2nd Symposium on Advances in Approximate Bayesian Inference, 2019 1-18

Variationally Inferred Sampling Through a Refined Bound

Victor Gallego VICTOR.GALLEGO@QICMAT.ES
David Rios Insua DAVID.RIOS@ICMAT.ES
Institute of Mathematical Sciences (ICMAT), Madrid, SPAIN.

Duke University (Dept. of Statistical Sciences) and SAMSI, Durham, NC, USA.

Abstract

A framework for efficient Bayesian inference in probabilistic programs is introduced by
embedding a sampler inside a variational posterior approximation. Its strength lies in both
ease of implementation and automatically tuning sampler parameters to speed up mixing
time. Several strategies to approximate the evidence lower bound (ELBQO) computation are
introduced, including a rewriting of the ELBO objective. Experimental evidence is shown
by performing experiments on an unconditional VAE on density estimation tasks; solving
an influence diagram in a high-dimensional space with a conditional variational autoencoder
(cVAE) as a deep Bayes classifier; and state-space models for time-series data.

1. Introduction

We consider a probabilistic program (PP) to define a distribution p(z,z), where = are
observations and z, both latent variables and parameters, and ask queries involving the
posterior p(z|z). This distribution is typically intractable but, conveniently, probabilistic
programming languages (PPLs) provide inference engines to approximate it using Monte
Carlo methods (e.g. particle Markov Chain Monte Carlo (MCMC) (Andrieu et al., 2010)
or Hamiltonian Monte Carlo (HMC) (Neal et al., 2011)) or variational approximations (e.g.
Automatic Differentiation Variational Inference (ADVI) (Kucukelbir et al., 2017)). Whereas
the latter are biased and underestimate uncertainty, the former may be exceedingly slow
depending on the target distribution. For such reason, over the recent years, there has been
an increasing interest in developing more efficient posterior approximations (Nalisnick et al.,
2016; Salimans et al., 2015; Tran et al., 2015).

It is known that the performance of a sampling method depends on the parameters used
(Papaspiliopoulos et al., 2007). Here we propose a framework to automatically adapt the
posterior shape and tune the parameters of a posterior sampler with the aim of boosting
Bayesian inference in PPs. Our framework constitutes a principled way to enhance the
flexibility of the variational posterior approximation, yet can be seen also as a procedure
to tune the parameters of an MCMC sampler. Our contributions are a new flexible and
unbiased variational approximation to the posterior, which improves an initial variational
approximation with a (learnable via automatic differentiation) stochastic process. Appendix
A discusses related work.

© V. Gallego & D.R. Insua.

VARIATIONALLY INFERRED SAMPLING

2. The Variationally Inferred Sampling (VIS) framework

In standard VI, the variational approximation g4(z|x) is analytically tractable and typically
chosen as a factorized Gaussian distribution. We propose to use a more flexible approximating
posterior by embedding a sampler through:

Gonzlz) = / Q2120 0.6 (20]) 0, 1)

where g ¢(z|x) is the initial and tractable density (i.e., the starting state for the sampler).
We refer to gg,(2|x) as the refined variational approximation. The distribution @, 7(z|20)
refers to a stochastic process parameterized by 7 used to evolve the original density o 4(2|z)
and achieve greater flexibility; we describe below particular forms of it. When T' = 0, no
refinement steps are performed, and the refined variational approximation coincides with
the original one, g n(2|x) = qo,4(2|z). As T increases, the variational approximation will
be closer to the exact posterior, provided that @, r is a valid MCMC sampler. Next, we
maximize a refined ELBO objective,

ELBO(q) = E%,n(z\x) logp(x, z) — log g4 5 (2|T)] (2)

to optimize the divergence K L(qyn(2|2)|[p(2|z)). The first term of ELBO only requires
sampling from gy, (2[2); however the second term, —E,, (.|s) [log gy 5 (2|z)] requires also
evaluating the evolving density. Regarding @, 7(2|20), we consider the following families of
sampling algorithms.

2.1. The sampler @, 7(z|20)

When the latent variables z are continuous (z € R?), we evolve the original variational
density o ¢(z|x) through a stochastic diffusion process. To make it tractable, we discretize
the Langevin dynamics using the Euler-Maruyama scheme, arriving at the stochastic gradient
Langevin dynamics (SGLD) sampler. We then follow the process @, 7(2|20) (representing
T iterations of an MCMC sampler). As an example, for the SGLD sampler z; = z;_1 +
nVlogp(x, zi—1) + &, where i iterates from 1 to T'; in this case, the only parameter of the
SGLD sampler is the learning rate . The noise for the SGLD is & ~ N(0,2nI). The initial
variational distribution g ¢(z|x) is a Gaussian parameterized by a deep neural network (NN).
Then, T iterations of a sampler) parameterized by 7 are applied leading to gg.,,.

An alternative may be given by ignoring the noise vector £ (Mandt et al., 2017), thus
refining the initial variational approximation with just stochastic gradient descent (SGD).
Moreover, we can use Stein variational gradient descent (SVGD) (Liu and Wang, 2016) or
a stochastic version (Gallego and Insua, 2018) to apply repulsion between particles and
promote a more extensive exploration of the latent space.

