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ABSTRACT

Artificial neural networks have revolutionized many areas of computer science in
recent years, providing solutions to a number of previously unsolved problems. On
the other hand, for many problems, classic algorithms exist, which typically exceed
the accuracy and stability of neural networks. To combine these two concepts, we
present a new kind of neural networks—algorithmic neural networks (AlgoNets).
These networks integrate smooth versions of classic algorithms into the topology
of neural networks. A forward AlgoNet includes algorithmic layers into existing
architectures to enhance performance and explainability while a backward AlgoNet
enables solving inverse problems without or with only weak supervision. In
addition, we present the algonet package, a PyTorch based library that includes,
inter alia, a smoothly evaluated programming language, a smooth 3D mesh renderer,
and smooth sorting algorithms.

1 INTRODUCTION

Artificial Neural Networks are employed to solve numerous problems, not only in computer science
but also in all other natural sciences. Yet, the reasoning for the topologies of neural networks seldom
reaches beyond empirically-based decisions.

In this work, we present a novel approach to designing neural networks—algorithmic neural networks
(short: AlgoNet). Such networks integrate algorithms as algorithmic layers into the topology of
neural networks. However, propagating gradients through such algorithms is problematic, because
crisp decisions (conditions, maximum, etc.) introduce discontinuities into the loss function. If one
passes from one side of a crisp decision to the other, the loss function may change in a non-smooth
fashion—it may “jump.” That is, the loss function suddenly improves (or worsens, depending on
the direction) without these changes being locally noticeable anywhere but exactly at these “jumps.”
Hence, a gradient descent based training, regardless of the concrete optimizer, cannot approach
these “jumps” in a systematic fashion, since neither the loss function nor the gradient provides any
information about these “jumps” in any place other than exactly the location at which they occur.
Therefore, a smoothing is necessary, such that information about the direction of improvement
becomes exploitable by gradient descent also in the area surrounding the “jump.” That is, by
smoothing, e.g., an if, one can smoothly, by gradient descent, undergo a transition between the two
crisp cases using only local gradient information.

Generally, for end-to-end trainable neural network systems, all components should at least be C0

smooth, i.e., continuous, to avoid “jumps.” However, having Ck smooth, i.e., k times differentiable
and then still continuous components with k ≥ 1 is favorable. This property of higher smoothness
allows for higher-order derivatives and thus prevents unexpected behavior of the gradients. Hence, we
designed smooth approximations to basic algorithms where the functions representing the algorithms
are ideally C∞ smooth. That is, we designed pre-programmed neural networks (restricted to smooth
components) with the structure of given algorithms.

Algorithmic layers can solve sub-problems of the given problem, act as a custom algorithmic loss, or
assist in finding an appropriate solution for (ill-posed) inverse problems. Such algorithmic losses can
impose constraints on predicted solutions through optimization with respect to the algorithmic loss.
Ill-posed problems are a natural application for algorithmic losses and algorithmic layers. For that,
we introduce the Reconstructive Adversarial Network (RAN) in Sec. 3.3.
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In this work, we describe the basic concept of algorithmic layers and present several applications. In
Sec. 3.1.1, we start by proving that any algorithm, which can be emulated by a Turing machine, can
be approximated by a C∞ smooth function. In Sec. 4, we present some algorithmic layers that we
designed to solve underlying problems. In the appendix, we present a case study on 3D geometry
reconstruction that demonstrates the applicability of RANs. All described algorithmic layers and
models are provided in the algonet package, a PyTorch (Paszke et al. (2017)) based library for
AlgoNets.

2 RELATED WORK

Related work (Mart’in Abadi et al. (2015); Che et al. (2018); Henderson & Ferrari (2018)) in neural
networks focused on dealing with crisp decisions by passing through gradients for the alternatives of
the decisions. There is no smooth transition between the alternatives, which introduces discontinuities
in the loss function that hinder learning, which of the alternatives should be chosen. TensorFlow
contains a sorting layer (tf.sort) as well as a while loop construct (tf.while_loop). Since
the sorting layer only performs a crisp relocation of the gradients and the while loop has a crisp exit
condition, there is no gradient with respect to the conditions in these layers. Concurrently, we present
a smooth sorting layer in Sec. 4.1 and a smooth while loop in Sec. 3.1.1.

Theoretical work by DeMillo et al. (DeMillo & Lipton (1993)) proved that any program could be
modeled by a smooth function. Consecutive works (Nesterov (2005); Chaudhuri & Solar-Lezama
(2011); Yang & Barnes (2017)) provided approaches for smoothing programs using, i.a., Gaussian
smoothing (Chaudhuri & Solar-Lezama (2011); Yang & Barnes (2017).)

3 ALGONET

To introduce algorithmic layers, we prove that smooth approximations for any Turing computable
algorithm exist and explain two flavors of AlgoNets: forward and backward AlgoNets.

3.1 SMOOTH ALGORITHMS

To design a smooth algorithm, all discrete cases (e.g., conditions of if statements or loops) have to
be replaced by continuous or smooth functions. The essential property is that the implementation is
differentiable with respect to all internal choices and does not—as in previous work—only carry the
gradients through the algorithm. For example, an if statement can be replaced by a sigmoid-weighted
sum of both cases. By using a smooth sigmoid function, the statement is smoothly interpreted. Hence,
the gradient descent method can influence the condition to hold if the content of the then case
reduces the loss and influence the condition to fail if the loss is lower when the else case is executed.
Thus, the partial derivative with respect to a neuron is computed because the neuron is used in the if
statement. In contrast, when propagating back the gradient of the then or the else case depending
on the value of the condition, there is a discontinuity at the points where the value of the condition
changes and the partial derivative of the neuron in the condition equals zero.

s1(x, s) =
1

1 + e−x·s
with s = 1 (1) s2(x) =

{

0 if x < 0

1 else
(2)

Here, the logistic sigmoid function (Eq. 1) is a C∞ smooth replacement for the Heaviside sigmoid
function (Eq. 2), which is equivalent to the if statement. Alternatively, one could use other sigmoid
functions, e.g., the C1 smooth step function x2 − 2 · x3 for x ∈ [0, 1], and 0 and 1 for all values
before and after the given range, respectively.

