
Under review as a conference paper at ICLR 2019

SET TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Many machine learning tasks such as multiple instance learning, 3D shape recog-
nition and few-shot image classification are defined on sets of instances. Since
solutions to such problems do not depend on the permutation of elements of the
set, models used to address them should be permutation invariant. We present
an attention-based neural network module, the Set Transformer, specifically de-
signed to model interactions among elements in the input set. The model consists
of an encoder and a decoder, both of which rely on attention mechanisms. In
an effort to reduce computational complexity, we introduce an attention scheme
inspired by inducing point methods from sparse Gaussian process literature. It
reduces computation time of self-attention from quadratic to linear in the number
of elements in the set. We show that our model is theoretically attractive and we
evaluate it on a range of tasks, demonstrating increased performance compared to
recent methods for set-structured data.

1 INTRODUCTION

Learning representations has proven to be an essential problem for deep learning and its many suc-
cess stories. The majority of problems tackled by deep learning are instance-based and take the
form of mapping a fixed-dimensional input tensor to its corresponding target value (Krizhevsky
et al., 2012; Graves et al., 2013). For some applications, we are required to process set-structured
data. Multiple instance learning (Dietterich et al., 1997; Maron & Lozano-Pérez, 1998) is an exam-
ple of such a set-input problem, where a set of instances is given as an input and the corresponding
target is a label for the entire set. Other problems such as 3D shape recognition (Wu et al., 2015;
Shi et al., 2015; Su et al., 2015; Charles et al., 2017), sequence ordering (Vinyals et al., 2016), and
various set operations (Muandet et al., 2012; Oliva et al., 2013; Edwards & Storkey, 2017; Zaheer
et al., 2017) can also be viewed as such set-input problems. Moreover, many meta-learning (Thrun
& Pratt, 1998; Schmidhuber, 1987) problems which learn using a set of different but related tasks
may also be treated as set-input tasks where an input set corresponds to the training dataset of a
single task. For example, few-shot image classification (Finn et al., 2017; Snell et al., 2017; Lee &
Choi, 2018) operates by building a classifier using a support set of images, which is evaluated with
query images.

A model for set-input problems should satisfy two critical requirements. First, it should be permuta-
tion invariant — the output of the model should not change under any permutation of the elements
in the input set. Second, such a model should be able to process input sets of any size. While these
requirements stem from the definition of a set, they are not easily satisfied in neursal-network-based
models: classical feed-forward neural networks violate both requirements, and RNNs are sensitive
to input order.

Recently, Edwards & Storkey (2017) and Zaheer et al. (2017) propose neural network architectures
which meet both criteria, which we call set pooling methods. In this model, each element in a set
is first independently fed into a feed-forward neural network that takes fixed-size inputs. Resulting
feature-space embeddings are then aggregated using a pooling operation (mean, sum, max or simi-
lar). The final output is obtained by further non-linear processing of the aggregated embedding. This
remarkably simple architecture satisfies both aforementioned requirements, and more importantly,
is proven to be a universal approximator for any set function (Zaheer et al., 2017). Thanks to this
property, it is possible to learn complex mapping between input sets and their target outputs in a
black-box fashion, much like with feed-forward or recurrent neural networks.

1



Under review as a conference paper at ICLR 2019

Even though this set pooling approach is theoretically attractive, it remains unclear whether we can
approximate complex mappings well using only instance-based feature extractors and simple pool-
ing operations. Since every element in a set is processed independently in a set pooling operation,
some information regarding interactions between elements has to be necessarily discarded. This can
make some classes of problems unnecessarily difficult to solve.

Consider the problem of meta-clustering: we would like to learn a parametric mapping from an
input set of points to centers of any clusters in the set, for many such sets. Even though a neural
network with a set pooling operation can approximate such a mapping by learning to quantize space,
this quantization cannot depend on the contents of the set. It limits the quality of the solution on one
hand, and may make optimization of such a model more difficult; we show empirically in Section 4
that it leads to under-fitting.

In this paper, we propose a novel set-input deep neural network architecture called the Set Trans-
former, (cf. Transformer, Vaswani et al. (2017)). The novelty of the Set Transformer comes from
three important design choices: 1) We use a self-attention mechanism based on the Transformer
to process every element in an input set, which allows our approach to naturally encode pairwise-
or higher-order interactions between elements in the set. 2) We propose a method to reduce the
O(n2) computation time of Transformers to O(nm) where m is a fixed hyperparameter. 3) We use
a self-attention mechanism to aggregate features, which is especially beneficial when the problem
of interest requires multiple dependent outputs, such as the problem of meta-clustering, where the
meaning of each cluster center heavily depends its location relative to the other clusters. We apply
the Set Transformer to several set-input problems and empirically demonstrate the importance and
effectiveness of these design choices.

This paper is organized as follows. In Section 2, we briefly review the concept of set functions, ex-
isting architectures, and the self-attention mechanism. In Section 3, we introduce Set Transformers,
our novel neural network architecture for set functions. In Section 4, we present various experi-
ments that demonstrate the benefits of the Set Transformer. We discuss related works in Section 5
and conclude the paper in Section 6.

2 BACKGROUND

2.1 POOLING ARCHITECTURE FOR SETS

Problems involving a set of objects have the permutation invariance property: the target value for a
given set is the same regardless of the order of objects in the set. A simple example of a permutation
invariant model is a network that performs pooling over embeddings extracted from the elements of
a set. More formally,

net({x1, · · · , xn}) = ρ(pool({φ(x1), · · · , φ(xn)})). (1)
Zaheer et al. (2017) has proven that all permutation invariant functions can be represented as (1)
when pool is the sum operator and ρ, φ any continuous functions, thus justifying the use of this
architecture for set-input problems.

Note that we can deconstruct (1) into two parts: an encoder (φ) which independently acts on each
element of a set of n items, and a decoder (ρ(pool(·))) which aggregates these encoded features and
produces our desired output. Most network architectures for set-structured data follow this encoder-
decoder structure. Our proposed method is also composed of an encoder and a decoder, but our
embedding function φ does not act independently on each item but considers the whole set to obtain
the embedding. Additionally, instead of a fixed function such as mean, our aggregating function
pool(·) is parameterized and can thus adapt to the problem at hand.

2.2 ATTENTION

Assume we have n query vectors (corresponding to n points in an input set) each with dimension
dq: Q ∈ Rn×dq . An attention function Att(Q,K, V ) is a function that maps queries Q to outputs
using nv key-value pairs K ∈ Rnv×dq , V ∈ Rnv×dv .

Att(Q,K, V ;ω) = ω
(
QK>

)
V. (2)

2



Under review as a conference paper at ICLR 2019

Table 1: Time complexity of various set operations. n is the number of items, d is the dimensionality
of each item, and m is the number of inducing points.

Set operations Time complexity High-order Permutation
interactions invariant

Recurrent O(nd) Yes No
Pooling (Zaheer et al., 2017) O(nd) No Yes
Relational Networks (Santoro et al., 2017) O(n2d) Yes Yes

Set Transformer (SAB + PMA, ours) O(n2d) Yes Yes
Set Transformer (ISAB + PMA, ours) O(nmd) Yes Yes

(a) Our model (b) SAB (c) ISAB

Figure 1: Diagrams of our attention-based set operations.