2.2. Approximating the entropy term

We propose a set of guidelines for the ELBO optimization using the refined variational
approximation.

VARIATIONALLY INFERRED SAMPLING

Particle approximation We can consider the flow @, 7(2|20) as a mixture of Dirac deltas
(i.e., we approximate it with a finite set of particles). That is, we sample 2!, ..., 25 ~
Qn1(2|20) and use Q,1(2|20) = %Ef; 5(z — 2%). Thus, that entropy term is zero so
Eqy. (zl2) 108 @p.n(2|2)] = Egy , (z12) [108 q0,6(2]7)]. If using SGD as the sampler, the resulting
ELBO is tighter than the one with no refinement (see Appendix D.1). However, discarding the
entropy in the sampling process results in variational approximations that are to concentrated

around the MAP solution, and this might be undesirable for training generative models.

Gaussian approximation In settings were it could be helpful to have a posterior approx-
imation that places density over the whole latent space. For the particular case of using
SGD as the inner kernel, we have

20 ~ qo,¢(20|2) = N (20|14 (), 00 (2))
zi = zi—1 + nVlogp(x, zi—1), 1=1,...,T.

By treating the gradient terms as points, we have that the refined variational approximation
can be computed as q¢,(2|2) = N(z|21,04(2)). Note that there is an implicit dependence
on 7 through zp.

MC approximation Instead of performing the full marginalization in integral (1), we
can approximate it as g4 ,(27|z) = HiTzl dn(2i|2i—1)q0,6(20|2). The entropy for each factor
can be straightforwardly computed, i.e. for the case of SGLD, ¢,(zi|zi—1) = N(zi—1 +
nVlogp(x, zi—1),2nI). This approximation keeps track of a better estimate of the entropy
than the particle approximation.

Deterministic flows If using a deterministic flow (such as SGD or SVGD), we can keep
track of the change in entropy at each iteration using the change of variable formula as done
in Duvenaud et al. (2016). However, this requires a costly Jacobian computation, making it
unfeasible to combine with our backpropagation through the sampler scheme (Sec. 2.3) for
moderately complex problems.

2.3. Tuning sampler parameters via Automatic Differentiation

In standard VI, the variational approximation ¢(z|z; ¢) is parameterized by ¢. The parameters
are learned using SGD or variants such as Adam (Kingma and Ba, 2014), using V4ELBO(q).
Since we have shown how to embed a sampler inside the variational guide, it is also possible
to compute a gradient of the objective with respect to the sampler parameters 1. For instance,
we can compute a gradient with respect to the learning rate n from the SGLD or SGD process
from Section 2.1, V,,ELBO(q), to search for an optimal step size at every VI iteration. This
is an additional step apart from using the gradient V4ELBO(q) employed to learn a good
initial sampling distribution. See Appendix D.3 for a discussion on two modes of automatic
differentiation that can be used.

3. Results

Code is released at https://github.com/vicgalle/vis. The VIS framework was imple-
mented using Pytorch (Paszke et al., 2017), though we also release a notebook for the first

https://github.com/vicgalle/vis

VARIATIONALLY INFERRED SAMPLING

experiment using Jax to highlight its simple implementation. Appendix B contains additional
experiments; Appendix C, implementation details.

Funnel density As a preliminary experiment, we test the VIS framework on a synthetic
yet complex target distribution. The target, bi-dimensional density is defined through:

z1 ~N(0,1.35), 29 ~ N(0,exp(z1)).

As a variational approximation we take the usual diagonal Gaussian. For the VIS case,
we refine it for T = 1 steps using SGLD. Results are in Figure 1. Clearly, our refined
version achieves a tighter bound, the VIS variant is placed nearer to the mean of the true
distribution and is more disperse than the original variational approximation, confirming
that the refinement step helps in attaining more flexible posterior approximations.

— =0
30 T

Loy oL
L L o W e

a
3
2
1
o
1
2
3
4

o 75 S0 25 o0 25 so 75 Do itarations

Figure 1: Left: contour curves (turquoise) of variational approximation with no refinement
(T'=0) at iteration 30 (loss, 1.011). Center: contour curves (turquoise) of refined variational
approximation (7' = 1) at iteration 30 (loss, 0.667). Green-yellow curves denote target
density. Right: evolution of -ELBO objective for 50 iterations. Darker lines depict mean
along different seeds (lighter lines).

State-space model (DLM) We now test the VIS framework on the Mauna Loa monthly
CO3 time series data (Keeling, 2005). As the training set, we take the first 10 years, and
we evaluate over the next 2 years. We use a dynamic linear model (DLM) composed of a
local linear trend plus a seasonality block of periodicity 12. Full model specification can be
checked in Appendix C.1. As a preprocessing step, we standardize the time series to zero
mean and unitary deviation. To guarantee the same computational budget time, the model
without refining is run for 10 epochs, whereas the model with refinement is run for 4 epochs.
We use the particle approximation from Sec. 2.2. We report mean absolute error (MAE)
and predictive entropy in Table 1. In addition, we compute the interval score as defined
in (Gneiting and Raftery, 2007), a strictly proper scoring rule. As can be seen, for similar
wall-clock times, the refined model not only achieves lower MAE, but also its predictive
intervals are narrower than the non-refined counterpart.

