout

2.1 Dropout

Our work uses the two most popular Bernoulli dropout techniques, [Hinton et al.[s unit dropout [8 [17]]
and [Wan et al.[s weight dropout (dropconnect) [20]. For a fully-connected layer with input tensor
X, weight matrix W, output tensor Y, and mask M, , ~ Bernoulli(a) we define both techniques
below:

Unit dropout [8 [17]: Y = (X o M)W

Unit dropout randomly drops units (sometimes referred to as neurons) at each training step to reduce
dependence between units and prevent overfitting.

Weight dropout [20]: Y =X(WoM)

Weight dropout randomly drops individual weights in the weight matrices at each training step.
Intuitively, this is dropping connections between layers, forcing the network to adapt to a different
connectivity at each training step.

2.2 Magnitude-based pruning

A popular class of pruning strategies are those characterized as magnitude-based pruning strategies.
These strategies treat the top-k largest magnitude weights as important. We use argmax-k to return
the top-k elements (units or weights) out of all elements being considered.

Unit pruning [6]: considers the units (column-vectors) of weight matrices under the L2-norm.

W(0) = { argmax-k ||w,|[2 | W € 0} ()
1<0<Neol (W)

Weight pruning [10]: considers each entry of the weight matrix separately under the L'-norm. Note

that the top-k is with respect to the other weights in the same filter.

W) =< argmax-k |W,|
1<i<Niow (W)

1§0§NCO1(W),WEG} ()

While weight pruning tends to preserve more of the task performance under coarser prunings [S} 19} 4]],
unit pruning allows for considerably greater computational savings [21} [12].

2.3 Methods

Consider a neural network parameterized by 8, and our pruning strategy (defined above in Equa-
tions (I) and (2))) YW. We hope to find optimal parameters 8* such that our loss £(WV(8*)) is low and
at the same time |[W(0*)| < k, i.e. we wish to keep only the & weights of highest magnitude in the
network. A deterministic implementation would select the bottom |@| — & elements and drop them
out. However, we would like for low-valued elements to be able to increase their value if they become
important during training. Therefore, we introduce stochasticity into the process using a targeting
proportion + and a drop probability «. The targeting proportion means that we select the bottom (6|
weights as candidates for dropout, and of those we drop the elements independently with drop rate
«. This implies that the expected number of units to keep during each round of targeted dropout is
(1 —~-«)|0]. As we will see below, the result is a reduction in the important subnetwork dependency
on the unimportant subnetwork, thereby reducing the performance degradation of pruning at the
conclusion of training.



Table 1: ResNet-32 model accuracies on CIFAR-10 at differing pruning percentages and under
different regularization schemes. The top table depicts results using the weight pruning strategy,
while the bottom table depicts the results of unit pruning (see Sec. [2.2).

Weight Dropout/Pruning

variational L ;

dropout targeted targeted targeted targeted targeted + LJ 1
a=0.25 a=0.33,7=0.75 o 0.75 a=0.66,y=0.75 a=0.5,7v=0.5 a=0.5,7v=0.5

(7 9430 94.11 ¢ 6 93. 93.90 92.75 CRICH]
é"n O 9416 94.05 90.42 ¢ 3.85 93.95 92.83 93.84

g p\I73 94.19 9397 90.43 p. .8 93.89 92.67
8 30% EZWA 93.90 90.42 2 B3, 93.89 92.52 93.80
E 40% REERA] 93.59 90.38 A 3. 93.91 92.12 93.81
o 50% 3.3 92.00 90.38 91. 93.8 33 CREZ 90.98 93.47
§ 60% 50 88.23 90.41 91. 93.66 80.91 92.02
& 70% 2. 58.07 90.40 .68 92.80 88.07
80% . 85.10 89.63 3 87.38 58.97
90% 10.02 15.13

Unit Dropout/Pruning
dropout targeted targeted targeted targeted targeted + L, variational L o,
=025  a=0.33,y=0.75  a=0.5,y=0.75  a=0.66,y=0.75  a=0.5,y=0.5 a=0.5,y=0.5

0% 92.93 91.00 L 90.55 93.08 73

?0 10% 84.98 85.92 38.8 90.83 92.90 3

g 20% 21.27 . 4.6 89.88 92.72 4
8 30% | 36.49 10.32 b 59.02 87.35 91.97 3 30.55
E 40%  12.64 12.52 14.32 . 85.39 9 21.88
o 50% 10.19 10.13 11.95 K 80.84 13.12
g 60% 11.32 9.95 11.16 12.67 71.97 11.70 34.13 9.95
& 70% 10.14 9.98 10.03 10.72 55.98 9.98 12.14 23.13 9.70
80%  10.01 9.91 09.94 09.92 10.02 9.94 10.07 10.20 10.69
90%  10.12 9.95 09.86 09.95 10.07 9.95 9.90 10.05 9.88

Table 2: Comparing Smallify to targeted dropout and ramping targeted dropout. Experiments on
CIFAR10 using ResNet32. Left: the best of the three targeted dropout runs compared against the best
out of six smallify runs; Middle: inspecting higher pruning rates of the best smallify run compared to
ramping targeted dropout; Right: inspecting even higher pruning rates of ramping targeted dropouts.