The pairwise dot product QK> ∈ Rn×nv measures how similar each pair of query and key vectors
is, with weights computed with an activation function ω. The output ω(QK>)V is a weighted sum
of V where a value gets more weight if its corresponding key has larger dot product with the query.

Multi-head attention, originally introduced in Vaswani et al. (2017), is an extension of the previ-
ous attention scheme. Instead of computing a single attention function, this method first projects
Q,K, V onto h different dMq , d

M
q , d

M
v -dimensional vectors, respectively. An attention function

(Att(·;ωj)) is applied to each of these h projections. The output is a linear transformation of the
concatenation of all attention outputs:

Multihead(Q,K, V ;λ, ω) = concat(O1, . . . , Oh)W
O, (3)

where Oj = Att(QWQ
j ,KW

K
j , V W

V
j ;ωj) (4)

Note that Multihead(·, ·, ·;λ) has learnable parameters λ = {WQ
j ,W

K
j ,W

V
j }hj=1, where

WQ
j ,W

K
j ∈ Rdq×d

M
q , WV

j ∈ Rdv×dMv , WO ∈ RhdMv ×d. A typical choice for the dimension
hyperparameters is dMq = dq/h, dMv = dv/h, d = dq . For brevity, we set dq = dv = d and
dMq = dMv = d/h throughout the rest of the paper. Unless specified otherwise, we use the scaled
softmax ωj(·) = softmax(·/

√
d), which our experiments showed worked robustly in most settings.

3 SET TRANSFORMER

In this section, we motivate and describe the Set Transformer: an attention-based neural network
architecture that is designed to process sets of data. A Set Transformer consists of an encoder
followed by a decoder (cf. Section 2.1). The encoder transforms a set of instances into a set of
features, which the decoder transforms into the desired fixed-dimensional output.

3.1 ATTENTION-BASED SET OPERATIONS

We begin by defining our attention-based set operations. While existing pooling methods for sets ob-
tain instance features independently of other instances, we use self-attention to concurrently encode
the whole set. This gives the Set Transformer the ability to preserve pairwise as well as higher-order
interactions among instances during the encoding process. For this purpose, we adapt the multihead
attention mechanism used in Transformer. We emphasize that all blocks introduced here are neural
network blocks with their own parameters, and not fixed functions.

3



Under review as a conference paper at ICLR 2019

Given matrices X,Y ∈ Rn×d which represent two sets of d-dimensional vectors, we define the
Multihead Attention Block (MAB) with parameters λ as follows:

MAB(X,Y ) = LayerNorm(H + rFF(H)), (5)
where H = LayerNorm(X +Multihead(X,Y, Y ;ω)), (6)

where rFF is any row-wise feedforward layer (i.e. it processes each instance independently and
identically), and LayerNorm is layer normalization (Ba et al., 2016). The MAB is an adaptation
of the encoder block of the Transformer (Vaswani et al., 2017) without positional encoding and
dropout. Using the MAB, we define the Set Attention Block (SAB) as

SAB(X) := MAB(X,X). (7)
In other words, an SAB takes a set and performs self-attention between the elements in the set,
resulting in a set of equal size. Since the output of SAB contains information about pairwise in-
teractions between the elements in the input set X , we can stack multiple SABs to encode higher
order interactions. Note that while the SAB (7) involves a multihead attention operation (6), where
Q = K = V = X , it could reduce to applying a residual block on X . In practice, it learns more
complicated functions due to linear projections of X inside attention heads, (2) and (4).

A potential problem with using SABs for set-structured data is the quadratic time complexityO(n2),
which may be too expensive for large sets (n � 1). We thus introduce the Induced Set Attention
Block (ISAB), which bypasses this problem. Along with the set X ∈ Rn×d, additionally define m
d-dimensional vectors I ∈ Rm×d, which we call inducing points. Inducing points I are part of the
ISAB itself, and they are trainable parameters which we train along with other parameters of the
network. An ISAB with m inducing points I is defined as:

ISABm(X) = MAB(X,H) ∈ Rn×d, (8)

where H = MAB(I,X) ∈ Rm×d. (9)
The ISAB first transforms I into H by attending to the input set. The set of transformed inducing
pointsH , which contains information about the input setX , is again attended to by the input setX to
finally produce a set of n elements. This is analogous to low-rank projection or autoencoder models,
where inputs (X) are first projected onto a low-dimensional object (H) and then reconstructed to
produce outputs. The difference is that the goal of these methods is reconstruction whereas ISAB
aims to obtain good features for the final task. We expect the learned inducing points to encode some
global structure which helps explain the inputs X . As an example, think of a clustering problem on
a 2D plane. The inducing points could be appropriately distributed points on the 2D plane so that
the encoder can compare elements in the query dataset indirectly through their proximity to these
grid points.

Note that in (8) and (9), attention was computed between a set of size m and a set of size n. There-
fore, the time complexity of ISABm(X;λ) is O(nm) where m is a hyperparameter — an improve-
ment over the quadratic complexity of the SAB. We compare characteristics of various set operations
in Table 1. We also emphasize that both of our set operations are permutation equivariant:

Definition 1. We say a function f : Xn → Y n is permutation equivariant iff for any permutation
π ∈ Sn, f(πx) = πf(x). Here Sn is the set of all permutations of indices {1, · · · , n}.

Property 1. Both SAB(X) and ISABm(X) are permutation equivariant.

3.2 ENCODER

Using the SAB and ISAB defined above, we construct the encoder Encoder : X 7→ Z ∈ Rn×d of
the Set Transformer by stacking multiple SABs or multiple ISABs, for example:

Encoder(X) = SAB(SAB(X)) (10)
Encoder(X) = ISABm(ISABm(X)). (11)

We point out again that the time complexity for ` stacks of SABs and ISABs are O(`n2) and
O(`nm), respectively. This can result in much lower processing times when using ISAB (as com-
pared to SAB), while still maintaining high representational power.

4



Under review as a conference paper at ICLR 2019

3.3 DECODER

After the encoder transforms data X ∈ Rn×dx into features Z ∈ Rn×d, the decoder aggregates
them into a single vector which is fed into a feed-forward network to get final outputs. A common
aggregation scheme is to simply take the average or dimension-wise maximum of the feature vectors
(cf. Section 1). We instead aggregate features by applying multihead attention on a learnable set of
k seed vectors S ∈ Rk×d. We call this scheme Pooling by Multihead Attention (PMA):

Decoder(Z;λ) = rFF(SAB(PMAk(Z))) ∈ Rk×d (12)

where PMAk(Z) = MAB(S, rFF(Z)) ∈ Rk×d, (13)
Note that the output of PMAk is a set of k items. In most cases, using one seed vector (k = 1)
and no SAB sufficed. However, when the problem of interest requires k correlated outputs, the
natural thing to do is to use k inducing points. An example of such a problem is clustering where
the desired output is k centers. In this case, the additional SAB was crucial because it allowed
the network to directly take the correlation between the k pooled features into account. Intuitively,
feature aggregation using attention should be beneficial because the influence of each instance on
the target is not necessarily equal. For example, consider a problem where the target value is the
maximum value of a set of real numbers. Since the target can be recovered using only a single
instance (the largest), finding and attending to that instance during aggregation will be advantageous.
In the next subsection, we further analyze both the encoder and decoder structures more rigorously.

