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Abstract
Designing rewards for Reinforcement Learning
(RL) is challenging because it needs to convey the
desired task, be efficient to optimize, and be easy
to compute. The latter is particularly problem-
atic when applying RL to robotics, where detect-
ing whether the desired configuration is reached
might require considerable supervision and instru-
mentation. Furthermore, we are often interested
in being able to reach a wide range of configura-
tions, hence setting up a different reward every
time might be unpractical. Methods like Hind-
sight Experience Replay (HER) have recently
shown promise to learn policies able to reach
many goals, without the need of a reward. Un-
fortunately, without tricks like resetting to points
along the trajectory, HER might take a very long
time to discover how to reach certain areas of the
state-space. In this work we investigate different
approaches to incorporate demonstrations to dras-
tically speed up the convergence to a policy able
to reach any goal, also surpassing the performance
of an agent trained with other Imitation Learning
algorithms. Furthermore, our method can be used
when only trajectories without expert actions are
available, which can leverage kinestetic or third
person demonstration.

1. Introduction
Reinforcement Learning (RL) has shown impressive re-
sults in a plethora of simulated tasks, ranging from attain-
ing super-human performance in video-games (Mnih et al.,
2015; Vinyals et al., 2019) and board-games (Silver et al.,
2017), to learning complex locomotion behaviors (Heess
et al., 2017; Florensa et al., 2017a). Nevertheless, these suc-
cesses are shyly echoed in real world robotics (Riedmiller
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et al., 2018; Zhu et al., 2018a). This is due to the difficulty
of setting up the same learning environment that is enjoyed
in simulation. One of the critical assumptions that are hard
to obtain in the real world are the access to a reward func-
tion. Self-supervised methods have the power to overcome
this limitation.

A very versatile and reusable form of self-supervision for
robotics is to learn how to reach any previously observed
state upon demand. This problem can be formulated as train-
ing a goal-conditioned policy (Kaelbling, 1993; Schaul et al.,
2015) that seeks to obtain the indicator reward of having the
observation exactly match the goal. Such a reward does not
require any additional instrumentation of the environment
beyond the sensors the robot already has. But in practice,
this reward is never observed because in continuous spaces
like the ones in robotics, the exact same observation is never
observed twice. Luckily, if we are using an off-policy RL
algorithm (Lillicrap et al., 2015; Haarnoja et al., 2018), we
can “relabel" a collected trajectory by replacing its goal
by a state actually visited during that trajectory, therefore
observing the indicator reward as often as we wish. This
method was introduced as Hindsight Experience Replay
(Andrychowicz et al., 2017) or HER.

In theory these approaches could learn how to reach any
goal, but the breadth-first nature of the algorithm makes
that some areas of the space take a long time to be learned
(Florensa et al., 2018b). This is specially challenging when
there are bottlenecks between different areas of the state-
space, and random motion might not traverse them easily
(Florensa et al., 2017b). Some practical examples of this
are pick-and-place, or navigating narrow corridors between
rooms, as illustrated in Fig. 5 in appendix depicting the
diverse set of environments we work with. In both cases
a specific state needs to be reached (grasp the object, or
enter the corridor) before a whole new area of the space is
discovered (placing the object, or visiting the next room).
This problem could be addressed by engineering a reward
that guides the agent towards the bottlenecks, but this de-
feats the purpose of trying to learn without direct reward
supervision. In this work we study how to leverage a few
demonstrations that traverse those bottlenecks to boost the
learning of goal-reaching policies.

Learning from Demonstrations, or Imitation Learning (IL),
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is a well-studied field in robotics (Kalakrishnan et al., 2009;
Ross et al., 2011; Bojarski et al., 2016). In many cases it is
easier to obtain a few demonstrations from an expert than to
provide a good reward that describes the task. Most of the
previous work on IL is centered around trajectory follow-
ing, or doing a single task. Furthermore it is limited by the
performance of the demonstrations, or relies on engineered
rewards to improve upon them. In this work we study how
IL methods can be extended to the goal-conditioned setting,
and show that combined with techniques like HER it can
outperform the demonstrator without the need of any addi-
tional reward. We also investigate how the different methods
degrade when the trajectories of the expert become less op-
timal, or less abundant. Finally, the method we develop
is able to leverage demonstrations that do not include the
expert actions. This is very convenient in practical robotics
where demonstrations might have been given by a motion
planner, by kinestetic demonstrations (moving the agent ex-
ternally, and not by actually actuating it), or even by another
agent. To our knowledge, this is the first framework that
can boost goal-conditioned policy learning with only state
demonstrations.