Table 1: Prediction metrics for the DLM.

T=0 T=1
MAE 0.270 0.239
predictive entropy 2.537 2.401

interval score (o = 0.05) 15.247 13.461

VARIATIONALLY INFERRED SAMPLING

Variational Autoencoder We aim to check whether VIS is competitive with respect to
other recent algorithms. We test our approach in a Variational Autoencoder (VAE) model
(Kingma and Welling, 2013), which is the building block of more complex models and tasks
(Chen et al., 2018b; Bouchacourt et al., 2018). The VAE defines a conditional distribution
po(x|z), generating an observation x from a latent variable z. We are interested in modelling
two 28 x 28 image distributions, MNIST and fashion-MNIST. To perform inference (learn
parameters #), the VAE introduces a variational approximation ge(z|z). In the standard
setting, this is Gaussian; we instead use the refined variational approximation with various
values of T. We used the MC approximation, though achieved similar results using the
Gaussian one. As experimental setup, we reproduce the setting from Titsias and Ruiz
(2019). Results are reported in Table 2. To guarantee a fair comparison, we trained the
VIS-5-10 variant for 10 epochs, whereas all the other variants were trained for 15 (fMNIST)
or 20 epochs (MNIST), so that the VAE performance is comparable to that in Titsias and
Ruiz (2019). Although VIS is trained for less epochs, by increasing the number of MCMC
iterations 1T, we dramatically improve on test log-likelihood. In terms of computational
complexity, the average time per epoch using T'= 5 is 10.46s, whereas with no refinement
(T'=0) is 6.10s (hence our decision to train the refined variant for less epochs): a moderate
increase in computing time compensates the dramatic increase in log-likelihood while not
introducing new parameters, except for the learning rate . We also compare our results
with the contrastive divergence approach (Ruiz and Titsias, 2019). Figure 2 displays ten
random samples of reconstructed digit images as visual check.

Table 2: Test log-likelihood on binarized MNIST and fMNIST. VIS-X-Y denotes T = X

refinement iterations during training and 7' =Y refinement iterations during testing.

Method MNIST fMNIST
Results from (Titsias and Ruiz, 2019)

UIVI —94.09 —110.72

SIVI =97.77 —121.53

VAE —98.29 —126.73
Results from (Ruiz and Titsias, 2019)

VCD —95.86 —117.65

HMC-DLGM —-96.23 —117.74

This paper
VIS-5-10 —82.744+0.19 —105.08 +0.34
VIS-0-10 —96.16 £0.17 —120.53 £ 0.59

VAE (VIS-0-0) —100.91 +0.16 —125.57 £ 0.63

Discussion We have proposed a flexible and efficient framework to perform inference in
probabilistic programs defining wide classes of models. Our framework can be seen as a
general way of tuning SG-MCMC sampler parameters, adapting the initial distributions
and the learning rate. Key to the success and applicability of the VIS framework are the
approximations introduced for the intractable parts of the refined variational approximations,
which are computationally cheap but convenient.

VARIATIONALLY INFERRED SAMPLING

Acknowledgments

VG acknowledges support from grant FPU16-05034. DRI is grateful to the MINECO
MTM2014-56949-C3-1-R project and the AXA-ICMAT Chair in Adversarial Risk Analysis.
All authors acknowledge support from the Severo Ochoa Excellence Programme SEV-2015-
0554. This material was based upon work partially supported by the National Science
Foundation under Grant DMS-1638521 to the Statistical and Applied Mathematical Sciences
Institute. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

References

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle Markov chain monte
carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
72(3):269-342, 2010.

Diane Bouchacourt, Ryota Tomioka, and Sebastian Nowozin. Multi-level variational autoen-
coder: Learning disentangled representations from grouped observations. In Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

Changyou Chen, Chunyuan Li, Liqun Chen, Wenlin Wang, Yunchen Pu, and Lawrence
Carin. Continuous-time flows for efficient inference and density estimation, 2018a. URL
https://openreview.net/forum?id=rkcyalZAW.

Liqun Chen, Shuyang Dai, Yunchen Pu, Erjin Zhou, Chunyuan Li, Qinliang Su, Changyou
Chen, and Lawrence Carin. Symmetric variational autoencoder and connections to
adversarial learning. In International Conference on Artificial Intelligence and Statistics,
pages 661-669, 2018b.

Chris Cremer, Xuechen Li, and David Duvenaud. Inference suboptimality in variational
autoencoders. arXiv preprint arXiw:1801.03558, 2018.

David Duvenaud, Dougal Maclaurin, and Ryan Adams. Early stopping as nonparametric
variational inference. In Artificial Intelligence and Statistics, pages 1070-1077, 2016.

Yihao Feng, Dilin Wang, and Qiang Liu. Learning to draw samples with amortized stein
variational gradient descent. arXiv preprint arXiv:1707.06626, 2017.

Victor Gallego and David Rios Insua. Stochastic gradient memce with repulsive forces. arXiv
preprint arXiw:1812.00071, 2018.

Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and
estimation. Journal of the American Statistical Association, 102(477):359-378, 2007.

lan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
neural information processing systems, pages 2672-2680, 2014.

https://openreview.net/forum?id=rkcya1ZAW

VARIATIONALLY INFERRED SAMPLING

James D Hamilton. State-space models. Handbook of econometrics, 4:3039-3080, 1994.

Matthew D Hoffman. Learning deep latent gaussian models with markov chain monte carlo.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
1510-1519. JMLR. org, 2017.

Matthew D Hoffman, Pavel Sountsov, Joshua Dillon, Ian Langmore, Dustin Tran, and
Srinivas Vasudevan. Neutra-lizing bad geometry in hamiltonian monte carlo using neural
transport. 2018.

Ronald A Howard and James E Matheson. Influence diagrams. Decision Analysis, 2(3):
127-143, 2005.

Ferenc Huszar. Variational inference using implicit distributions. arXiv preprint
arXiv:1702.08235, 2017.

Charles D Keeling. Atmospheric carbon dioxide record from mauna loa. 2005.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiw:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiw:1312.6114, 2013.

Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M Blei.
Automatic differentiation variational inference. The Journal of Machine Learning Research,
18(1):430-474, 2017.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Shuo-Hui Li and Lei Wang. Neural network renormalization group. Phys. Rev. Lett., 121:
260601, Dec 2018. doi: 10.1103/PhysRevLett.121.260601. URL https://link.aps.org/
doi/10.1103/PhysRevLlett.121.260601.

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose bayesian
inference algorithm. In Advances In Neural Information Processing Systems, pages 2378—
2386, 2016.

Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic gradient descent
as approximate bayesian inference. The Journal of Machine Learning Research, 18(1):
4873-4907, 2017.

Lawrence Murray, Daniel Lundén, Jan Kudlicka, David Broman, and Thomas B Schon.
Delayed sampling and automatic rao-blackwellization of probabilistic programs. In Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS), 2018.

Eric Nalisnick, Lars Hertel, and Padhraic Smyth. Approximate inference for deep latent
gaussian mixtures. 2016.

https://link.aps.org/doi/10.1103/PhysRevLett.121.260601
https://link.aps.org/doi/10.1103/PhysRevLett.121.260601

VARIATIONALLY INFERRED SAMPLING

Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of Markov Chain Monte
Carlo, 2(11):2, 2011.

Omiros Papaspiliopoulos, Gareth O Roberts, and Martin Skold. A general framework for the
parametrization of hierarchical models. Statistical Science, pages 59-73, 2007.

Matthew Parno and Youssef Marzouk. Transport map accelerated markov chain monte carlo.
arXiwv preprint arXiv:1412.5492, 2014.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation
in pytorch. 2017.

Lawrence R Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257-286, 1989.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International Conference on Machine Learning, pages 1530-1538, 2015.

Francisco Ruiz and Michalis Titsias. A contrastive divergence for combining variational infer-
ence and MCMC. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings
of the 36th International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 5537-5545, Long Beach, California, USA, 09-15 Jun
2019. PMLR. URL http://proceedings.mlr.press/v97/ruizi9a.html.

Tim Salimans, Diederik Kingma, and Max Welling. Markov chain monte carlo and variational
inference: Bridging the gap. In International Conference on Machine Learning, pages
1218-1226, 2015.

Ross D. Shachter. Probabilistic inference and influence diagrams. Operations Research, 36
(4):589-604, 1988. doi: 10.1287/opre.36.4.589. URL https://doi.org/10.1287/opre.36.
4.589.

Michalis K Titsias and Francisco Ruiz. Unbiased implicit variational inference. In The 22nd
International Conference on Artificial Intelligence and Statistics, pages 167-176, 2019.

Dustin Tran, Rajesh Ranganath, and David M Blei. The variational gaussian process. arXiv
preprint arXiw:1511.06499, 2015.

Mingzhang Yin and Mingyuan Zhou. Semi-implicit variational inference. arXiv preprint
arXiv:1805.11183, 2018.

Paul Zarchan and Howard Musoff. Fundamentals of Kalman filtering: a practical approach.
American Institute of Aeronautics and Astronautics, Inc., 2013.

http://proceedings.mlr.press/v97/ruiz19a.html
https://doi.org/10.1287/opre.36.4.589
https://doi.org/10.1287/opre.36.4.589

VARIATIONALLY INFERRED SAMPLING

Appendix A. Related work

The idea of preconditioning the posterior distribution to speed up the mixing time of an
MCMC sampler has recently been explored in (Hoffman et al., 2018) and (Li and Wang,
2018), where a reparameterization is learned before performing the sampling via HMC. Both
papers extend seminal work of (Parno and Marzouk, 2014) by learning an efficient and
expressive deep, non-linear transformation instead of a polynomial regression. However, they
do not account for tuning the parameters of the sampler as we introduce in Section 2, where
a fully, end to end differentiable sampling scheme is proposed.