3.4 ANALYSIS

Since the blocks used to construct the encoder (i.e., SAB, ISAB) are permutation equivariant, the
mapping of the encoder X → Z is permutation equivariant as well. Combined with the fact that the
PMA in the decoder is a permutation invariant transformation, we have the following:

Proposition 1. The Set Transformer is permutation invariant.

Being able to approximate any function is a desirable property, especially for black-box models
such as deep neural networks. Building on previous results about the universal approximation of
permutation invariant functions, we prove the universality of Set Transformers:

Proposition 2. The Set Transformer is a universal approximator of permutation invariant functions.

Proof. See Appendix A.

4 EXPERIMENTS

To evaluate the Set Transformer, we apply it to a suite of tasks involving sets of data points. We
repeat all experiments five times and report performance metrics evaluated on corresponding test
datasets. Along with baselines, we compared various architectures arising from the combination
of the choices of having attention in encoders and decoders. Unless specified otherwise, ”simple
pooling” means average pooling.

• rFF + Pooling ( Zaheer et al. (2017)): rFF layers in encoder and simple pooling + rFF layers
in decoder.

• rFFp-mean/rFFp-max + Pooling (Zaheer et al. (2017)): rFF layers with permutation equiv-
ariant variants in encoder (Eq (4) in Zaheer et al. (2017)) and simple pooling + rFF layers
in decoder.

• rFF + Dotprod (Yang et al. (2018); Ilse et al. (2018)): rFF layers in encoder and dot product
attention based pooling + rFF layers in decoder.

• SAB(ISAB) + Pooling: Stack of SABs (ISABs) in encoder and simple pooling + rFF layers
in decoder.

• rFF + PMA: rFF layers in encoder and PMA (followed by stack of SABs) in decoder.

• Set Transformer: Stack of SABs (ISABs) in encoder and PMA (followed by stack of SABs)
in decoder.

5



Under review as a conference paper at ICLR 2019

Table 2: Mean absolute errors on the max re-
gression task.

Architecture MAE

rFF + Pooling (mean) 2.133 ± 0.190
rFF + Pooling (sum) 1.902 ± 0.137
rFF + Pooling (max) 0.1355 ± 0.0074

Set Transformer 0.2085 ± 0.0127

Table 3: Error rates on the unique character
counting task.

Architecture Error

rFF + Pooling 0.5618 ± 0.0072
rFFp-mean + Pooling 0.5383 ± 0.0076
rFFp-max + Pooling 0.5641 ± 0.0077

rFF + Dotprod 0.5529 ± 0.0076
rFF + PMA 0.5428 ± 0.0076

SAB + Pooling 0.4477 ± 0.0077
Set Transformer 0.4178 ± 0.0075

4.1 TOY PROBLEM: MAXIMUM VALUE REGRESSION

To demonstrate the advantage of attention-based set aggregation over simple pooling operations, we
consider a toy problem: regression to the maximum value of a given set. Given a set of real numbers
{x1, · · · , xn}, the goal is to return max(x1, · · · , xn). Given prediction p, we use the mean absolute
error |p−max(x1, · · · , xn)| as the loss function. We constructed simple pooling architectures with
three different pooling operations: max, mean, and sum. We report loss values after training in Ta-
ble 2. Mean- and sum-pooling architectures result in a high mean absolute error (MAE). The model
with max-pooling can predict the output perfectly by learning its encoder to be an identity function,
and thus achieves the highest performance. Notably, the Set Transformer achieves performance
comparable to the max-pooling model, which underlines the importance of additional flexibility
granted by attention mechanisms — it can learn to find and attend to the maximum element.

4.2 COUNTING UNIQUE CHARACTERS

In order to test the ability of modelling interactions between objects in a set, we introduce a new task
of counting unique elements in an input set. We use the Omniglot (Lake et al., 2015) dataset, which
consists of 1,623 different handwritten characters from various alphabets, where each character is
represented by 20 different images.

We split all characters (and corresponding images) into train, validation, and test sets and only train
using images from the train character classes. We generate input sets by sampling between 6 and 10
images and we train the model to predict the number of different characters inside the set. We used
a Poisson regression model to predict this number, with the rate λ given as the output of a neural
network. We maximized the log likelihood of this model using stochastic gradient ascent.

We evaluated model performance using sets of images sampled from the test set of characters. Ta-
ble 3 reports accuracy, measured as the frequency at which the mode of the Poisson distribution
chosen by the network is equal to the number of characters inside the input set.

4.3 SOLVING MAXIMUM LIKELIHOOD PROBLS FOR MIXTURE OF GAUSSIANS

We applied the set-input networks to the task of maximum likelihood of mixture of Gaussians
(MoGs). The log-likelihood of a dataset X = {x1, . . . , xn} generated from an MoG with k compo-
nents is

log p(X; θ) = log p(X;π, {µj , σj}kj=1) =

n∑
i=1

log

k∑
j=1

πjN (xi;µj ,diag(σ
2
j )). (14)

The goal is to learn the optimal parameters θ∗(X) = argmaxθ log p(X; θ). The typical approach
to this problem is to run an iterative algorithm such as Expectation-Maximisation (EM) until con-
vergence. Instead, we aim to learn a generic meta-algorithm that directly maps the input set X to
θ∗(X). One can also view this as amortized maximum likelihood learning. Specifically, given a
datasetX , we train a neural network to output parameters f(X;λ) = {π(X), {µj(X), σj(X)}kj=1}
which maximize

EX

 |X|∑
i=1

log

k∑
j=1

πj(X)N (xi;µj(X),diag(σ2
j (X)))

 . (15)

6



Under review as a conference paper at ICLR 2019

We structured f(·;λ) as a set-input neural network and learned its parameters λ using stochastic
gradient ascent, where we approximate gradients using minibatches of datasets.

We tested Set Transformers along with other set-input networks on two types of datasets. We used
four seed vectors for the PMA (S ∈ R4×d), the same as the number of clusters.

Synthetic 2D mixtures of Gaussians: Each dataset contains n ∈ [100, 500] points on a 2D plane,
each sampled from one of four Gaussians.

CIFAR-100 meta-clustering: Each dataset contains n ∈ [100, 500] images sampled from four
random classes in the CIFAR-100 dataset. Each image is represented by a 512-dim vector obtained
from a pretrained VGG net (Simonyan & Zisserman, 2014).

Table 4: Meta clustering results. The number inside parenthesis indicates the number of inducing
points used in ISABs of encoders. We show average likelihood per data for the synthetic dataset and
the adjusted rand index (ARI) for the CIFAR-100 experiment. LL1/data, ARI1 are the evaluation
metrics after a single EM update step. The oracle for the synthetic dataset is the log likelihood of
the actual parameters used to generate the set, and the CIFAR oracle was computed by running EM
until convergence.