Weight Dropout/Pruning

targeted smallifylen51 smallify ramp targ ramp targ

a=0.66,7=0.75 A=0.00001 a=0.99, a=0.99,7=0.99
0% 90% I 88.70 98.5%
& 10% 91% IR 88.74 98.6%
£ 20% 93.84 92% [EYKE) 3 98.7%
8 30% 93.89 & 93% IS 98.8%
g 40% 9381 . ST 90.30 88.80 98.9%
o 50% 93.84 91. AU  90.30 88.73 99.0%
§ 60% 93.89 ¢ 96% IRYRLS 88.74 99.1%
& 70% 93.84 9 97% A2 88.67 99.2%
80% 92.31 98% 88.70 99.3%

90% 46.57 99% 88.75 99.4% 11.59

Our weight pruning experiments (shown in Tables 1 & 2) demonstrate that the baseline regularization
schemes are comparatively weak to their targeted counterparts. We find that targeted dropout applied
to the weights results in the network outperforming unregularized performance with only half the
total number of parameters. We are able to reach extremely high rates of pruning in Table 2 by
gradually annealing the targeted proportion from zero percent of weights up to ninety-nine percent
throughout the course of training.

3 Conclusion

We propose targeted dropout as a simple and extremely effective regularization tool for incorporating
post hoc pruning strategies into the training procedure of neural networks without drastic impact to
underlying task performance of a particular architecture. Among the primary benefits of targeted
dropout are the simplicity of implementation and intuitive, flexible hyperparameters.
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Figure 1: A comparison between a network without dropout (left) and with targeted dropout (right)
of the matrix formed by #7 ® H © 6. The weights are ordered such that the last 75% are the weights
with the lowest magnitude (those we intend to prune). The sum of the elements of the lower right
hand corner — formed by the intersection of the elements in the rightmost 3/4 of columns with the
lowermost 3/4 of rows — approximates the change in error after pruning (Eqn. (3)). Note the stark

difference between the two networks, with targeted dropout concentrating its dependence on the top
left corner, leading to a much smaller error change after pruning.

Appendix

Dependence Between the Important and Unimportant Subnetworks

The goal of targeted dropout is to reduce the dependence of the important subnetwork on its com-
plement. A commonly used intuition behind dropout is the prevention of coadaptation between
units; that is, when dropout is applied to a unit, the remaining network can no longer depend on that
unit’s contribution to the function and must learn to propagate that unit’s information through a more
reliable channel. An alternative description asserts that dropout maximizes the mutual information
between units in the same layer, thereby decreasing the impact of losing a unit [17]]. Dropout has also
been shown to impose ‘hierarchy’ among units depending on the particular drop rate associated with
each unit [[15]].

A more relevant intuition into the effect of targeted dropout in our specific pruning scenario can
be obtained from an illustrative case where the important subnetwork is completely separated from
the unimportant one. Suppose a network was composed of two non-overlapping subnetworks, each
able to produce the correct output by itself, with the network output given as the average of both
subnetwork outputs. If our importance criterion designated the first subnetwork as important, and the
second subnetwork as unimportant (more specifically, it has lower weight magnitude), then adding
noise to the weights of the unimportant subnetwork (i.e. applying dropout) means that with non-zero
probability we will corrupt the network output. Since the important subnetwork is already able
to predict the output correctly, to reduce the loss we must therefore reduce the weight magnitude
of the unimportant subnetwork output layer towards zero, in effect “killing” that subnetwork, and
reinforcing the separation between the important subnetwork and the unimportant one.

These interpretations make clear why dropout should be considered a natural tool for application in
pruning. We can empirically confirm targeted dropout’s effect on weight dependence by comparing
a network trained with and without targeted dropout and inspecting the Hessian and gradient to
determine the dependence of the network on the losing ticket (i.e. our weights to be pruned). As in
LeCun et al. [10], we can estimate the effect of pruning weights by considering the second degree
Taylor expansion of change in loss:

(0 —d) —E(0)| = | — V& d + 1/2d" Hd + O(||d]*)| 3)
Where d; = 6; if 6; € W(0) and 0 otherwise. V& are the gradients of the loss, and H is the Hessian.
Note that at the end of training, if we have found a critical point 8*, then Vo&(6*) = 0, leaving
only the Hessian term. In our experiments we empirically confirm that targeted dropout reduces the
dependence between the important and unimportant subnetworks by an order of magnitude (See Fig.