2. Preliminaries
We define a discrete-time finite-horizon discounted
Markov decision process (MDP) by a tuple M =
(S,A,P, r, ρ0, γ,H), where S is a state set, A is an ac-
tion set, P : S × A × S → R+ is a transition probability
distribution, γ ∈ [0, 1] is a discount factor, and H is the
horizon. Our objective is to find a stochastic policy πθ
that maximizes the expected discounted reward within the
MDP, η(πθ) = Eτ [

∑T
t=0 γ

tr(st, at, st+1)]. We denote by
τ = (s0, a0, ..., ) the entire state-action trajectory, where
s0 ∼ ρ0(s0), at ∼ πθ(at|st), and st+1 ∼ P(st+1|st, at).
In the goal-conditioned setting that we use here, the policy
and the reward are also conditioned on a “goal" g ∈ S . The
reward is r(st, at, st+1, g) = 1

[
st+1 == g

]
, and hence

the return is the γh, where h is the number of time-steps
to the goal. Given that the transition probability is not
affected by the goal, g can be “relabeled" in hindsight,
so a transition (st, at, st+1, g, r = 0) can be treated as
(st, at, st+1, g

′ = st+1, r = 1). Finally, we also assume
access to D trajectories

{
(sj0, a

j
0, s

j
1, ...)

}D
j=0

that were col-
lected by an expert attempting to reach a goal gj sampled
uniformly among the feasible goals. Those trajectories must
be approximately geodesics, meaning that the actions are
taken such that the goal is reached as fast as possible.

3. Demonstrations in Goal-conditioned tasks
In this section we describe the different algorithms we com-
pare to pure Hindsight Experience Replay (Andrychowicz
et al., 2017). See the Appendix to prior work on adding a Be-

(a) Performance on reaching
states visited in demonstrations.
The state is colored in green if
the policy reaches it when at-
tempting so, and red otherwise.

(b) Performance on reaching
feasible states. Each cell is
colored green if the policy can
reach the center of it when at-
tempting so, and red otherwise.

Figure 1. Policy performance on reaching different goals in the
four rooms, when training on 20 demonstrations with standard Be-
havioral Cloning (top row) or with our expert relabeling (bottom).

havioral Cloning loss to the policy update as in (Nair et al.,
2018). Here we propose a novel expert relabeling technique,
we formulate for the first time a goal-conditioned GAIL
algorithm, and propose a method to train it with state-only
demonstrations.

3.1. Relabeling the expert

The expert trajectories are collected by asking the expert to
reach a specific goal gj . But they are also valid trajectories
to reach any other state visited within the demonstration!
This is the key motivating insight to propose a new type
of relabeling: if we have the transitions (sjt , a

j
t , s

j
t+1, g

j)
in a demonstration, we can also consider the transition
(sjt , a

j
t , s

j
t+1, g

′ = sjt+k) as also coming from the expert!
This can be understood as a type of data augmentation
leveraging the assumption that the tasks we work on are
quasi-static. It will be particularly effective when not many
demonstrations are available. In Fig. 1 we compare the final
performance of two agents for Four Rooms environment,
one trained with pure Behavioral Cloning, and the other one
also using expert relabeling.