Another example is the max-operator, which, in neural networks, is commonly replaced by the

SoftMax operator
(

SoftMax(x)i =
exp(xi)∑
j
exp(xj)

)

.

After designing an algorithmic layer, we can use it to enhance a neural network and to solve for
its inverse by using the reconstructive adversarial neural network (RAN) as shall be described in
Sec. 3.2, and 3.3.
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3.1.1 SMOOTH WHILE-PROGRAMS

In this section, we prove that for any algorithm, C∞ smooth approximations exist. For that, we
present smooth and differentiable approximations to an elementary programming language based on
the WHILE-language by Uwe Schöning (Schöning (2008).) We do not want to imply that such a
direct translation of any algorithm into the WHILE-language to make it smooth is the best or even
the only option. It is rather meant as a fallback solution if no better solution can be found for a
sub-problem. We will present several more efficient and canonical approximations in Sec. 4.

The WHILE-language is Turing-complete, and for variables (var) its grammar can be defined as
follows:

prog = WHILE var != 0 DO prog END

| prog prog

| var := var // left and right var unequal

| var := var + 1 // left and right var equal

| var := var - 1 // left and right var equal

Here, var ∈ {xn | n ∈ N0} and while x0 is the output, xn where n ∈ N0 are variables initialized
to 0 if not set to an input value. Thus, {xn | n ∈ N+} are inputs and/or local variables used in
the computations. Although this interpretation allows only for a single scalar output value (x0),
an arbitrary number of output values can be reached, either by interpreting additional variables as
output or by using multiple WHILE-programs (one for each output value). Provided Church’s thesis
holds, this language covers all effectively calculable functions. The WHILE-language is equivalent
to register machines which have no WHILE, but instead IF and GOTO statements.

x0 1 2-1-2

p

Figure 1: φ0 (magenta) and φ∞ (cyan).

We generate the approximation to this language by
executing all statements only to the extent of their
probability. That is, we keep track of a probability p,
indicating whether the current statement is still executed.
Initially, p = 1. In the body of a while loop, the

probability for an execution is p(new)
k (x) = p

(old)
k · φk(x)

where k defines the smoothness of the probability
function for exiting the loop φk. To obtain C∞ smooth

WHILE-programs, we used φ∞ : R → [0, 1] : x 7→ (esx−1)2

e2sx+1 = 1− sech(sx). For C0 smoothness,
we used the shouldered fuzzy set φ0 : R → [0, 1] : x 7→ 1 −max(0, 1 − |x|) = min(1, |x|). For
x0...xn initialized as integers, using φ0, the result for the C0 WHILE-program always equals the
result for the discrete WHILE-program since the probability is always either 1 or 0. For all k ∈ N0,
φk exists. Fig. 1 shows how these exit probability functions behave. Because of the symmetry
of φ, w.l.o.g., we can assume that ∀x ∈ R≥0. If the loop (in the discrete version) increases x
by 1, x will diverge. If x decreases by 1, p converges to 0. Since φ0(x) ≥ φ∞(x), it suffices
to show that p converges to zero for φ0. Since p(new)(x) = p(old)(x) · φ0(x) ≤ φ0(x) ≤ |x|,
x := x − p(new)(x) ≥ x − |x| = 0. Thus, x and φ0(x) monotonically decrease and x ≥ 0.

Eventually, φ0(x) < 1. Thus, p(x) ≤ (φ0(x))
n n→∞
−−−−→ 0.

Here, x is the value of the current variable, s is the steepness, and p is the probability of the execution.
To apply the probabilities on the assignment, increment and decrement operators, we redefine them
as:

x0 := x1 −→ x0 := p · x1+ (1− p) · x0 (3)

x0 := x0+ 1 −→ x0 := x0+ p (4)

x0 := x0− 1 −→ x0 := x0− p (5)

Since the hyperbolic secant is C∞ smooth, our version of the WHILE-language is C∞ smooth.
While the probability converges to zero, it (in most cases) never reaches zero, and the loop would
never exit. Thus, we introduce ǫ > 0 and exit the loop if p ≤ ǫ or a maximum number of iterations is
reached. Although this introduces discontinuities, by choosing an ǫ of numerically negligible size,
the discontinuities also become numerically negligible.
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(a) x1 · x2 (b) C∞ WHILE(x1, x2) (c) C0 WHILE(x1, x2)

Figure 2: Multiplication of x1 and x2 implemented as a general multiplication, C∞ smooth
WHILE-program and C0 smooth WHILE-program. The height indicates the result of the function.
Contrary to the common notion, the color indicates not the values but the analytic gradient of the
function.

As an experiment, we implemented the multiplication on positive integers, as shown on the left:

WHILE x2 != 0 DO | WITH p1 := 1; p′1 := p1 · φ(x2) DO

x3 := x1 | x3 := p1 · x1+ (1− p1) · x3
WHILE x3 != 0 DO | WITH p2 := p1; p′2 := p2 · φ(x3) DO

x0 := x0 + 1 | x0 := x0 + p2
x3 := x3 - 1 | x3 := x3 - p2

END | WHILE p2 ≥ ǫ
x2 := x2 - 1 | x2 := x2 - p1

END | WHILE p1 ≥ ǫ

Contrary to the discrete implementation, the smooth interpretation (as on the right) can interpolate
the result for arbitrary values x1,x2 ∈ R+.

Since the WHILE-language is Turing-complete, any high-level program could, in principle, using
an appropriate compiler, be translated into an equivalent program in WHILE-language. To this
WHILE-program, automatic smoothing could be applied using the rules that are illustrated here. Of
course, there are better ways of smoothing: manual smoothing using domain-specific knowledge
and smoothing using a higher-level language outperform the low-level automatic smoothing. For
example, in a higher-level language, the multiplication would be implemented since it is smooth itself.
Using domain-specific knowledge, algorithms could be reformulated in such a way that smoothing is
possible in a more canonical way. To translate a WHILE-program into a neural network, the WHILE
loops are considered as recurrent sub-networks.