The work of (Rezende and Mohamed, 2015) introduced a general framework for construct-
ing more flexible variational distributions, called normalizing flows. These transformations
are one of the main techniques to improve the flexibility of current VI approaches and have
recently pervaded the literature of approximate Bayesian inference with current developments
such as continuous-time normalizing flows (Chen et al., 2018a) which extend an initial simple
variational posterior with a discretization of Langevin dynamics. However, they require
a generative adversarial network (GAN) (Goodfellow et al., 2014) to learn the posterior,
which can be unstable in high-dimensional spaces. We overcome this issue with the novel
formulation stated in Section 2. Our framework is also compatible with different optimizers,
not only those derived from Langevin dynamics. Other recent proposals to create more
flexible variational posteriors are based on implicit approaches, which typically require a
GAN (Huszar, 2017) or implicit schema such as UIVI (Titsias and Ruiz, 2019) or SIVI (Yin
and Zhou, 2018). Our variational approximation is also implicit, but we use a sampling
algorithm to drive the evolution of the density, combined with a Dirac delta approximation
to derive an efficient variational approximation as we report on the extensive experiments in
the Section 3.

Closely related to our framework is the work of Hoffman (2017), where a VAE is learned
using HMC. We use a similar compound distribution as the variational approximation, though
our framework allows for any SG-MCMC sampler (via the entropy approximation strategies
introduced) and also the tuning of sampler parameters via gradient descent. Our work is also
related to the recent idea of amortization of samplers (Feng et al., 2017). A common problem
with these approaches is that they incur in an additional error, the amortization gap (Cremer
et al., 2018). We alleviate this by evolving a set of particles z; with a stochastic process in
the latent space after learning a good initial distribution. Hence, the bias generated by the
initial approximation is significantly reduced after several iterations of the process. A recent
article related to our paper is (Ruiz and Titsias, 2019), who define a compound distribution
similar to our framework. However, we focus on an efficient approximation using the reverse
KL divergence, the standard and well understood divergence used in variational inference,
which allows for tuning sampler parameters and achieving competitive results.

Appendix B. Supplementary results
B.1. Variational Autoencoder as a deep Bayes Classifier

With the final experiments we show that the VIS framework can deal with more general
probabilistic graphical models. Influence diagrams (Howard and Matheson, 2005) are one
of the most familiar representations of a decision analysis problem. There is a long history

VARIATIONALLY INFERRED SAMPLING

Figure 2: Top row: original images. Bottom row: reconstructed images using VIS-5-10 at 10
epochs.

on bridging the gap between influence diagrams and probabilistic graphical models (see
(Shachter, 1988), for instance), so developing better tools for Bayesian inference can be
automatically used to solve influence diagrams.

We showcase the flexibility of the proposed scheme to solve inference problems in an
experiment with a classification task in a high-dimensional setting. As dataset, the MNIST
(LeCun et al., 1998) handwritten digit classification task is chosen, in which grey-scale 28 x 28
images have to be classified in one of the ten classes) = {0, 1,...,9}. More concretely, we
extend the VAE model to condition it on a discrete variable y, leading to the conditional
VAE (cVAE). A ¢cVAE defines a decoder distribution pg(z|z,y) on an input space z € R”
given class label y €) and latent variable z € R?. To perform inference, a variational
posterior is learned as an encoder gy(z|z,y) from a prior p(z) ~ N(0,I). Leveraging the
conditional structure on y, we use the generative model as a classifier using Bayes rule:

p(ylz) o< p(y)p(xly) = p(y) /pe(aflay)%(ZIfE, y)dz
K
~ 2 S el () (3
k=1

where we use K Monte Carlo samples z(¥) ~ ¢s(2|z,y). In the experiments we set K = 5.
Given a test sample z, the label § with highest probability p(y|z) is predicted. Figure 5
in Appendix depicts the corresponding influence diagram. Additional details regarding the
model architecture and hyperparameters can be found in Appendix C.

For comparison purposes, we perform various experiments changing 7" for the transition
distribution @, 7 in the refined variational approximation. Results are in Table 3. We report
the test accuracy achieved at the end of training. Note we are comparing different values of
T depending on being on the training or testing phases (in the latter, where the model and
variational parameters are kept frozen). The model with T3, = 5 was trained for 10 epochs,
whereas the other settings for 15 epochs, in order to give all settings similar training times.
Results are averaged from 3 runs with different random seeds. From the results it is clear that
the effect of using the refined variational approximation (the cases when 7' > 0) is crucially
beneficial to achieve higher accuracy. The effect of learning a good initial distribution and
inner learning rate by using the gradients V4ELBO(q) and V,ELBO(q) has a highly positive
impact in the accuracy obtained.

On a final note, we have not included the case when only using a SGD or SGLD sampler
(i.e., without learning an initial distribution g 4(z|x)) since the results were much worse than
the ones in Table 3, for a comparable computational budget. This strongly suggests that for

10

VARIATIONALLY INFERRED SAMPLING

Table 3: Results on digit classification task using a deep Bayes classifier.

T, Tie Acc. (test)

0 0 96.54+0.5 %
0 10 97.7+0.7%
9 10 99.8+02%

inference in high-dimensional, continuous latent spaces, learning a good initial distribution
through VIS can dramatically accelerate mixing time.

B.2. State-space Markov models

We test our variational approximation on two state-space models, one for discrete data and
the other for continuous observations. All the experiments in this subsection use the Fast AD
version from Section D.3 since it was not necessary to further tune the sampler parameters
to have competitive results.