Synthetic CIFAR-100

Architecture LL0/data LL1/data ARI0 ARI1

Oracle -1.4726 0.9150
rFF + Pooling -2.0006± 0.0123 -1.6186± 0.0042 0.5593± 0.0149 0.5693± 0.0171

rFFp-mean + Pooling -1.7606± 0.0213 -1.5191± 0.0026 0.5673± 0.0053 0.5798± 0.0058
rFFp-max + Pooling -1.7692± 0.0130 -1.5103± 0.0035 0.5369± 0.0154 0.5536± 0.0186

rFF + Dotprod -1.8549± 0.0128 -1.5621± 0.0046 0.5666± 0.0221 0.5763± 0.0212
SAB + Pooling -1.6772± 0.0066 -1.5070± 0.0115 0.5831± 0.0341 0.5943± 0.0337

ISAB (16) + Pooling -1.6955± 0.0730 -1.4742± 0.0158 0.5672± 0.0124 0.5805± 0.0122
rFF + PMA -1.6680± 0.0040 -1.5409± 0.0037 0.7612± 0.0237 0.7670± 0.0231

Set Transformer -1.5145± 0.0046 -1.4619± 0.0048 0.9015± 0.0097 0.9024± 0.0097
Set Transformer (16) -1.5009± 0.0068 -1.4530± 0.0037 0.9210± 0.0055 0.9223± 0.0056

We report the performance of the oracle and of different models in Table 4. Additionally, it contains
scores attained by all models after a single EM update. Overall, the Set Transformer found accurate
parameters and even outperformed the oracles after a single EM update. This can be explained by
relatively small size of the input sets, which leads to some clusters having fewer than 10 points.
In this regime, sample statistics can differ from population statistics, which limits the performance
of the oracle, but the Set Transformer can adapt accordingly. Notably, the Set Transformer with
only 16 inducing points showed the best performance, even outperforming the full Set Transformer.
We believe this is due to the knowledge transfer and regularization via inducing points, helping the
network to learn global structures. Our results also imply that the improvements from using the PMA
is more significant than that of using SAB, supporting our claim of the importance of attention-based
decoders. We provide detailed generative processes, network architectures, and training schemes
along with additional experiments with various numbers of inducing points in Appendix B.3.

4.4 META SET ANOMALY DETECTION

Table 5: Meta set anomaly results. Each architecture is evaluated using average of test area under
receiver operating characteristic curve (AUROC) and test area under precision-recall curve (AUPR).

Architecture Test AUROC Test AUPR

Random guess 0.5 0.125
rFF + Pooling 0.5643 ± 0.0139 0.4126 ± 0.0108

rFFp-mean + Pooling 0.5687 ± 0.0061 0.4125 ± 0.0127
rFFp-max + Pooling 0.5717 ± 0.0117 0.4135 ± 0.0162

rFF + Dotprod 0.5671 ± 0.0139 0.4155 ± 0.0115
SAB + Pooling 0.5757 ± 0.0143 0.4189 ± 0.0167

rFF + PMA 0.5756 ± 0.0130 0.4227 ± 0.0127
Set Transformer 0.5941 ± 0.0170 0.4386 ± 0.0089

We evaluate our methods on the task of meta-anomaly detection within a set using the CelebA
dataset. The dataset consists of 202,599 images with the total of 40 attributes. We randomly sample

7



Under review as a conference paper at ICLR 2019

1,000 sets of images. For every set, we select two attributes at random and construct the set by
selecting seven images containing both attributes and one image with neither. The goal of this task
is to find the image that does not belong to the set. We give a detailed description of the experimen-
tal setup in Appendix B.4. Table 5 contains empirical results, which show that Set Transformers
outperformed all other methods by a significant margin.

4.5 POINT CLOUD CLASSIFICATION

We evaluated Set Transformers on a classification task using the ModelNet40 (Chang et al., 2015)
dataset, containing 40 categories of three-dimensional objects. Each object is represented as a point
cloud, which we treat as a set of n elements in R3. Table 6 contains experimental results on point
clouds1 with n = 1000 points each. In this setting, MABs turned out to be prohibitively expensive
due to their O(n2) time complexity. Additional results with n = 100 points and experiment details
are available in Appendix B.5. Note that ISAB (16) + Pooling outperformed Set Transformers (ISAB
(16) + PMA (1)) by a large margin. Our interpretation is that the class of a point cloud object could
be efficiently represented by simple aggregation of point features, and the PMA suffered from an
optimization issue in this setting. We would like to point out that PMA outperformed simple pooling
in all other experiments.

Table 6: Test accuracy for the point cloud classification task using 1,000 points.

Architecture Accuracy

rFF + Pooling 0.8551 ± 0.0142
rFF + PMA (1) 0.8534 ± 0.0152

ISAB (16) + Pooling 0.8915 ± 0.0144
Set Transformer (16) 0.8662 ± 0.0149

rFF + Pooling (Zaheer et al., 2017) 0.83 ± 0.01
rFF + Pooling + tricks (Zaheer et al., 2017) 0.87 ± 0.01

5 RELATED WORKS

Pooling architectures for permutation invariant mappings Pooling architectures for sets have
been used in various problems such as 3D shape recognition (Shi et al., 2015; Su et al., 2015),
discovering causality (Lopez-Paz et al., 2016), learning the statistics of a set (Edwards & Storkey,
2017), few-shot image classification (Snell et al., 2017), and conditional regression and classifica-
tion (Garnelo et al., 2018). Zaheer et al. (2017) discusses the structure in general and provides a
partial proof of the universality of the pooling architecture.

Attention-based approaches for sets Vinyals et al. (2016) proposes an architecture to map sets into
sequences, where elements in a set are pooled by weighted average with weights computed from at-
tention mechanism. Several recent works have highlighted the competency of attention mechanisms
in modeling sets. (Yang et al., 2018) proposes AttSets for multi-view 3D reconstruction, where at-
tention is applied to the encoded features of elements in sets before pooling. Similarly, (Ilse et al.,
2018) uses an attention in pooling for multiple instance learning. However, the attention applied in
those papers are simple dot-product attention that does not encode higher-order interactions between
elements. Although not permutation invariant, (Mishra et al., 2018) has an attention as one of its
core components to meta-learn to solve various tasks using sequences of inputs.

Modeling interactions between elements in sets An important reason to use the Transformer is
to explicitly model higher-order interactions among the elements in a set. Santoro et al. (2017)
proposes the relational network, a simple architecture that sum-pools all pairwise interactions of
elements in a given set, but not higher-order interactions. Similarly to our work, Ma et al. (2018)
uses the Transformer to model interactions between the objects in a video. They use mean-pooling
to obtain aggregated features which they fed into an LSTM.