3.2 FORWARD ALGONET

The AlgoNet can be classified into two flavors, the forward and the backward AlgoNet. To create
a forward AlgoNet, we use algorithmic layers and insert them into a neural network. By doing so,
the neural network may or may not find a better local minimum by additionally employing the given
algorithm. We do so by using one of the following options for each algorithmic layer:

• Insert between two consecutive layers (Fig. 3a).
• Insert between two consecutive layers and also skip the algorithmic layer (Fig. 3b).
• Add a residual connection and apply the algorithmic layer on the residual part (Fig. 3c).

AlgoNet

(a) fully applied AlgoNet layer

AlgoNet

(b) shortcut AlgoNet layer

AlgoNet
...

(c) residual AlgoNet layer

Figure 3: Different styles of the forward AlgoNet.
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Figure 4: RAN System overview. The reconstructor receives an object from the input domain A
and predicts the corresponding reconstruction. The reconstruction, then, is validated through our
smooth inverse. The latter produces objects in a different domain, B, which are translated back to the
input domain A for training purposes (b2a). Unlike in traditional GAN systems, the purpose of our
discriminator D is mainly to indicate whether the two inputs match in content, not in style. Our novel
training scheme trains the whole network via five different data paths, including two which require
another domain translator, a2b.

Generally, algorithmic layers do not have trainable weights. Regarding the accuracy, the output of
C∞ smooth WHILE-programs differs from the discrete WHILE-programs by a small factor and
offset. The output of C0 smooth WHILE-programs equals the output of discrete WHILE-programs
for integer inputs (discrete WHILE-programs fail for non-integer inputs). One could counter this
factor and offset for C∞ smooth WHILE-programs by adding an additional weight and a bias to
each assignment in the WHILE-program. For that, one should regularize these weights and biases
to be close to one and zero, respectively. These parameters could be trained on a data set of integer
input/output pairs of the respective discrete WHILE-program to fit the algorithmic layer. Moreover,
the algorithmic layer could also be trained to fit the surrounding layers better.

3.3 BACKWARD ALGONET: RECONSTRUCTIVE ADVERSARIAL NETWORKS (RAN)

While forward AlgoNets can use arbitrary smooth algorithms—of course, an algorithm directly
related to the problem might perform better—backward AlgoNets use an algorithm that solves the
inverse of the given problem. For example, a smooth renderer for 3D-reconstruction, a smooth
iterated function system (IFS) for solving the inverse-problem of IFS, and a smooth text-to-speech
synthesizer for speech recognition. While backward AlgoNets could be used in supervised settings,
they are designed for unsupervised or weakly supervised solving of inverse-problems. Their concept
is the following:

Input (∈ A) −→ Reconstructor −→ Goal −→ smooth inverse −→ Smooth version of input (∈ B)

This structure is similar to auto-encoders and the encoder-renderer architecture presented by Che
et al. (Che et al. (2018).) Such an architecture, however, cannot directly be trained since there is
a domain shift between the input domain A and the smooth output domain B. Thus, we introduce
domain translators (a2b and b2a) to translate between these two domains. Since training is extremely
hard with three consecutive components, of which the middle one is highly restrictive, we introduce a
novel training schema for these components: the reconstructive adversarial network (RAN). For that,
we also include a discriminator to allow for adversarial training of the components a2b and b2a. Of
our five components four are trainable (the reconstructor R, the domain translators a2b and b2a, and
the discriminator D), and one is non-trainable (the smooth inverse Inv).

Since, initially, neither the reconstructor nor the domain translators are trained, we are confronted
with a causality dilemma. A typical approach for solving such causality dilemmas is to solve the two
components coevolutionarily by iteratively applying various influences towards a common solution.
Fig. 4 depicts the structure of the RAN, which allows for such a coevolutionary training scheme.

The discriminator receives two inputs, one from space A and one from space B. One of these
inputs (either A or B) receives two values, a real and a fake value; the task of the discriminator is
to distinguish between these two, given the other input. For training, the discriminator is trained to
distinguish between the different path combinations for the generation of inputs. Consecutively, the
generator modules are trained to fool the discriminator. This adversarial game allows training the
RAN.
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In the following, we will present this process, as well as its involved losses, in detail. Our optimization
of R, a2b, b2a, and D involves adversarial losses, cycle-consistency losses, and regularization losses.
Specifically, we solve the following optimization:

min
R

min
a2b

min
b2a

max
D

L or in greater detail min
R

min
a2b

min
b2a

max
D

5
∑

i=1

(αi · Li) + Lreg.

where αi is a weight in [0, 1] and L, and Li shall be defined below. Lreg denotes the (optional)
regularization losses imposed on the reconstruction output.

We define b′, b′′ ∈ B and a′, a′′ ∈ A in dependency of a ∈ A according to Fig. 4 as

b′ = a2b(a) b′′ = Inv ◦ R(a) a′ = b2a(b′) a′′ = b2a(b′′).

With that, our losses are (without hyper-parameter weights)

L1 = Ea∼A[logD(a, b′′)] + Ea∼A[log(1−D(a, b′))] + Ea∼A[‖b
′′ − b′‖1]

L2 = Ea∼A[logD(a, b′′)] + Ea∼A[log(1−D(a′′, b′′))] + Ea∼A[‖a
′′ − a‖1]

L3 = Ea∼A[logD(a, b′)] + Ea∼A[log(1−D(a′′, b′))] + Ea∼A[‖a
′ − a‖1] + Ea∼A[‖b

′′ − b′‖1]

L4 = Ea∼A[logD(a, b′′)] + Ea∼A[log(1−D(a′, b′′))] + Ea∼A[‖a
′ − a‖1] + Ea∼A[‖b

′′ − b′‖1]

L5 = Ea∼A[logD(a, b′)] + Ea∼A[log(1−D(a′, b′))] + Ea∼A[‖a
′ − a‖1].

We alternately train the different sections of our network in the following order:

1. The discriminator D
2. The translation from B to A (b2a)
3. The components that perform a translation from A to B (R+Inv, a2b)

For each of these sections, we separately train the five losses L1,L2,L3,L4, and L5. In our
experiments, we used one Adam optimizer (Kingma & Ba (2014)) for each trainable component (R,
a2b, b2a, and D).