Hidden Markov Model (HMM) The model equations are given by

T

P(Zl:‘ra Tl:7, 0) = Hp(l‘t‘zm 9em)P($t|ﬂft—1, atr)P(e),
t=1

where each conditional is a Categorical distribution which takes 5 different classes and
the prior p(6) = p(Oem)p(0y) are two Dirichlet distributions that sample the emission and
transition probabilities, respectively. We perform inference on the parameters 6.

Dynamic Linear Model (DLM) The model equations are the same as in the HMM
case, though the conditional distributions are now Gaussian and the parameters 0 refer to
the emission and transition variances. As before, we perform inference over 6.

The full model implementations can be checked in Appendix C.1, based on funsor!, a
PPL on top of the Pytorch autodiff framework. For each model, we generate a synthetic
dataset, and use the refined variational approximation with 7' = 0,1,2. As the original
variational approximation to the parameters § we use a Dirac Delta. Performing VI with
this approximation corresponds to MAP estimation using the Kalman filter in the DLM
case (Zarchan and Musoff, 2013) and the Baum-Welch algorithm in the HMM case (Rabiner,
1989), since we marginalize out the latent variables z;.,. Model details are given in Appendix
C.1.1. Figure 3 shows the results. The first row reports the experiments related to the HMM;
the second one to the DLM. While in all graphs we report the evolution of the loglikelihood
during inference, in the first column we report the number of ELBO iterations, whereas in
the second column we measure wall-clock time as the optimization takes place. We confirm
that VIS (T' > 0) achieve better results than regular optimization with VI (T" = 0) for a
similar amount of time.

1. https://github.com/pyro-ppl/funsor/

11

https://github.com/pyro-ppl/funsor/

VARIATIONALLY INFERRED SAMPLING

— T=0 — T=0
—_ T=1 15.0 —_ T=1
094 T=2 T=2
| 125
15 10.0
= =
E H
2 g 75
10
50
5 25
0 0.0
EP 2‘0 4;3 6‘0 BID 10‘0 00 D.IS 1.‘0 1.‘5 2.‘0 2.‘5 3.‘0 3.‘5 40
Number of iterations Wall-clock time (s)
100
34
90
a0 32
n 30
E E
g & g
50
26
40
30 24
) 00 25 S50 75 100 125 150 175
Number of iterations Wall-clock time (s)

Figure 3: Results of ELBO optimization for state-space models. Top left (HMM): -
loglikelihood against number of ELBO gradient iterations. Top right (HMM): -loglikelihood
against wall-clock time. Bottom left (DLM): -loglikelihood against number of ELBO gradient
iterations. Bottom right (DLM): -loglikelihood against number of ELBO gradient iterations

B.2.1. PREDICTION TASKS IN A HMM

With the aim of assessing whether ELBO optimization helps in attaining better auxiliary
scores, we also report results on a prediction task. We generate a synthetic time series of
alternating 0 and 1 for 7 = 105 timesteps. We train the HMM model from before on the first
100 points, and report in Table 4 the accuracy of the predictive distribution p(y;) averaged
over the last 5 time-steps. We also report the predictive entropy since it helps in assessing
the confidence of the model in its forecast and is a strictly proper scoring rule (Gneiting and
Raftery, 2007). To guarantee the same computational budget time and a fair comparison,
the model without refining is run with 50 epochs, whereas the model with refinement is run
for 20 epochs. We see that the refined model achieves higher accuracy than its counterpart;
in addition it is correctly more confident in its predictions.

12

VARIATIONALLY INFERRED SAMPLING

Table 4: Prediction metrics for the HMM.

T=0 T=1
accuracy 0.40 0.84
predictive entropy 1.414 1.056
logarithmic score ~ —1.044 —0.682

Appendix C. Experiment details
C.1. State-space models
C.1.1. INITIAL EXPERIMENTS

For the HMM, both the emission and transition probabilities are Categorical distributions,
taking values in the domain {0,1,2,3,4}.
The equations of the DLM are given by
Zt41 ™~ N(O.5Zt + 1.0, O'tr)
xp ~ N(3.02 + 0.5,0¢m)-

with zy = 0.0.

C.1.2. PREDICTION TASK IN A DLM

The DLM model is comprised of a linear trend component plus a seasonal block of period 12.
The trend is specified as

Ty = pht + € et ~ N (0, 00ps)
Ut = pe—1 + Op—1 + 5;5 6; ~ N(O, Ulevel)
0 = 01+ 62’ 6;5, ~ N(O, Uslope)'
With respect to the seasonal component, the main idea is to cycle the state: suppose

0; € RP, with p being the seasonal period. Then, at each timestep, the model focuses on the
first component of the state vector:

next period

(0%1,042,...,0@) (O%Q,O[g,...,Oép,O[1>.