Inducing point methods The idea of letting trainable vectors I directly interact with datapoints is
loosely based on the inducing point methods used in sparse Gaussian processes (Quiñonero-Candela

1The point-cloud dataset used in this experiment was obtained directly from the authors of Zaheer et al.
(2017).

8



Under review as a conference paper at ICLR 2019

& Rasmussen, 2005) and the Nyström method for matrix decomposition (Fowlkes et al., 2004). m
trainable inducing points can also be seen asm independent memory cells accessed with an attention
mechanism. The Differential Neural Dictionary (Pritzel et al., 2017) stores previous experience as
key-value pairs and uses this to process queries. One can view the ISAB is the inversion of this idea,
where queries I are stored and the input features are used as key-value pairs.

6 CONCLUSION

In this paper, we introduced the Set Transformer, an attention-based set-input neural network archi-
tecture. Our proposed method uses attention mechanisms for both encoding and aggregating fea-
tures, and we have empirically validated that both of them are necessary for modelling complicated
interactions among elements of a set. We also proposed an inducing point method for self-attention,
which makes our approach scalable to large sets. We also showed useful theoretical properties of
our model, including the fact that it is a universal approximator for permutation invariant functions.
To the best of our knowledge, no previous work has successfully trained a neural network to perform
amortized clustering in a single forward pass. An interesting topic for future work would be to ap-
ply Set Transformers to meta-learning problems other than meta-clustering. In particular, using Set
Transformers to meta-learn posterior inference in Bayesian models seems like a promising line of
research. Another exciting extension of our work would be to model the uncertainty in set functions
by injecting noise variables into Set Transformers in a principled way.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv:1607.06450,
2016.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu.
Shapenet: An information-rich 3d model repository. 2015.

R Qi Charles, Hao Su, Mo Kaichun, and Leonidas J Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

Thomas G. Dietterich, H. Lathrop Richard, and Tomás Lozano-Pérez. Solving the multiple instance
problem with axis-parallel rectangles. Artificial intelligence, 89(1-2):31–71, 1997.

Harrison Edwards and Amos Storkey. Towards a neural statistician. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the International Conference on Machine Learning (ICML),
2017.

Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra Malik. Spectral grouping using the
Nyström method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(2):215–
225, February 2004.

Marta Garnelo, Dan Rosenbaum, Chris J. Maddison, Tiago Ramalho, David Saxton, Murray Shana-
han, Yee Whye Teh, Danilo J. Rezende, and S. M. Ali Eslami. Conditional neural processes. In
Proceedings of the International Conference on Machine Learning (ICML), 2018.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recur-
rent neural networks. In Proceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), 2013.

Maximilian Ilse, Jakub M. Tomczak, and Max Welling. Attention-based deep multiple instance
learning. In Proceedings of the International Conference on Machine Learning (ICML), 2018.

Diederik. P. Kingma and L. Ba, Jimmy. Adam: a method for stochastic optimization. In Proceedings
of the International Conference on Learning Representations (ICLR), 2015.

9



Under review as a conference paper at ICLR 2019

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with deep convo-
lutional neural networks. In Advances in Neural Information Processing Systems (NIPS), 2012.

Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Yoonho Lee and Seungjin Choi. Gradient-based meta-learning with learned layerwise metric and
subspace. Proceedings of the International Conference on Machine Learning (ICML), 2018.

David Lopez-Paz, Robert Nishihara, Soumith Chintala, Bernhard Schölkopf, and Léon Bottou. Dis-
covering causal signals in images. arXiv:1605.08179, 2016.

Chih-Yao Ma, Asim Kadav, Iain Melvin, Zsolt Kira, Ghassan AlRegib, and Hans Peter Graf. Attend
and interact: higher-order object interactions for video understanding. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

Oded Maron and Tomás Lozano-Pérez. A framework for multiple-instance learning. In Advances
in Neural Information Processing Systems (NIPS), 1998.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. In Proceedings of the International Conference on Machine Learning (ICML), 2018.

Krikamol Muandet, Kenji Fukumizu, Francesco Dinuzzo, and Bernhard Schölkopf. Learning from
distributions via support measure machines. In Advances in Neural Information Processing Sys-
tems (NIPS), 2012.

Junier Oliva, Barnabás Póczos, and Jeff Schneider. Distribution to distribution regression. In Inter-
national Conference on Machine Learning, pp. 1049–1057, 2013.

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria Puigdomenech, Oriol Vinyals, Demis
Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control. arXiv preprint
arXiv:1703.01988, 2017.

Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of sparse approximate
Gaussian process regression. Journal of Machine Learning Research, 6:1939–1959, 2005.

Adam Santoro, David Raposo, David G. T. Barret, Mateusz Malinowski, Razvan Pascanu, and Peter
Battaglia. A simple neural network module for relational reasoning. In Advances in Neural
Information Processing Systems (NIPS), 2017.

Jürgen Schmidhuber. Evolutionary Principles in Self-Referential Learning. PhD thesis, Technical
University of Munich, 1987.

Baoguang Shi, Song Bai, Zhichao Zhou, and Xiang Bai. DeepPano: deep panoramic representation
for 3-D shape recognition. IEEE Signal Processing Letters, 22(12):2339–2343, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv:1409.1556, 2014.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in Neural Information Processing Systems (NIPS), 2017.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. Multi-view convo-
lutional neural networks for 3d shape recognition. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2015.

Sebastian Thrun and Lorien Pratt. Learning to Learn. Kluwer Academic Publishers, 1998.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems (NIPS), 2017.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: sequence to sequence for sets.
In Proceedings of the International Conference on Learning Representations (ICLR), 2016.

10



Under review as a conference paper at ICLR 2019

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3D ShapeNets: a deep representation for volumetric shapes. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

Bo Yang, Sen Wang, Andrew Markham, and Niki Trigoni. Attentional aggregation of deep feature
sets for multi-view 3d reconstruction. arXiv:1808.00758, 2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R. Salakhutdinov,
and Alexander J. Smola. Deep sets. In Advances in Neural Information Processing Systems
(NIPS), 2017.

11



Under review as a conference paper at ICLR 2019

Appendices

A PROOFS

Lemma 1. The mean operator mean({x1, · · · , xn}) = 1
n

∑n
i=1 xi is a special case of dot-product

attention with softmax.

Proof. Let s = 0 ∈ Rd and X ∈ Rn×d.

Att(s,X,X; softmax) = softmax

(
sX>√
d

)
X =

1

n

n∑
i=1

xi

Lemma 2. The decoder of a Set Transformer, given enough nodes, can express any element-wise

function of the form
(
1
n

∑n
i=1 z

p
i

) 1
p .

Proof. We first note that we can view the decoder as the composition of functions
Decoder(Z) = rFF(H) (16)

whereH = rFF(MAB(Z, rFF(Z))) (17)
We focus on H in equation (17). Since feed-forward networks are universal function approximators
at the limit of infinite nodes, let the feed-forward layers in front and back of the MAB encode the
element-wise functions z → zp and z → z

1
p , respectively. We let h = d, so the number of heads is

the same as the dimensionality of the inputs, and each head is one-dimensional. Let the projection
matrices in multi-head attention (WQ

j ,W
K
j ,W

V
j ) represent projections onto the jth dimension and

the output matrix (WO) the identity matrix. Since the mean operator is a special case of dot-product
attention, by simple composition, we see that an MAB can express any dimension-wise function of
the form

Mp(z1, · · · , zn) =

(
1

n

n∑
i=1

zpi

) 1
p

. (18)

Lemma 3. A PMA, given enough nodes, can express sum pooling (
∑n
i=1 zi).