4 APPLICATIONS

In this section, we present specific AlgoNet-layers. Specifically, we present a smooth sorting
algorithm, a smooth median, a finite differences layer, a weighted SoftMax, smooth iterated function
systems, and a smooth 3D mesh renderer. We will present the smooth 3D mesh renderer in greater
detail in the appendix, where we will also present the respective 3D mesh reconstruction applying the
RAN.

4.1 SOFTSORT

The SoftSort layer is a smooth sorting algorithm that is based on a parallelized version of bubble sort
(Knuth (1998)) (see especially Section 5.3.4: Networks for Sorting), which sorts a tensor along an
array of scalars by repeatedly exchanging adjacent elements if necessary. Fig. 5 shows the structure
of the SoftSort algorithm. Contrasting our approach, the sorting layer in TensorFlow (Mart’in Abadi
et al. (2015)) is not smooth and does not consider gradients with respect to the ordering induced by
the sorting.

4.2 FINITE DIFFERENCES

The finite differences method, which was introduced by Lewy et al. (Lewy H. (1928)), is an essential
tool for finding numerical solutions of partial differential equations. In analogy, the finite differences
layer uses finite differences to compute the spatial derivative for one or multiple given dimensions of
a tensor. For that, we subtract the tensor from itself shifted by one in the given dimension. Optionally,
we normalize the result by shifting the mean to zero and/or add padding to output an equally sized
tensor. Thus, it is possible to integrate a spatially- or temporally-derivating layer into neural networks.
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M1 M2 M3 · · · Mn−1

eji : = σ
(

(a
(j−1)
i+1 − a

(j−1)
i ) · s

)

where σ : x 7→
1

1 + e−x
(6)

M : =

n−1
∏

i=1

Mi b = a ·M t′ = t ·M (7)

Figure 5: The structure of SoftSort. Here, the exchanges of adjacent elements are represented by
matrices Mi. By multiplying these matrices with tensor a, we obtain b, the sorted version of a. By
instead multiplying with tensor t, we obtain t′: t sorted with respect to a. Using that, we can also sort
a tensor with respect to a learned metric. For sorting n values, we need n− 1 steps for an even n and
n steps for an odd n; to get a probabilistic coarse sorting, even fewer steps may suffice. s denotes the
steepness of the sorting such that for s −→ ∞ we obtain a non-smooth sorting and for infinitely many
sorting operations, all resulting values equal the mean of the input tensor. In the displayed graph, the
two recurrent layers are unrolled in time.

4.3 WEIGHTEDSOFTMAX

The weighted SoftMax (short: wSoftMax) allows a list that is fed to the SoftMax operator to be
smoothly sliced by weights indicating which elements are in the list. That is, there are two inputs,
the actual values (x) and weights (w) from (0; 1] indicating which values of x should be considered
for the SoftMax. Thus, wSoftMax can be used when the maximum value of values, for which an
additional condition also holds, is searched by indicating whether the additional condition holds with
weights wi ∈ (0; 1]. We define the weighted SoftMax as:

wSoftMaxi(x, w) :=
exp(xi) · wi

∑‖w‖−1
i=0 exp(xi) · wi

=
exp(xi + logwi)

∑‖w‖−1
i=0 exp(xi + logwi)

(8)

= SoftMaxi(xi + logwi)

Accordingly, we define the weighted SoftMin (analogue to SoftMax/SoftMin) as wSoftMin(x, w) :=
wSoftMax(−x, w). By that, we enable a smooth selection to apply the SoftMax/SoftMin function
only to relevant values.

4.4 SOFTMEDIAN

The mean is a commonly used measure for reducing tensors, e.g., for normalizing a tensor. While
the median is robust against outliers, the mean is sensitive to all data points. This has two effects:
firstly, the mean is not the most representative value because it is influenced by outliers; secondly, the
derivative of a normalization substantially depends on the positions of outliers. That is, outliers, which
might have accelerated gradients in the first place, can influence all values during a normalization like
x′ := x− x̄. While one would generally avoid these potentially malicious gradients by cutting the
gradients of x̄, this is not adequate if changes in x̄ are expected. To reduce the influence of outliers in
a smooth way, we propose the SoftMedian, which comes in two styles, a precise and slower as well
as a significantly faster version that only discards a fixed number of outliers.
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The precise version sorts the tensor with SoftSort and takes the middle value(s). For that, it is not
necessary to carry out the entire SoftSort; instead, only those computations that influence the middle
value need to be taken into account.

The faster variant to compute the SoftMedian (of degree j) is by its recursive definition in
which influence of the minimum and maximum values is reduced as follows: SoftMed(x)(j) :=
wSoftMin

(

wSoftMin(x, SoftMed(x)(j−1)) +wSoftMax(x, SoftMed(x)(j−1)), SoftMed(x)(j−1)
)

where SoftMed(x)(0) := ‖x‖.

4.5 SMOOTH ITERATED FUNCTION SYSTEMS

Iterated function systems (IFS) allow the construction of various fractals using only a set of parameters.
For example, pictures of plants like Barnsley‘s fern can be generated using only 4 × 6 = 24
parameters. Numerous different plants and objects can be represented using IFS. Since IFS are
parametric representations, they can be stored in very small space and be adjusted. This can be used,
e.g., in a computer game to avoid unnatural uniformity when rendering vegetation by changing the
parameters slightly, so that each plant looks slightly different. Finally, there are very fast algorithms
to generate images from IFS. While IFS provide many advantages, solving the inverse problem of
IFS, i.e., finding an IFS representation for any given image, is very hard and still unsolved. Towards
solving this inverse problem, we developed a C∞ smooth approximation to IFS.

Given a two-dimensional IFS with n bi-linear functions (fi)i∈{1..n} fi(x, y) := (x+ a1,i + a2,ix+
a3,iy, y + a4,i + a5,ix + a6,iy), we repeatedly randomly select one function f ∈ (fi)i∈{1..n} and
apply it to an initial position or the proceeding result. We do that process arbitrarily often and plot
every intermediate step. Since it is not meaningful to interpolate multiple functions, because IFS rely
on randomized choices, and to provide consistency, we perform these random choices in advance.