Thus, we can specify the seasonal component via:

Tt = F@t + vt
0 = GOi—1 + wy

where F' is a p—dimensional vector and G is a p X p matrix such that

00 0 1
10 00
G- |01 00
0 0 1 0]

13

VARIATIONALLY INFERRED SAMPLING

C.2. VAE

C.2.1. MODEL DETAILS

class VAE(nn.Module):

def

def

def

__init__(self):
super (VAE, self).__init__()

self.z_d = 10
self.h_d = 200
self.x_d = 28%28

self.fcl_mu = nn.Linear(self.x_d, self.h_d)
self.fcl_cov = nn.Linear(self.x_d, self.h_d)
self.fc12_mu = nn.Linear(self.h_d, self.h_d)
self.fc12_cov = nn.Linear(self.h_d, self.h_d)
self.fc2_mu = nn.Linear(self.h_d, self.z_d)
self.fc2_cov = nn.Linear(self.h_d, self.z_d)

self.fc3 = nn.Linear(self.z_d, self.h_d)
self.fc32 = nn.Linear(self.h_d, self.h_d)
self.fc4 = nn.Linear(self.h_d, self.x_d)

encode(self, x):

hi_mu = F.relu(self.fcl_mu(x))

hl_cov = F.relu(self.fcl_cov(x))

hli_mu = F.relu(self.fc12_mu(hl_mu))

hl_cov = F.relu(self.fc12_cov(hl_cov))

we work in the logvar-domain

return self.fc2_mu(hl_mu),
torch.log(F.softplus(self.fc2_cov(hl_cov)))

decode(self, z):

h3 = F.relu(self.fc3(z))

h3 = F.relu(self.fc32(h3))

return torch.sigmoid(self.fc4(h3))

Figure 4: Model architecture for the VAE.

The VAE model is implemented with PyTorch (Paszke et al., 2017). The prior distribution
p(2) for the latent variables z € R! is a standard factorized Gaussian. The decoder
distribution pg(x|z) and the encoder distribution (initial variational approximation) go ¢(z|)
are parameterized by two feed-forward neural networks whose details can be checked in

Figure 4.

C.2.2. HYPERPARAMETER SETTINGS

The optimizer Adam is used in all experiments, with a learning rate A = 0.001. We also set
n = 0.001. We train for 15 epochs (fMNIST) and 20 epochs (MNIST), in order to achieve
similar performance to the explicit VAE case in (Titsias and Ruiz, 2019). For the VIS-5-10
setting, we train for only 10 epochs, to allow for a fair computational comparison (similar

computing times).

14

C.3. CVAE

VARIATIONALLY INFERRED SAMPLING

Figure 5: Influence Diagram for the deep Bayes classifier.

C.3.1. MODEL DETAILS

class cVAE(nn.Module):

def

def

def

__init__(self):
super (cVAE, self).__init__()

self.z_d = 10
self.h_d = 200
self.x_d = 28%28
num_classes = 10

self.fcl_mu = nn.Linear(self.x_d + num_classes, self.h_d)
self.fcl_cov = nn.Linear(self.x_d + num_classes, self.h_d)
self.fc12_mu = nn.Linear(self.h_d, self.h_d)

self.fc12_cov = nn.Linear(self.h_d, self.h_d)

self.fc2_mu = nn.Linear(self.h_d, self.z_d)

self.fc2_cov = nn.Linear(self.h_d, self.z_d)

self.fc3 = nn.Linear(self.z_d + num_classes, self.h_d)
self.fc32 = nn.Linear(self.h_d, self.h_d)
self.fc4 = nn.Linear(self.h_d, self.x_d)

encode(self, x, y):

hl_mu = F.relu(self.fcl_mu(torch.cat([x, y], dim=-1)))
hl_cov = F.relu(self.fcl_cov(torch.cat([x, y], dim=-1)))
hi_mu = F.relu(self.fc12_mu(hi_mu))

hil_cov = F.relu(self.fc12_cov(hl_cov))

we work in the logvar-domain

return self.fc2_mu(hl_mu),
torch.log(F.softplus(self.fc2_cov(hl_cov)))

decode(self, z, y):
h3 = F.relu(self.fc3(torch.cat([z, y], dim=-1)))

h3 = F.relu(self.fc32(h3))
return torch.sigmoid(self.fc4(h3))

Figure 6: Model architecture for the cVAE.

15

VARIATIONALLY INFERRED SAMPLING

The ¢VAE model is implemented with PyTorch (Paszke et al., 2017). The prior dis-
tribution p(z) for the latent variables z € R is a standard factorized Gaussian. The
decoder distribution py(x|y, z) and the encoder distribution (initial variational approxima-
tion) qo,4(2|z,y) are parameterized by two feed-forward neural networks whose details can be
checked in Figure 6. The integral (3) is approximated with 1 MC sample from the variational
approximation in all experimental settings.

C.3.2. HYPERPARAMETER SETTINGS

The optimizer Adam is used in all the experiments, with a learning rate A = 0.01. We set
the initial n = 5e — 5.

Appendix D. Analysis of VIS

In this Section we study in detail key properties of the proposed VIS framework.