1.



Table 3: LeNet-5 model accuracies on CIFAR-10 at differing pruning percentages and under different
regularization schemes. Table top table depicts results using the weight pruning strategy, while
bottom table depicts the results of unit pruning (see Sec. 2.2)).

Weight Dropout/Pruning

1 s 0 0 0 0
Lo variational Loy Looi  Looot  Lo.ooot

dropout targeted targeted targeted
@=0.25 a=0.5,y=0.5  a=0.33,7y=0.75  a=0.66,y=0.75

0% 66.51 65.16 66.76 6 61.77 66.88
& 10% 66.55 55.88 65.15 66.76 539 61.83 66.80
§ 20% 66.66 66. 65.16 66.76 6191 66.98
8 30% 66.59 ! 65.48 66.76 6570 61.94 66.81
g 40% 66.96 0 65.70 66.67 6533 6234 6582
o 50% 67.38 66.75 6530 61.82 6497
g 60% 65.52 66.82 63.77 60.73 6455
& 70% 53.69 23.55 49.62 59.80 58.12  62.39

80% 15.62 4677 5180 53.78

90% 2424 2471 16.63 31.11 25.09 17.25 45.14

Unit Dropout/Pruning
dropout targeted targeted targeted L}M variational L8_1 Lg,m Lg,om Lg,oom
@=0.25 @=0.5,y=0.5 a=0.33,y=0.75 «=0.66,7=0.75

0% 61.02 64.31 70.30
L 10% 60.07 64.09 60.99
£ 2% 56.67 63.30 27.52
§ 30% 55.19 63.25 27.50 31.51
g 40% 49.13 60.23 22.05 2342 2148 2891 2748
o 50% 56.27 17.15 13.82 1645 2127 18.94
§ 60% 41.57 17.23 19.43 1337 1642 2062 2038
& 70% 13.48 10.05 13.84 1334 1128  13.67

80% 13.57 9.99 12.19 14.16 1203 1148

90% 1061  11.05 10.31 12.15 13.46 11.24 10.05 985 1058 834 8.75
LeNet-5

Our first suite of experiments are performed on the LeNet-5 architecture [11] applied to the CIFAR-10
dataset. This architecture is used as a control as it is comparatively shallow and underperforming
relative to the ResNet architecture used in the next section. The network is trained for 256 epochs by
SGD with momentum of 0.9 and a constant learning rate of 0.01. We apply basic input augmentation
in the form of random crops, random horizontal flipping, and standardization.

In Table[3|we compare both weight and unit targeted dropout against standard weight and unit dropout,
as well as L' regularization, variational dropout, and L° regularization. We find that both forms
of targeted dropout outperform their standard dropout counterpart; we also find that the version of
targeted dropout used (unit versus weight) must match the version of pruning strategy used post hoc.
Variational dropout performs fairly well in both its weight and unit forms, however the sparsity is
effectively fixed at the rate discovered by the optimization procedure, and the model accuracy breaks
down rapidly once this threshold is surpassed. The weight-level variant of L° regularization performs
very well on LeNet and is capable of sustaining significant pruning; however, targeted dropout is
superior for all rates over 50% aside from 90%. The unit-level variant performs only marginally better
than the unregularized baseline, and is significantly outperformed by targeted dropout. Regarding L'
regularization, we find that it doesn’t seem to improve over the unregularized baseline.

VGG-16

In order to experiment with a different architecture/data pair we experiment with the VGG-16
architecture [16] on CIFAR-100. We find that targeted dropout behaves similarly across all dataset-
architecture pairs (see Table ).
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Table 4: VGG-16 applied to CIFAR-100.

Weight Dropout/Pruning

none  dropout targeted targeted variational L8 g0,  smallify
a=0.25 0 a=0.66,7v=0.75 A=0.00001

0% BREEE 59.84 58.3 60.05
10% d o2 59.94
20% RN 48 58.6 58.30 59.75
30% B8 0 59.80
40% [ e 58.01
50% - 58.60 54.13
60% 42. 49.04 41.40

90w W
~

70% 23.55 4 2238

80% 382 248 439 1 13.66 473

90% 096 105 141 3.70 486 102 1173
Unit Dropout/Pruning

dropout targeted variational L g,  smallify
a=0.25 a=0.5,y=0.5 A=0.0001

0%

& 10%

£ 20%

S 30%

g 40% 51.62

o 50% 4835

5 60% 101 104 1.4 1720 09 095

S 70% 095 09 1.05 1313 092 099
80% 096 097 0.94 8.33 095 095
90% 102 098 0.97 457 094 101
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