3.2. Goal-conditioned GAIL with Hindsight

The compounding error in Behavioral Cloning might make
the policy deviate arbitrarily from the demonstrations, and
it requires too many demonstrations when the state dimen-
sion increases. The first problem is less severe in our goal-
conditioned case because in fact we do want to visit and
be able to purposefully reach all states, even the ones that
the expert did not visited. But the second drawback will
become pressing when attempting to scale this method to
practical robotics tasks where the observations might be
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high-dimensional sensory input like images. Both problems
can be mitigated by using other Imitation Learning algo-
rithms that can leverage additional rollouts collected by the
learning agent in a self-supervised manner, like GAIL (Ho
& Ermon, 2016). In this section we extend the formulation
of GAIL to tackle goal-conditioned tasks, and then we detail
how it can be combined with HER (Andrychowicz et al.,
2017), which allows to outperform the demonstrator and
generalize to all goals. We call this algorithm goal-GAIL.

First of all, the discriminator needs to also be condi-
tioned on the goal Dψ(a, s, g). Once the discriminator
is fitted, we can run our favorite RL algorithm on the
reward logDψ(aht , s

h
t , g

h). In our case we used the off-
policy algorithm DDPG (Lillicrap et al., 2015) to allow
for the relabeling techniques outlined above. In the goal-
conditioned case we also supplement with the indicator
reward rht = 1

[
sht+1 == gh

]
. This combination is slightly

tricky because now the fitted Qφ does not have the same
clear interpretation it has when only one of the two rewards
is used (Florensa et al., 2018a) . Nevertheless, both rewards
are pushing the policy towards the goals, so it shouldn’t
be too conflicting. Furthermore, to avoid any drop in final
performance, the weight of the reward coming from GAIL
(δGAIL) can be annealed. See Appendix for details.

3.3. Use of state-only Demonstrations

Both Behavioral Cloning and GAIL use state-action pairs
from the expert. This limits the use of the methods, com-
bined or not with HER, to setups where the exact same
agent was actuated to reach different goals. Nevertheless,
much more data could be cheaply available if the action
was not required. For example, kinestetic demonstration
or third-person imitation (Stadie et al., 2017). The main
insight we have here is that we can replace the action in
the GAIL formulation by the next state s′, and in most en-
vironments this should be as informative as having access
to the action directly. Intuitively, given a desired goal g, it
should be possible to determine if a transition s → s′ is
taking the agent in the right direction. The loss function to
train a discriminator able to tell apart the current agent and
demonstrations (always transitioning towards the goal) is
simply:

LGAILs(Ds
ψ,D,R) =E(s,s′,g)∼R[logDs

ψ(s, s′, g)]+

E(s,s′,g)∼D[log(1−Ds
ψ(s, s′, g))].

4. Experiments
We are interested in answering the following questions:

1. Can the use of demonstrations accelerate the learning
of goal-conditioned tasks without reward?

2. Is the Expert Relabeling an efficient way of doing data-
augmentation on the demonstrations?

(a) Continuous Four rooms (b) Fetch Pick & Place

Figure 2. Performance of Goal-conditioned GAIL compared to
only GAIL and HER

3. Can state-only demonstrations be leveraged equally
well as full trajectories?

4. Compared to Behavorial Cloning methods, is GAIL
more robust to noise in the expert actions?

We evaluate these questions in two different simulated
robotic goal-conditioned tasks that are detailed in the next
subsection. All the results use 20 demonstrations. All curves
have 5 random seeds and the shaded area is one standard
deviation

4.1. Tasks

Experiments are conducted in two continuous environments
in MuJoCo (Todorov et al., 2012). The performance metric
we use in all our experiments is the percentage of goals in
the feasible goal space the agent is able to reach.

Four rooms environment: A point mass is placed in an
environment with four rooms connected through small open-
ings. The action space is continuous and specifies the de-
sired change in state space which corresponds to the goal
space. Pick and Place: A fetch robot needs to pick a block
and place it in a desired point in space as described in Nair
et al. (2018). The control is four-dimensional, correspond-
ing to a change in position of the end-effector and a change
in gripper opening. The goal space is the position of the
block.