The difficulty in this process is the rasterization since no crisp decision correlating pixels to points
can be made. Thus, we correlate each pixel to each point with a probability p ∈ [0; 1] where p = 1
is a full correlation and p = 0 means no correlation at all. By applying Gaussian smoothing on the
locations of the points, for each point, the probabilities p ∈ (0; 1) for each pixel define the correlation.
Concluding, for each pixel, the probabilities for all points to lie in the area of that pixel are known.
By aggregating these probabilities, we achieve a smooth rasterization.

We tested the smooth IFS by optimizing its parameters to fit an image. For that, by setting the
standard deviation, different levels of details can be optimized.

4.6 SMOOTH RENDERER

Lastly, we include a C∞ smooth 3D mesh renderer to the AlgoNet library, which projects a triangular
mesh onto an image while considering physical properties like perspective and shading. Compared to
previous differentiable renderers, this renderer is fully and not only locally differentiable. Moreover,
the continuity of the gradient allows for seamless integration into neural networks by avoiding
unexpected behavior altogether. By taking the decision which triangles cover a pixel, in analogy to
the smooth rasterization in Sec. 4.5, the silhouette of the mesh can be obtained. Consecutively, by
computing which of these triangles is the closest to the camera smoothly, our renderer’s depth buffer
is smooth. That allows for color handling and shading.

The smooth renderer is presented in greater detail in Appendix A. Consecutively, in Appendix B,
we use the smooth renderer as smooth inverse for the RAN to solve the inverse problem of 3D
reconstruction. A selection of results is presented in Fig. 6; more results are presented in Appendix C.

5 DISCUSSION AND CONCLUSION

We presented AlgoNets as a new kind of layers for neural networks, a C∞ Turing complete interpreter,
and RANs as a novel technique for solving ill-posed inverse problems. Moreover, in the appendix,
we demonstrate with a case study on 3D reconstruction that the RAN works even in complex settings.
We have implemented the presented layers on top of PyTorch and will publish our AlgoNet library
upon publication of this work. Concurrent with their benefits, AlgoNets, such as the aforementioned
rendering layer, can get computationally very expensive. On the other hand, the rendering layer is
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Input Prediction Alternative View

Input Prediction Alt. view
Figure 6: Results for the reconstruction
of the ShapeNet (Chang et al. (2015))
classes airplane, and car. Left:
input. Middle: prediction from the
same angles. Right: predictions from
alternative viewpoints. Bottom: A
single-view reconstruction result from
the UT Zappos50K dataset (Yu & Grauman (2014)) (camera-captured images). Although the object
has strong textures, it is adequately reconstructed.

very powerful since it allows training a 3D reconstruction without 3D supervision using the RAN.
Since the RAN has a very complex architecture that requires a particular training paradigm, it can
also take relatively long to train it. To accommodate this issue, we found that by increasing some loss
weights and introducing a probability of whether a computation is executed, the training time can be
reduced by a factor of two or more. Unfortunately, due to length restrictions, we have only been able
to present a subset of all implemented algorithmic layers.

Rectified Linear Units (ReLUs) (Nair & Hinton (2010)) have been very successful in practice for
efficient back-propagation. However, in contrast to such a network where the rectification allows to
activate or deactivate neurons, we use the gradients produced by the differentiable algorithm not just
for adapting parameters but employ the gradient of the smooth algorithm to train other parts of the
network. For doing so, the gradient of the algorithm should not be discontinuous (as it would be with
a ReLU); so having at least a C1 smoothness is clearly beneficial to allow for effective training.

The AlgoNet could also be used in the realm of explainable artificial intelligence (Gilpin et al. (2018))
by adding residual algorithmic layers into neural networks and then analyzing the neurons of the
trained AlgoNet. For that, network activation and/or network sensitivity can indicate the relevance
of the residual algorithmic layer. To compute the network sensitivity of an algorithmic layer, the
gradient with respect to additional weights (constant equal to one) in the algorithmic layer could be
computed. By that, similarities between classic algorithms and the behavior of neural networks could
be inferred. An alternative approach would be to gradually replace parts of trained neural networks
with algorithmic layers and analyzing the effect on the new model accuracy.

In the future, we will develop a high-level smooth programming language to improve smooth
representations of higher-level programming concepts. Adding trainable weights to the algorithmic
layers to improve the accuracy of smooth algorithms and/or allow the rest of the network to influence
the behavior of the algorithmic layer is subject to future research. The similarities of our smooth
WHILE-programs to analog computing as well as quantum computing shall be explored in future
work. Another future objective is the exploration of neural networks not with a fixed but instead a
smooth topology. Finally, loss ranking would be an additional application for the SoftSort algorithm.
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ADDITIONAL MATERIAL: A CASE STUDY ABOUT 3D RECONSTRUCTION

Here, we describe how we use the AlgoNet to solve a complex problem in computer graphics without
supervision: the reconstruction of 3D geometry from single real-world images. This problem requires
a complex system that can only be implemented by including algorithmic concepts provided by the
AlgoNet and the RAN.

In Appendix A, we present our C∞ smooth differentiable 3D mesh renderer in greater detail. Based
on that, we present unsupervised 3D geometry reconstruction as an application of the RAN in
Appendix B. We present and discuss our 3D geometry reconstruction results in Appendix C. Finally,
in Appendix D, we present additional implementation details.

A C
∞ SMOOTH RENDERER

In this section, we present our C∞ Smooth Renderer that avoids any discontinuities at occlusions
or dis-occlusions. Having this property, the renderer’s back-propagated gradients can be properly
used to modify the 3D model. This is critical for integrating the renderer into a neural network.
The typical discontinuity problem occurs during triangle rasterization, where the visibility of a
triangle, due to occlusion or dis-occlusion, causes an abrupt change in the image. For example, if
during the optimization process, the backside of a predicted object self-intersects its front, traditional
differentiable renderers are not able to provide a reasonable gradient towards reversing such an
erroneous self-intersection since they cannot differentiate with respect to occlusion. To overcome
this problem, our approach offers a soft blending scheme, that is continuous even through such
intersections.

As in the general rendering approach, first, we apply view transformations on all triangles to bring
them from object space into perspective projection space coordinates. This process is generally
already fully differentiable.

Consecutively, one needs rasterization to correlate triangles to pixels. General rasterization consists
of two steps, for each pixel one needs to collect all the triangles that cover that pixel, and then employ
a z-buffer to determine which of them is visible in the pixel.