Proof. We prove this by construction.

Set the seed s to a zero vector and let ω(·) = 1 + f(·), where f is any activation function such
that f(0) = 0. The identiy, sigmoid, or relu functions are suitable choices for f . The output of the
multihead attention is then simply a sum of the values, which is Z in this case.

We additionally have the following universality theorem for pooling architectures:
Theorem 1. Models of the form rFF(sum(rFF(·))) are universal function approximators in the
space of permutation invariant functions.

Proof. See Appendix A of Zaheer et al. (2017).

By Lemma 3, we know that decoder(Z) can express any function of the form rFF(sum(Z)). Using
this fact along with Theorem 1, we can prove the universality of Set Transformers:
Proposition 2. The Set Transformer is a universal function approximator in the space of permuta-
tion invariant functions.

Proof. By setting the matrix WO to a zero matrix in every SAB and ISAB, we can ignore all
pairwise interaction terms in the encoder. Therefore, the encoder(X) can express any instance-wise
feed-forward network (Z = rFF(X)). Directly invoking Theorem 1 concludes this proof.

12



Under review as a conference paper at ICLR 2019

While this proof required us to ignore the pairwise interaction terms inside the SABs and ISABs
to prove that Set Transformers are universal function approximators, our experiments indicated that
self-attention in the encoder was crucial for good performance.

B EXPERIMENT DETAILS

In all implementations, we omit the feed-forward layer in the beginning of the decoder (rFF(Z))
because the end of the previous block contains a feed-forward layer. All MABs (inside SAB, ISAB
and PMA) use fully-connected layers with ReLU activations for rFF layers.

In the architecture descriptions, FC(d, f) denotes the fully-connected layer with d units and activa-
tion function f . SAB(d, h) denotes the SAB with d units and h heads. ISABm(d, h) denotes the
ISAB with d units, h heads and m inducing points. PMAk(d, h) denotes the PMA with d units, h
heads and k vectors. All MABs used in SAB and PMA uses FC layers with ReLU activations for
FF layers.

B.1 MAX REGRESSION

Given a set of real numbers {x1, · · · , xn}, the goal of this task is to return the maximum value
in the set max(x1, · · · , xn). We construct training data as follows. We first sample a dataset size
n uniformly from the set of integers {1, · · · , 10}. We then sample real numbers xi independently
from the interval [0, 100]. Given the network’s prediction p, we use the actual maximum value
max(x1, · · · , xn) to compute the mean absolute error |p −max(x1, · · · , xn)|. We don’t explicitly
consider splits of train and test data, since we sample a new set {x1, · · · , xn} at each time step.

Table 7: Detailed architectures used in the max regression experiments.

Encoder Decoder

FF SAB Pooling PMA

FC(64,ReLU) SAB(64, 4) mean, sum,max PMA1(64, 4)
FC(64,ReLU) SAB(64, 4) FC(64,ReLU) FC(1,−)
FC(64,ReLU) FC(1,−)
FC(64,−)

We show the detailed architectures used for the experiments in Table 7. We trained all networks
using the Adam optimizer (Kingma & Ba, 2015)with a constant learning rate of 10−3 and a batch
size of 128 for 20000 batches, after which loss converged for all architectures.

B.2 COUNTING UNIQUE CHARACTERS

Figure 2: Try the task yourself: this is a randomly sampled set of 20 images from the Omniglot
dataset. There are 14 different characters inside this set.

The task generation procedure is as follows. We first sample a set size n uniformly from the set
of integers {6, · · · , 10}. We then sample the number of characters c uniformly from {1, · · · , n}.
We sample c characters from the training set of characters, and randomly sample instances of each
character so that the total number of instances sums to n and each set of characters has at least one
instance in the resulting set.

We show the detailed architectures used for the experiments in Table 9. For both architectures,
the resulting 1-dimensional output is passed through a softplus activation to produce the Poisson
parameter γ. The role of softplus is to ensure that γ is always positive.

13



Under review as a conference paper at ICLR 2019

Table 8: Detailed results for the unique character counting experiment.

Architecture Accuracy

rFF + Pooling 0.4366 ± 0.0071
rFF + PMA 0.4617 ± 0.0073

rFFp-mean + Pooling 0.4617 ± 0.0076
rFFp-max + Pooling 0.4359 ± 0.0077

rFF + Dotprod 0.4471 ± 0.0076
SAB + Pooling 0.5659 ± 0.0067
SAB + Dotprod 0.5888 ± 0.0072

Set Transformers (SAB + PMA (1)) 0.6037 ± 0.0072
Set Transformers (SAB + PMA (2)) 0.5806 ± 0.0075
Set Transformers (SAB + PMA (4)) 0.5945 ± 0.0072
Set Transformers (SAB + PMA (8)) 0.6001 ± 0.0078

Table 9: Detailed architectures used in the unique character counting experiments.

Encoder Decoder

rFF SAB Pooling PMA

Conv(64, 3, 2,BN,ReLU) Conv(64, 3, 2,BN,ReLU) mean PMA1(8, 8)
Conv(64, 3, 2,BN,ReLU) Conv(64, 3, 2,BN,ReLU) FC(64,ReLU) FC(1, softplus)
Conv(64, 3, 2,BN,ReLU) Conv(64, 3, 2,BN,ReLU) FC(1, softplus)
Conv(64, 3, 2,BN,ReLU) Conv(64, 3, 2,BN,ReLU)

FC(64,ReLU) SAB(64, 4)
FC(64,ReLU) SAB(64, 4)
FC(64,ReLU)
FC(64,−)

The loss function we optimize, as previously mentioned, is the log likelihood log p(x|γ) =
x log(γ)− γ − log(x!). We chose this loss function over mean squared error or mean absolute error
because it seemed like the more logical choice when trying to make a real number match a target
integer. Early experiments showed that directly optimizing for mean absolute error had roughly the
same result as optimizing γ in this way and measuring |γ − x|. We train using the Adam optimizer
with a constant learning rate of 10−4 for 200, 000 batches each with batch size 32.

B.3 SOLVING MAXIMUM LIKELIHOOD PROBLEMS FOR MIXTURE OF GAUSSIANS

B.3.1 DETAILS FOR 2D SYNTHETIC MIXTURES OF GAUSSIANS EXPERIMENT

We generated the datasets according to the following generative process.