4.2. Goal-conditioned Imitation Learning

In goal-conditioned tasks, HER (Andrychowicz et al., 2017)
should eventually converge to a policy able to reach any
desired goal. Nevertheless, this might take a long time, spe-
cially in environments where there are bottlenecks that need
to be traversed before accessing a whole new area of the goal
space. In this section we show how the methods introduced
in the previous section can leverage a few demonstrations to
improve the convergence speed of HER. This was already
studied for the case of Behavioral Cloning by (Nair et al.,
2018), and in this work we show we also get a benefit when
using GAIL as the Imitation Learning algorithm. In both en-
vironments, we observe that running GAIL with relabeling
(GAIL+HER) considerably outperforms running each of
them in isolation. HER alone has a very slow convergence,
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(a) Continuous Four rooms (b) Fetch Pick & Place

Figure 3. Effect of our Expert Relabeling technique on different
Goal-Conditioned Imitation Learning algorithms.

although as expected it ends up reaching the same final per-
formance if run long enough. On the other hand GAIL by
itself learns fast at the beginning, but its final performance
is capped. This is because despite collecting more sam-
ples on the environment, those come with no reward of any
kind indicating what is the task to perform (reach the given
goals). Therefore, once it has extracted all the information
it can from the demonstrations it cannot keep learning and
generalize to goals further from the demonstrations. This
is not an issue anymore when combined with HER, as our
results show.

4.3. Expert relabeling

Here we show that the Expert Relabeling technique intro-
duced in Section 3.1 is beneficial in the goal-conditioned
imitation learning framework. As shown in Fig. 3, our ex-
pert relabeling technique brings considerable performance
boosts for both Behavioral Cloning methods and goal-GAIL
in both environments. We also perform a further analysis of
expert relabeling in the four-rooms environment. We see in
Fig. 1 that without the expert relabeling, the agent fails to
learn how to reach many intermediate states visited in the
middle of a demonstration.

4.4. Using state-only demonstrations

Behavioral Cloning and standard GAIL rely on the state-
action (s, a) tuples from the expert. Nevertheless there
are many cases in robotics where we only have access to
observation-only demonstrations. In this section we want to
emphasize that all the results obtained with our goal-GAIL
method and reported in Fig. 2 and Fig. 3 do not require
actions that the expert took. Surprisingly, in the four rooms
environment, despite the more restricted information goal-
GAIL has access to, it outperforms BC combined with HER.
This might be due to the superior imitation learning perfor-
mance of GAIL, and also to the fact that these tasks might
be possible to solve by only matching the state-distribution
of the expert. With GAIL conditioned only on current state
but not action (as also done in other non-goal-conditioned
works (Fu et al., 2018)), we observe that the discriminator
learns a very well shaped reward that encourages the agent

(a) Continuous Four rooms (b) Fetch Pick & Place

Figure 4. Learning with sub-optimal demonstrations

to go towards the goal, as pictured in Fig. 6 in appendix.
See the Appendix for more details.

4.5. Robustness to sub-optimal expert

In the above sections we assumed access to optimal ex-
perts. Nevertheless, in practical applications the experts
might have a more erratic behavior. In this section we study
how the different methods perform with a sub-optimal ex-
pert. To do so we collect trajectories attempting goals g by
modifying our optimal expert π∗(a|s, g) in two ways: We
add noise α to the optimal actions and make it be ε-greedy.
The sub-optimal expert is then a = 1[r < ε]u + 1[r >
ε](π∗(a|s, g) +α), where r ∼ Unif(0, 1), α ∼ N (0, σ2

αI)
and u is a uniformly sampled random action.

In Fig. 4 we observe that approaches that copy the action of
the expert, like Behavioral Cloning, greatly suffer under a
sub-optimal expert. On the other hand, discriminator-based
methods are able to leverage noisier experts. A possible
explanation is that a discriminator approach can give a posi-
tive signal as long as the transition is "in the right direction",
without trying to exactly enforce a single action. Under
this lens, having some noise in the expert might actually
improve the performance of these adversarial approaches,
as it has been observed in many generative models literature
(Goodfellow et al.).