(a) Discrete case (b) Smooth case
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(c) Visibility implied by
the discrete z-buffer (for
7a)
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(d) Visibility implied by
the smooth z-buffer Z

(for 7b)

Figure 7: Visualization of the smooth depth buffer
and occlusion: 7a shows three triangles rendered
in a standard way, in 7b the same triangles are
rendered smoothly. While in the discrete case a
small change in depth can result in a sudden change
of color (7c), our smooth depth-oriented rendering
(7d) avoids that and therefore is differentiable
everywhere.

Instead of collecting all triangles that fit the
xy-coordinates of a given pixel, we determine
a probability value of whether a triangle fits a
pixel for each triangle and pixel. This constitutes
the visibility tensor V as shall be described in
section A.2.

Our key idea is to use a visibility test that
enables reasoning beyond occlusion, using
only smooth functions to avoid abrupt changes.
Rather than taking a discrete decision of which
triangle is the closest and thus visible, we
softly blend their visibility, which goes along
with an idea from stabilizing non-photorealistic
rendering results (Luft et al. (2006)). By
using a SoftMin-based function, we determine
the closest and thus most visible face. But
using the simple SoftMin of the z-positions in
camera space would result in only the single
closest triangle being most visible. Thus,
we need to incorporate the visibility tensor
V that tells us which triangles cover a given
pixel. Instead, we weight the SoftMin with the
visibility tensor V by introducing the weighted
SoftMin (wSoftMin). Taking the wSoftMin
of the z-positions in camera space, constitutes
smooth z-buffer as shall be described in greater
detail in section A.1.
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(a) check whether point is in
triangle

(b) sigmoid wrt.
edge a

(c) sigmoid wrt.
edge b

(d) sigmoid wrt.
edge c

(e) product of
sigmoids

Figure 8: Visualization of the smooth rasterization. While the magenta point lies outside the
triangle, the cyan point lies inside the triangle; this can be determined by measuring on which
side of the edges a point lies. In subfigure 8b–8d it is smoothly determined which parts of the
image lie inside and which parts lie outside the triangle with respect to the edges a–c. This is
combined by multiplication (visibility tensor V ) in subfigure 8e.

This smooth z-buffer leads to our C∞ Smooth Renderer, where the z-positions of triangles is
differentiable with respect occlusions. In previous differentiable renderers, only the xy-coordinates
were locally differentiable with respect to occlusion.

Let us assume to have three triangles (see Fig. 7a), where we want to examine the behavior of the
bottom left pixel (marked with #) with respect to the z-position of the cyan face. During the process
of optimizing the geometry, triangles might change their order with regard to the depth and abrupt
color changes might appear. As shown in Figure 7c, the color value of the pixel (implied by the
rasterization of the triangles) is constant except for one single point. At this point of intersection, the
rasterization is discontinuous; at all other points, the derivative with respect to the z-position is 0.
Employing the smooth rasterization and smooth z-buffer as in Figure 7d, the visibility of a pixel is
never absolute, but rather a soft blend. Thus, it is differentiable, and optimizations can be solved with
simple gradient descent.

Finally, we need to compute the color values of the triangles. For that, we use a lightning model
composed of Blinn-Phong, diffuse, and ambient shading. We restrict the color to grayscale since we
do not reconstruct the color in the RAN. Since the function of color is already differentiable we can
directly use it.

Figure 9 shows a comparison between our smooth renderings and a Blender rendering of the Stanford
bunny.

A.1 SMOOTH Z-BUFFER Z

Our rasterization step is similar to the z-buffer algorithm, but instead of a displaying the single closet
triangle and its z-distance in each pixel, we display a blend of triangles that project to the pixel.

We define the Smooth z-buffer Z for pixel (px, py), triangle T , and opacity o as follows:

Z(px, py, T ) := wSoftMin(o · z-dist(camera, T ), V (px, py, · ))

We define the weighted SoftMin (analogue to SoftMin/SoftMax) as: wSoftMin(x, w) :=
wSoftMax(−x, w) where the weighted SoftMax is defined as:

wSoftMaxi(x, w) : =
exp(xi) · wi

∑‖w‖−1
i=0 exp(xi) · wi

= SoftMaxi(xi + logwi)

Thus, for a pixel, the closest triangle is represented with high visibility, while triangles further away
have weaker visibility. The visibility tensor V , as shall be defined in Section A.2, contains the extent
to which a given triangle covers a given pixel. We use it as a weight for the wSoftMin, which allows
considering only the relevant triangles in the SoftMin operator.

The opacity o is a hyper-parameter setting accelerating the strength of the SoftMin. See Figure 9 to
see how it affects the results.

Similar to the painter’s algorithm (de Berg (1993)) we do not explicitly handle special cases of
cyclical overlapping polygons that can cause depth ordering errors. Our smooth renderer is not
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(a) low s, low o (b) high s, low o (c) low s, high o (d) high s, high o (e) Blender result

Figure 9: Stanford bunny rendered by the smooth renderer using different edge smoothnesses
(s) and opacities (o): In 9a and 9b, the low opacity o causes, e.g., one of the ears to be still
visible through the head of the bunny (for usage of o see section A.1). In 9a and 9c, the low edge
steepness causes smoother edges (for usage of s see section A.2). On the right: The Stanford
bunny rendered by Blender (e).

sensitive to these cases. When polygons have a similar distance to the camera, their opacity will also
be very similar and thus not only the front polygon but also the one behind is visible.