1. Generate the number of data points, n ∼ Unif(100, 500).

2. Generate k centers.
µj,d ∼ Unif(−4, 4), j = 1, . . . , 4, d = 1, 2. (19)

3. Generate cluster labels.
π ∼ Dir([1, 1]>), zi ∼ Categorical(π), i = 1, . . . , n. (20)

4. Generate data from spherical Gaussian.
xi ∼ N (µzi , (0.3)

2I). (21)

Table 10 summarizes the architectures used for the experiments. For all architectures, at each train-
ing step, we generate 10 random datasets according to the above generative process, and updated
the parameters via Adam optimizer with initial learning rate 10−3. We trained all the algorithms for
50k steps, and decayed the learning rate to 10−4 after 35k steps. Table 11 summarizes the detailed
results with various number of inducing points in the ISAB. Figure 3 shows the actual clustering
results based on the predicted parameters.

14



Under review as a conference paper at ICLR 2019

Table 10: Detailed architectures used in 2D synthetic experiments.

Encoder Decoder

rFF SAB ISAB Pooling PMA

FC(128,ReLU) SAB(128, 4) ISABm(128, 4) mean PMA4(128, 4)
FC(128,ReLU) SAB(128, 4) ISABm(128, 4) FC(128,ReLU) SAB(128, 4)
FC(128,ReLU) FC(128,ReLU) FC(4 · (1 + 2 · 2),−)
FC(128,ReLU) FC(128,ReLU)

FC(4 · (1 + 2 · 2),−)

Table 11: Average log-likelihood/data (LL0/data) and average log-likelihood/data after single EM
iteration (LL1/data) the clustering experiment. The number inside parenthesis indicates the number
of inducing points used in the SABs of encoder. For all PMAs, four seed vectors were used.

Architecture LL0/data LL1/data

Oracle -1.4726
rFF + Pooling -2.0006 ± 0.0123 -1.6186 ± 0.0042

rFFp-mean + Pooling -1.7606 ± 0.0213 -1.5191 ± 0.0026
rFFp-max + Pooling -1.7692 ± 0.0130 -1.5103 ± 0.0035

rFF+Dotprod -1.8549 ± 0.0128 -1.5621 ± 0.0046
SAB + Pooling -1.6772 ± 0.0066 -1.5070 ± 0.0115

ISAB (16) + Pooling -1.6955 ± 0.0730 -1.4742 ± 0.0158
ISAB (32) + Pooling -1.6353 ± 0.0182 -1.4681 ± 0.0038
ISAB (64) + Pooling -1.6349 ± 0.0429 -1.4664 ± 0.0080

rFF + PMA -1.6680 ± 0.0040 -1.5409 ± 0.0037
Set Transformer -1.5145 ± 0.0046 -1.4619 ± 0.0048

Set Transformer (16) -1.5009 ± 0.0068 -1.4530 ± 0.0037
Set Transformer (32) -1.4963 ± 0.0064 -1.4524 ± 0.0044
Set Transformer (64) -1.5042 ± 0.0158 -1.4535 ± 0.0053

B.3.2 2D SYNTHETIC MIXTURES OF GAUSSIANS EXPERIMENT ON LARGE-SCALE DATA

To show the scalability of the set transformer, we conducted additional experiments on large-scale
2D synthetic clustering dataset. We generated the synthetic data as before, except that we sample
the number of data points n Unif(1000, 5000) and set k = 6. We report the clustering accuracy of a
subset of comparing methods in Table 12. The set transformer with only 32 inducing points works
extremely well, demonstrating its scalability and efficiency.

Figure 3: Clustering results for 10 test datasets, along with centers and covariance matri-
ces. rFF+Pooling (top-left), SAB+Pooling (top-right), rFF+PMA (bottom-left), Set Transformer
(bottom-right). Best viewed magnified in color.

15



Under review as a conference paper at ICLR 2019

Table 12: Average log-likelihood/data (LL0/data) and average log-likelihood/data after single EM
iteration (LL1/data) the clustering experiment on large-scale data. The number inside parenthesis
indicates the number of inducing points used in the SABs of encoder. For all PMAs, six seed vectors
were used.

Architecture LL0/data LL1/data

Oracle -1.8202
rFF + Pooling -2.5195 ± 0.0105 -2.0709 ± 0.0062

rFFp-mean + Pooling -2.3126 ± 0.0154 -1.9749 ± 0.0062
rFF+PMA -2.0515 ± 0.0067 -1.9424 ± 0.0047

Set Transformer(32) -1.8928 ± 0.0076 -1.8549 ± 0.0024

Table 13: Detailed architectures used in CIFAR-100 meta clustering experiments.

Encoder Decoder

rFF SAB ISAB rFF PMA

FC(256,ReLU) SAB(256, 4) ISABm(256, 4) mean PMA4(128, 4)
FC(256,ReLU) SAB(256, 4) ISABm(256, 4) FC(256,ReLU) SAB(256, 4)
FC(256,ReLU) SAB(256, 4) ISABm(256, 4) FC(256,ReLU) SAB(256, 4)
FC(256,ReLU) FC(256,ReLU)) FC(4 · (1 + 2 · 512),−)
FC(256,ReLU) FC(256,ReLU)
FC(256,−) FC(256,ReLU)

FC(4 · (1 + 2 · 512),−)

B.3.3 DETAILS FOR CIFAR-100 META CLUSTERING EXPERIMENT

We pretrained VGG net (Simonyan & Zisserman, 2014) with CIFAR-100, and obtained the test
accuracy 68.54%. Then, we extracted feature vectors of 50k training images of CIFAR-100 from
the 512-dimensional hidden layers of the VGG net (the layer just before the last layer). Given these
feature vectors, the generative process of datasets is as follows.

1. Generate the number of data points, n ∼ Unif(100, 500).

2. Uniformly sample four classes among 100 classes.

3. Uniformly sample n data points among four sampled classes.

Table 13 summarizes the architectures used for the experiments. For all architectures, at each train-
ing step, we generate 10 random datasets according to the above generative process, and updated
the parameters via Adam optimizer with initial learning rate 10−4. We trained all the algorithms for
50k steps, and decayed the learning rate to 10−5 after 35k steps. Table 14 summarizes the detailed
results with various number of inducing points in the ISAB.

B.4 META SET ANOMALY

Table 15 describes the architecture for meta set anomaly experiments. We trained all models via
Adam optimizer with learning rate 10−4 and exponential decay of learning rate for 1,000 iterations.
1,000 datasets subsampled from CelebA dataset (see Figure 4) are used to train and test all the
methods. We split 800 training datasets and 200 test datasets for the subsampled datasets.

B.5 POINT CLOUD CLASSIFICATION

We used the ModelNet40 dataset for our point cloud classification experiments. This dataset consists
of a 3-dimensional representation of 9,843 training and 2,468 test data which each belong to one of
40 object classes. As input to our architectures, we produce point clouds with n = 100, 1, 000, 5000
points each (each point is represented by (x, y, z) coordinates). For generalization, we randomly
rotate and scale each set during training.

We show results our architectures in Table 16 and additional experiments which used n = 100, 5000
points in Table 17 and Table 18, respectively. We trained using the Adam optimizer with an initial
learning rate of 10−3 which we decayed by a factor of 0.3 every 20, 000 steps. For the experiment

16



Under review as a conference paper at ICLR 2019

Table 14: Average clustering accuracies measured by Adjusted Rand Index (ARI) for CIFAR100
clustering experiments. The number inside parenthesis indicates the number of inducing points used
in the SABs of encoder. For all PMAs, four seed vectors were used.