5. Conclusions and Future Work
Hindsight relabeling can be used to learn useful behaviors
without any reward supervision for goal-conditioned tasks,
but they are inefficient when the state-space is large or in-
cludes exploration bottlenecks. In this work we show how
only a few demonstrations can be leveraged to improve the
convergence speed of these methods. We introduce a novel
algorithm, goal-GAIL, that converges faster than HER and
to a better final performance than a naive goal-conditioned
GAIL. We also study the effect of doing expert relabeling
as a type of data augmentation on the provided demonstra-
tions, and demonstrate it improves the performance of our
goal-GAIL as well as goal-conditioned Behavioral Cloning.
We emphasize that our goal-GAIL method only needs state
demonstrations, without using expert actions like other Be-
havioral Cloning methods. Finally, we show that goal-GAIL
is robust to sub-optimalities in the expert behavior.
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Goal-conditioned Imitation Learning

A. Related Work
Imitation Learning can be seen as an alternative to reward
crafting to train desired behaviors. There are many ways to
leverage demonstrations, from Behavioral Cloning (Pomer-
leau, 1989) that directly maximizes the likelihood of the
expert actions under the training agent policy, to Inverse Re-
inforcement Learning that extracts a reward function from
those demonstrations and then trains a policy to maximize
it (Ziebart et al., 2008; Finn et al., 2016; Fu et al., 2018).
Another formulation close to the later introduced by Ho &
Ermon (2016) is Generative Adversarial Imitation Learning
(GAIL), explained in details in the next section. Originally,
the algorithms used to optimize the policy were on-policy
methods like Trust Region Policy Optimization (Schulman
et al., 2015), but recently there has been a wake of works
leveraging the efficiency of off-policy algorithms without
loss in stability (Blondé & Kalousis, 2019; Sasaki et al.,
2019; Schroecker et al., 2019; Kostrikov et al., 2019). This
is a key capability that we are going to exploit later on.

Unfortunately most work in the field cannot outperform the
expert, unless another reward is available during training
(Vecerik et al., 2017; Gao et al., 2018; Sun et al., 2018),
which might defeat the purpose of using demonstrations in
the first place. Furthermore, most tasks tackled with these
methods consist on tracking expert state trajectories (Zhu
et al., 2018b; Peng et al., 2018), but can’t adapt to unseen
situations.

In this work we are interested in goal-conditioned tasks,
where the objective is to be able to reach any state upon
demand. This kind of multi-task learning are pervasive
in robotics, but challenging if no reward-shaping is ap-
plied. Relabeling methods like Hindsight Experience Re-
play (Andrychowicz et al., 2017) unlock the learning even
in the sparse reward case (Florensa et al., 2018a). Neverthe-
less, the inherent breath-first nature of the algorithm might
still make very inefficient learning to learn complex policies.
To overcome the exploration issue we investigate the effect
of leveraging a few demonstrations. The closest prior work
is by Nair et al. (2018), where a Behavioral Cloning loss
is used with a Q-filter. We found that a simple annealing
of the Behavioral Cloning loss (Rajeswaran et al., 2018)
works better. Furthermore, we also introduce a new relabel-
ing technique of the expert trajectories that is particularly
useful when only few demonstrations are available. We
also experiment with Goal-conditioned GAIL, leveraging
the recently shown compatibility with off-policy algorithms.
For a more comprehensive review of related work, please
see Appendix.

B. Goal-conditioned Behavioral Cloning
The most direct way to leverage demonstrations{

(sj0, a
j
0, s

j
1, ...)

}D
j=0

is to construct a data-set D of

all state-action-goal tuples (sjt , a
j
t , g

j), and run a supervised
regression algorithm. In the goal-conditioned case and
assuming a deterministic policy πθ(s, g), the loss is:

LBC(θ,D) = E(sjt ,a
j
t ,g

j)∼D

[
‖πθ(sjt , gj)− a

j
t‖22
]

This loss and its gradient are computed without any ad-
ditional environments samples from the trained policy
πθ. This makes it particularly convenient to combine a
gradient descend step based on this loss with other pol-
icy updates. In particular we can use a standard off-
policy Reinforcement Learning algorithm like DDPG (Lil-
licrap et al., 2015), where we fit the Qφ(a, s, g), and
then estimate the gradient of the expected return as:
∇θĴ = 1

N

∑N
i=1∇aQφ(a, s, g)∇θπθ(s, g). The improve-

ment guarantees with respect to the task reward are lost
when we combine the BC and the deterministic policy gradi-
ent updates, but this can be side-stepped by either applying
a Q-filter: 1

{
Q(st, at, g) > Q(st, π(st, g), g)

}
to the BC

loss as proposed in (Nair et al., 2018), or by annealing it
as we do in our experiments, which allows the agent to
eventually outperform the expert.