A.2 VISIBILITY TENSOR V

In the general rendering approach, the discrete choice, whether a triangle covers a pixel is just a trivial
check. In the smooth approach, as shown in Figure 8, we determine the pixels that correspond to a
triangle by checking for each pixel whether the directed distances from the pixel to each edge are
all positive. This yields the visibility tensor V for triangle T = (e1, e2, e3) with ei = (v1, v2) and
vi = (vi,x, vi,y), and steepness s as follows:

V (px, py, T ) :=
∏

e=(v1,v2)∈T

σ

(∣

∣

∣

∣

vx,2 − vx,1 vx,1 − px
vy,2 − vy,1 vy,1 − py

∣

∣

∣

∣

·
s

m

)

with m = SoftMine∈T (‖e‖)

The sign of the directed distances to the three edges indicates on which side of the edge a pixel is.
By applying a sigmoid function (σ) on that directed distances, we get a value close to 1 if the pixel
lies inside and a value close to 0 if the pixel lies outside the triangle with respect to a given edge. By
taking the product of the values for all three edges, the result (∈ [0, 1]) smoothly indicates whether
a pixel lies in or outside a triangle. Since this draws the triangles only from one direction, we add
the same term with the negative directed distances to make the visibility tensor triangle orientation
invariant:

Vorient.inv.(px, py, T ) =
∑

a∈{−1,1}

∏

e=(v1,v2)∈T

σ

(

a

∣

∣

∣

∣

vx,2 − vx,1 vx,1 − px
vy,2 − vy,1 vy,1 − py

∣

∣

∣

∣

s

m

)

For Figure 8, the visibility tensor V looks as follows:

V (px/px, py/py, T )
example
=

( )

·

( )

·

( )

The steepness s is a hyper-parameter setting the steepness of the sigmoid function. See Figure 9 to
see how it affects the results.
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B 3D GEOMETRY RECONSTRUCTIVE ADVERSARIAL NETWORK

Using our RAN framework, we train a reconstructor (pix2vex) without 3D supervision, i.e.,
without the need for the actual 3D models corresponding to the input images during training. The
architecture of the reconstructor (pix2vex) is a pix2pix network followed by two fully connected
layers predicting the coordinates of the points of a 3D mesh. The pix2vex shall be described in
greater detail in Appendix D.2. The aforementioned causality dilemma is the following: To train the
reconstruction, we need to compare the smoothly rendered images of the predicted shape to the input,
which requires style transfer. On the other hand, to train the style translation, we need to know what a
properly smoothly rendered image (corresponding to the input image) looks like. As discussed before,
we solve the two components coevolutionarily by iteratively applying various influences towards a
common solution.

The key idea is to train an adversarial discriminator D to discriminate between the different ways
to obtain pairs of images from A (identity, p2v–SR–b2a, a2b–b2a) and B (p2v–SR, a2b). This
allows the three components p2v, a2b and b2a to be trained to fool D. In designing such a strategy,
we exploited the following insights:

• Since pix2pix networks are lazy and their capabilities are restricted, the discriminator can
be implicitly trained in a way that the content between pairs of images (A and B) will be
similar. The rationale behind this is the following: for the pix2pix to hold the cycle-consistency
of p2v–SR–b2a, it is much easier for the image translator to only do a style-transfer from a
content-wise similar image than to reconstruct the input from a smooth rendering of a different
object.

• To let the discriminator know what a general smoothly rendered image should look alike, we train
it by rendering randomly guessed 3D models. After doing so, the discriminator can be used to train
a2b to output images from B.

Training a conventional GAN is a relatively straightforward task, since only a single binary decision
(real vs. fake) has to be taken. Training the RAN, as shown in Fig. 4, is much more convoluted,
since instead of only a single binary decision two decisions have to be made: one between three
choices (A-input real vs. fake generated by p2v–SR–b2a vs. a2b–b2a) and one between two choices
(B-input only fake generated by p2v–SR vs. a2b). These paths represent all possibilities to obtain
an image of A respectively B—i.e., the discriminator has to differentiate between all possible ways
to generate its input and thus fooling the discriminator leads to a common solution for all these paths.

Since it is easier to train a binary discriminator, our solution is to break the RAN into five sub-RANs,
which all have to take only a single binary decision (real vs. fake), as depicted in Figure 11.
These sub-RANs are alternately trained like conventional GANs by training their discriminator
to differentiate between the “real” and “fake” input and training the other modules to fool the

(a) sub-RAN 1 (b) sub-RAN 2 (c) sub-RAN 3

(d) sub-RAN 4 (e) sub-RAN 5

Figure 11: The five sub-RANs
constituting the RAN.
Sub-RAN 1 (a) has a
discriminator switch at
input B, differentiating
between p2v+SR and a2b.
The other four routes differentiate between two images from space A, while the “real” input for
the discriminator is always the input image. The “fake” input is the result of a round trip that
either involves p2v+SR and b2a (b, c) or a2b and b2a (d, e). This round trip is required for a
cycle-consistency loss that diminishes mode collapse. Meanwhile, the B input is the result of either
p2v+SR (b, d) or a2b (c, e). By that, p2v and a2b can be trained mutually.
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Input Prediction Alternative View

Input (only 2 of 4) Prediction (only 2 of 4) Alternative View Input (only 2 of 4) Prediction (only 2 of 4) Alternative View

Figure 12: Four-view reconstruction of the ShapeNet (Chang et al. (2015)) classes airplane,
car, and sofa. Left: input. Middle: prediction from the same angles. Right: predictions from
alternative viewpoints.

discriminator. If there are two modules to be trained at once, the training is split into two steps: the
module next to the discriminator is trained first and the one after the input is trained second (e.g.,
b2a, which is close to the discriminator, is trained first, and a2b is trained second). This helps to
avoid mode collapse. Since the relevance of these sub-RANs differs, their influence is weighted. For
example, training a path with the pix2vex module (sub-RAN (a) in Figure 11) carries more weight
than training the cycle of the two image translators (sub-RAN (e)). For the discriminator D, we use
the binary cross-entropy loss. For training, an L1 loss between any two images of the same image
space is applied as defined in Section 3.3.

This constitutes the RAN as an unsupervised way to find an appropriate internal representation which
in turn requires the pix2pix networks to perform a minimum of content-wise changes.

C RESULTS AND CONCLUSION

We evaluate our reconstruction results on synthetic as well as camera-captured images. While
using synthetic images allows highly controlled experiments, the training and evaluation based on
camera-captured images demonstrates that our approach can be applied to real-world scenarios.

For creating synthetic images, we used the ShapeNet dataset (Chang et al. (2015)) of categorized 3D
meshes that has also been used for many other 3D reconstruction tasks. We rendered the 3D meshes
using Blender with a resolution of typically 128× 128 pixels and from multiple directions by using
lighting hyperparameters different from the lighting hyperparameters that we used in the SR of the
RAN. This avoids unintended implicit supervision of the process.
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Input Pred. Alt. view Input Pred. Alt. view

Figure 13: Single-view reconstruction results from the UT Zappos50K dataset (camera-captured
images).