Architecture ARI0 ARI1

Oracle 0.9151
rFF + Pooling 0.5593 ± 0.0149 0.5693 ± 0.0171

rFFp-mean + Pooling 0.5673 ± 0.0053 0.5798 ± 0.0058
rFFp-max + Pooling 0.5369 ± 0.0154 0.5536 ± 0.0186

rFF+Dotprod 0.5666 ± 0.0221 0.5763 ± 0.0212
SAB + Pooling 0.5831 ± 0.0341 0.5943 ± 0.0337

ISAB (16) + Pooling 0.5672 ± 0.0124 0.5805 ± 0.0122
ISAB (32) + Pooling 0.5587 ± 0.0104 0.5700 ± 0.0134
ISAB (64) + Pooling 0.5586 ± 0.0205 0.5708 ± 0.0183

rFF + PMA 0.7612 ± 0.0237 0.7670 ± 0.0231
Set Transformer 0.9015 ± 0.0097 0.9024 ± 0.0097

Set Transformer (16) 0.9210 ± 0.0055 0.9223 ± 0.0056
Set Transformer (32) 0.9103 ± 0.0061 0.9119 ± 0.0052
Set Transformer (64) 0.9141 ± 0.0040 0.9153 ± 0.0041

Figure 4: Subsampled dataset examples. Each row is one dataset, which is composed of 7 normal
images and 1 abnormal image (red box). Normal images in each subsampled dataset have both two
attributes that are described in the rightmost column of figure. On the other hand, abnormal image
does not contain the two attributes.

with 5000 points (Table 18), we increased the dimension of the attention blocks (ISAB16(512, 4)
instead of ISAB16(128, 4)) and also decayed the weights by a factor of 10−7. We also only used
one ISAB block in the encoder because using two lead to overfitting in this setting.

C ADDITIONAL EXPERIMENTS

C.1 RUNTIME OF SAB AND ISAB
We measured the runtime of SAB and ISAB on a simple benchmark (Figure 5). We used a single
GPU (Tesla P40) for this experiment. The input data was a constant (zero) tensor of n 3-dimensional
vectors. We report the number of seconds it took to process 10000 sets of each size. The maximum
set size we report for SAB is 2000 because the computation graph of bigger sets could not fit on our
GPU. The specific attention blocks used are ISAB4(64, 8) and SAB(64, 8).

17



Under review as a conference paper at ICLR 2019

Table 15: Detailed architectures used in CelebA meta set anomaly experiments. Conv(d, k, s, r, f)
is a convolutional layer with d output channels, k kernel size, s stride size, r regularization method,
and activation function f . If d is a list, each element in the list is distributed. FC(d, f, r) denotes
a fully-connected layer with d units, activation function f and r regularization method. If d is a
list, each element in the list is distributed. SAB(d, h) denotes the SAB with d units and h heads.
PMA(d, h, nseed) denotes the PMA with d units, h heads and nseed vectors. All MABs used in SAB
and PMA uses FC layers with ReLU activations for rFF layers.

Encoder Decoder

rFF SAB Pooling PMA

Conv([32, 64, 128], 3, 2,Dropout,ReLU) mean PMA4(128, 4)
FC([1024, 512, 256],−,Dropout) FC(128,ReLU,−) SAB(128, 4)

FC(256,−,−) FC(128,ReLU,−) FC(256 · 8,−,−)
FC([128, 128, 128],ReLU,−) SAB(128, 4) FC(128,ReLU,−)
FC([128, 128, 128],ReLU,−) SAB(128, 4) FC(256 · 8,−,−)

FC(128,ReLU,−) SAB(128, 4)
FC(128,−,−) SAB(128, 4)

Table 16: Detailed architectures used in the point cloud classification experiments.

Encoder Decoder

rFF ISAB Pooling PMA

FC(256,ReLU) ISAB(256, 4) max Dropout(0.5)
FC(256,ReLU) ISAB(256, 4) Dropout(0.5) PMA1(256, 4)
FC(256,ReLU) FC(256,ReLU) Dropout(0.5)
FC(256,−) Dropout(0.5) FC(40,−)

FC(40,−)

C.2 NUMBER OF INDUCING POINTS AND PERFORMANCE

We trained ISABn + PMA on the unique character counting task, varying the number of inducing
points n. Accuracies are shown in Figure 6. Accuracies of other architectures (from Table 8) are
shown as horizontal lines for comparison.

Note first that even the accuracy of ISAB1 + PMA surpasses that of both rFF + Pooling and rFF
+ PMA. Also observe that accuracy tends to increase as n increases. We additionally found that
using larger values of n (32, 64) did not increase accuracy by a significant margin. However, ISAB
+ PMA actually outperformed SAB + PMA in the clustering task (see Table 11).

18



Under review as a conference paper at ICLR 2019

Table 17: Additional point cloud experiments using 100 points.

Architecture Accuracy

rFF + Pooling 0.7951 ± 0.0166
rFF + PMA (1) 0.8076 ± 0.0160

ISAB (16) + Pooling 0.8273 ± 0.0159
Set Transformer (16) 0.8454 ± 0.0144

rFF + Pooling + tricks (Zaheer et al., 2017) 0.82 ± 0.02

Table 18: Additional point cloud experiments using 5000 points.

Architecture Accuracy

rFF + Pooling 0.8933 ± 0.0156
rFF + PMA (1) 0.8628 ± 0.0136

ISAB (16) + Pooling 0.9040 ± 0.0173
Set Transformer (16) 0.8779 ± 0.0122

rFF + Pooling + tricks (Zaheer et al., 2017) 0.90 ± 0.003

Figure 5: Runtime of a single SAB/ISAB block on dummy data. x axis is the size of the input set
and y axis is time (seconds). Note that the x-axis is log-scale.

19



Under review as a conference paper at ICLR 2019

Figure 6: Accuracy of ISABn+PMA on the unique character counting task. x-axis is n, the number
of inducing points, and y-axis is accuracy.

20


	Introduction
	Background
	Pooling architecture for sets
	Attention

	Set transformer
	Attention-based set operations
	Encoder
	Decoder
	Analysis

	Experiments
	Toy Problem: Maximum Value Regression
	Counting Unique Characters
	Solving Maximum likelihood probls for mixture of Gaussians
	Meta Set Anomaly Detection
	Point Cloud Classification

	Related Works
	Conclusion
	Appendices
	Proofs
	Experiment Details
	Max Regression
	Counting Unique Characters
	Solving maximum likelihood problems for mixture of Gaussians
	Details for 2D synthetic mixtures of Gaussians experiment
	2D Synthetic Mixtures of Gaussians Experiment on Large-scale Data
	Details for CIFAR-100 meta clustering experiment

	Meta Set Anomaly
	Point Cloud Classification

	Additional Experiments
	Runtime of SAB and ISAB
	Number of Inducing points and performance