C. Algorithm
All possible variants we study are detailed in Algorithm 1
as presented in appendix. In particular, α = 0 falls back to
pure Behavioral Cloning, β = 0 removes the BC compo-
nent, p = 0 doesn’t relabel agent trajectories, δGAIL = 0
removes the discriminator output from the reward, and EX-
PERT RELABEL indicates whether the here explained ex-
pert relabeling should be performed.

D. Environments, Hyperparameters and
Architectures

In the two environments, i.e. Four Rooms environment and
Fetch Pick & Place, the task horizons are set to 300 and
100 respectively. The discount factors are γ = 1 − 1

H . In
all experiments, the Q function, policy and discriminator
are paramaterized by fully connected neural networks with
two hidden layers of size 256. DDPG is used for policy
optimization and hindsight probability is set to p = 0.8.
The initial value of the behavior cloning loss weight β is set
to 0.1 and is annealed by 0.9 per 250 rollouts collected. The
initial value of the discriminator reward weight δGAIL is set
to 0.1. We found empirically that there is no need to anneal
δGAIL .



Goal-conditioned Imitation Learning

Algorithm 1 Goal-conditioned Imitation Learning

1: Input: Demonstrations D =
{

(sj0, a
j
0, s

j
1, ..., g

j)
}D
j=0

,
replay bufferR = {}, policy πθ(s, g), discount γ, hind-
sight probability p

2: while not done do
3: # Sample rollout
4: g ∼ R ∪D
5: Use π(·, g) to sample (s0, a0, s1, ...)→ ∪R
6: # Sample from buffers
7:

{
(sjt , a

j
t , s

j
t+1, g

j)
}
∼ D,

{
(sit, a

i
t, s

i
t+1, g

i)
}
∼ R

8: # Relabel agent
9: if HER then

10: for each i, with probability p do
11: gi ← sit+k, k ∼ Unif{t+ 1, . . . , T i}
12: end for
13: end if
14: if EXPERT RELABEL then
15: gj ← sjt+k′ , k′ ∼ Unif{t+ 1, . . . , T j}
16: end if
17: rht = 1

[
sht+1 == gh

]
18: if δGAIL > 0 then
19: Ψ← minψ LGAIL(Dψ,D,R)
20: rht = (1− δGAIL)rht + δGAIL logDψ(aht , s

h
t , g

h)
21: end if
22: # Fit Qφ
23: yht = rht + γQφ(π(sht+1, g

h), sht+1, g
h)

24: φ← minφ
∑
h ‖Qφ(aht , s

h
t , g

h)− yht ‖
25: # Update Policy
26: θ+ = α∇θĴ − β

∑
h∇θLBC(θ, (aht , s

h
t , g

h))
27: Anneal δGAIL and β
28: end while

For experiments with sub-optimal expert in section 4.5, ε is
set to 0.4 and 0.5, and σα is set to 1.5 and 0.3 respectively
for Four Rooms environment and Fetch Pick & Place.

E. Effect of Different Input of Discriminator
We trained the discriminator in three settings:

• current state and goal: (s, g)

• current state, next state and goal: (s, s′, g)

• current state, action and goal: (s, a, g)

We compare the three different setups in Fig. 7 and 8.

(a) Continuous Four rooms (b) Fetch Pick & Place

Figure 5. Environments where we test the use of demonstrations

Figure 6. Output of the Discriminator D(·, g) when the goal is the
white point in the lower left, and the start is always at the top right.

(a) 12 demos (b) 6 demos

Figure 7. Study of different discriminator inputs for goal-GAIL in
Continuous Four Rooms

(a) 12 demos (b) 6 demos

Figure 8. Study of different discriminator inputs for goal-GAIL in
Fetch Pick & Place