In the general case we used sets of images from four azimuths (∆azimuth = 90◦) for our training.
The results for this setting are shown in Fig. 12. In this case, the viewpoints are from altitudes which
are not contained in the training data, e.g., the training images of cars were always from an altitude
of 0◦—thus, a perfect reconstruction of a diagonal view of the models is harder. Since our smooth
renderer does not consider shadows, reconstructing the sofa in line 5 is especially hard.

In addition, we conducted studies on modified settings as presented and described in Fig. 14. In (a–c),
we performed four-view trainings with the following modifications to the training data: In (a), we
randomized the azimuth of the images with a standard deviation of 5◦. In subfigure (b), we randomly
assigned the position of the light source for each set of images. In subfigures (c1) and (c2), we trained
on the car and airplane classes simultaneously.

In (d) and (e), we randomized, but supervised, the difference between azimuths for the four images.
I.e., if multiple images have the same azimuth, the input data is effectively three or fewer images. In
(d1) and (d2), we predicted the images from only two input images; in (e1–e4), we show single-view
reconstructions. Since these reconstructions are trained on a single resp. dual view only, the quality
of entirely unseen parts of the reconstruction is lower.

Training was performed on GTX Titan Xp GPUs on the basis of Float32. In our experiments, we
used a uniform sphere with 162 vertices and 320 faces as base model. The networks for the presented
results have been trained for between one and three weeks on a single GTX Titan Xp.

When processing low resolution images (64 × 64 pixels) combined with a high mesh resolution
(642 vertices, 1280 faces) faces have sub-pixel size. Thus, it occurs that single vertices dissociate
themselves from the mesh since they are not visible any more. The problem of dissociating vertices is
even worse if, instead of considering the directed distance to all edges of the faces only the distance
to the faces is considered in the smooth visibility test.

For training on camera-captured images, we used single-view images of shoes (Yu & Grauman
(2014)). Since these images are all typically taken from more or less the same direction, we use
mirrored versions of the images and pretend this would be the view from the other side. We employed
this small trick since many objects such as shoes are commonly roughly symmetric. Moreover, the
back of the shoe could not be reconstructed without even having any training sample from the back
side. Since this problem is highly ill-posed, our results could still be improved —nevertheless, they
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are the first of their kind. Figure 13 presents the results of this single-view 3D mesh reconstruction
which was trained on camera-captured images from a single direction.

In the proceeding experiments, we have demonstrated a robust way to reconstruct 3D geometry from
only 2D data, eliminating the need for ground truth 3D models, or prior knowledge regarding materials
and lighting conditions. In addition, we have demonstrated how a globally differentiable renderer is
crucial to the learning process—even if designing one induces differences in the appearance of the
produced renderings. We alleviate this difference through the use of image domain translation. The
success of the reconstruction is driven by a restriction of the information flow and by the laziness
of pix2pix networks, which easily perform image-style exchanges but struggle in changing the
content of an image—a property that we exploit. Thus, our approach is not informed by data but
instead by an understanding of the real world.

The presented experiments indicate that our RAN architecture is suitable to more than just its current
application of 3D reconstruction, but instead to a variety of inverse problems.

In addition, given the right training dataset, we believe the performance of the RAN for
camera-captured single-view image 3D reconstructions could be significantly improved.

D IMPLEMENTATION DETAILS

D.1 REGULARIZATION LOSSES

The regularization losses (Lreg) on the reconstructed meshes with descending relevance are:

The angle of normals of adjacent faces should be as similar as possible (loss uses the L2 norm).

The lengths of edges should be as similar as possible (loss uses the L1 norm).

The distance to the mean vertex of adjacent vertices should be as small as possible to imply a
regular mesh and also reduce the curvature of the mesh (loss uses the L1 norm).

D.2 NETWORK ARCHITECTURES

Here, we describe the topologies of the components p2v, a2b, b2a, and D. In our experiments we
typically used an image resolution of n × n = 128 × 128 and a number of vertices v = 162—we
will base the following details on that assumption.

Let Ck denote a Convolution–LeakyReLU layer with k filters of size 4 × 4 and a stride of 2. Let
the negative slope of the LeakyReLU be 0.2. From the fifth convolutional layer on, we apply a 50%
dropout.

The pix2pix network is a symmetric residual network with the following blocks defining the first
half: C64-C128-C256-C512-C512-C512-C512

pix2vex is based on the pix2pix network. It is followed by two fully connected layers (n2 →
⌊

n2+3·v
2

⌋

and
⌊

n2+3·v
2

⌋

→ 3 · v) and the sigmoid function.

a2b and b2a are pix2pix networks with the first two or more residual layers. This is followed by
the sigmoid function.

The discriminator D is defined as C64-C128- C256-C512-C1 followed by the sigmoid function.

18



Under review as a conference paper at ICLR 2020

Input (only 2 of 4) Pred. (only 2 of 4) Alt. view

(a)

(b)

(c1)

(c2)

Input Pred. Alt. view

(d1)

(d2)

Input Pred. Alt. view Input Pred. Alt. view
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Figure 14: Experiments showing the robustness of our approach. (a–c): four-view training with the
following modifications to the training data: (a) randomized azimuth of the images; (b) randomly
assigned position of the light source; (c) simultaneous training of car and airplane classes; (d)
predicting images from only two input images; (e) single-view reconstructions.

19


	Introduction
	Related Work
	AlgoNet
	Smooth algorithms
	Smooth WHILE-Programs

	Forward AlgoNet
	Backward AlgoNet: Reconstructive Adversarial Networks (RAN)

	Applications
	SoftSort
	Finite differences
	WeightedSoftMax
	SoftMedian
	Smooth Iterated Function Systems
	Smooth Renderer

	Discussion and Conclusion
	C Smooth Renderer
	Smooth Z-buffer Z
	Visibility tensor V

	3D Geometry Reconstructive Adversarial Network
	Results and Conclusion
	Implementation details
	Regularization losses
	Network Architectures