D.1. Rewriting the ELBO, using particle approximation

Performing variational inference with the refined variational approximation can be regarded
as using the original variational guide while optimizing an alternative, tighter ELBO. Note
that for a refined guide of the form ¢(z|z0)q(z0|x), the objective function can be written as

I['Eq(z|zo)q(zo|;1:) [logp(x, Z) — log q(Z‘Zo) — log Q(ZOI'%)] :

However, using the Dirac Delta approximation for ¢(z|zp) and noting that z = zp +
nVlogp(x, zp) when using SGD with 7' = 1, we arrive at the modified objective:

Eq(zole) log p(z, 20 + 0V log p(x, 20)) — log q(20/2)]

which is equivalent to the refined ELBO introduced in (2). Since we are perturbing the latent
variables in the steepest ascent direction, it is straightforward to show that, for moderate
7, the previous bound is tighter than the one, for the original variational guide g(zo|x),
Eq(z0/z) log p(x, 20) — log q(z0[x)]. This reformulation of ELBO is also convenient since it
provides a clear way of implementing our refined variational inference framework in any PPL
supporting algorithmic differentiation.

D.2. Taylor expansion

From the result in subsection D.1, we can further restrict to the case when the original
variational approximation is also a Dirac point mass. Then, the original ELBO optimization
resorts to the standard maximum likelihood estimation, i.e., max, log p(x, z). Within the
VIS framework, we optimize instead max, logp(z, z + Az), where Az is one iteration of the
sampler, i.e., Az = nVlogp(zx, z) in the SGD case. For notational clarity we resort to the
case T'= 1, but a similar analysis can be straightforwardly done if more refinement steps are
performed.
We may now perform a first-order Taylor expansion of the refined objective as

logp(z,z + Az) = logp(x, z) + (Az)TV1og p(z, 2).

16

VARIATIONALLY INFERRED SAMPLING

Taking gradients of the first order approximation w.r.t. the latent variables z we arrive at
V.logp(z,z) +nV.logp(z, 2)TV2log p(z,),

where we have not computed the gradient through the Az term. That is, the refined gradient
can be deemed as the original gradient plus a second order correction. Instead of being
modulated by a constant learning rate, this correction is adapted by the chosen sampler. In
the experiments in Section B.1 we show that this is beneficial for the optimization as it can
take less iterations to achieve lower losses. By further taking gradients through the Az term,
we may tune the sampler parameters such as the learning rate as described in Section 2.3.
Consequently, the next subsection describes both modes of differentiation.

D.3. Two modes of Automatic Differentiation for ELBO optimization

Here we describe how to implement two variants of the ELBO objective. First, we define
a stop gradient operator? L that sets the gradient of its operand to zero, i.e., VL (x) =0
whereas in the forward pass it acts as the identity function, that is, 1 (x) = z. Then, the
two variants of the ELBO objective are

Eq [log p(z, z + Az) — log ¢(z + Az|z)] (Full AD)

and
E, [logp(z, z + L(Az)) —logq(z + L(Az)|x)]. (Fast AD)

The Full AD ELBO makes it possible to further compute a gradient wrt sampler parameters
inside Az at the cost of a slight increase in the computational burden.

Appendix E. State-space model specialization

The previous framework is particularly useful in large families of state-space models (and
by extension, models that exhibit hierarchical and/or temporal structure), mainly through
two complementary strategies: i) exact marginalization of some particular terms (i.e., Rao-
Blackwellization (Murray et al., 2018) to reduce the variance); ii) exact computation in linear
cases. Recall that a state-space model (Hamilton, 1994) can be expressed with the following
probabilistic model, where the time-step t iterates from 1 to 7:

zey1 ~ P(2e41l2t, O),

Ter1 ~ p(Tey1]zer1, Oem).

This formulation subsumes many models used in Machine Learning such as Hidden Markov
Models (HMMs) or Dynamic Linear Models (DLMs). It is often required to perform inference
on the 6 := (0, Oy) parameters from the transition and emission equations, respectively.
We propose to use a variational distribution ¢(é), which will be refined by any sampling
method (as described in Section 2.1):

0 < 0 + Vglogp(z1.7|21.7,0) +&. (4)

2. corresponds to detach in Pytorch or stop_gradient in tensorflow.

17

VARIATIONALLY INFERRED SAMPLING

Note that for a large class of models (including HMMs and DLMs) we can marginalize out
z1.r and have reduced variance iterating with:

0 < 0+ Vglogp(w1:710) + &, (5)

where the latent variables z;., have been marginalized out using the sum-product algorithm.
For linear-Gaussian models we can also compute the exact form of the refined posterior,
since all terms in Eq. 5 are linear wrt the latent variables 8. However, inference in these
linear models is exact by using conjugate distributions, so the proposed framework is more
fit to the case of state-space models containing non-linear (or non-conjugate) components.
For these families of models, we resort to use just a gradient estimator of the entropy or the
Delta approximation in Section 2.1.

18

	Introduction
	The Variationally Inferred Sampling (VIS) framework
	The sampler Q, T(z|z0)
	Approximating the entropy term
	Tuning sampler parameters via Automatic Differentiation

	Results
	Related work
	Supplementary results
	Variational Autoencoder as a deep Bayes Classifier
	State-space Markov models
	Prediction tasks in a HMM

	Experiment details
	State-space models
	Initial experiments
	Prediction task in a DLM

	VAE
	Model details
	Hyperparameter settings

	CVAE
	Model details
	Hyperparameter settings

	Analysis of VIS
	Rewriting the ELBO, using particle approximation
	Taylor expansion
	Two modes of Automatic Differentiation for ELBO optimization

	State-space model specialization

