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ABSTRACT

We formulate a new problem at the intersection of semi-supervised learning and
contextual bandits, motivated by several applications including clinical trials and
dialog systems. We demonstrate how contextual bandit and graph convolutional
networks can be adjusted to the new problem formulation. We then take the best
of both approaches to develop multi-GCN embedded contextual bandit. Our algo-
rithms are verified on several real world datasets.

1 INTRODUCTION

We formulate the problem of Online Partially Rewarded (OPR) learning. Our problem is a syn-
thesis of the challenges often considered in the semi-supervised and contextual bandit literature.
Despite a broad range of practical cases, we are not aware of any prior work addressing each of the
corresponding components.

Online: data incrementally collected and systems are required to take an action before they are
allowed to observe any feedback from the environment.

Partially: oftentimes there is no environment feedback available, e.g. a missing label

Rewarded: instead of the true label, we can only hope to observe feedback indicating whether our
prediction is good or bad (1 or 0 reward), the latter case obscuring the true label for learning.

Practical scenarios that fall under the umbrella of OPR range from clinical trials to dialog orches-
tration. In clinical trials, reward is partial, as patients may not return for followup evaluation. When
patients do return, if feedback on their treatment is negative, the best treatment, or true label, remains
unknown. In dialog systems, a user’s query is often directed to a number of domain specific agents
and the best response is returned. If the user provides negative feedback to the returned response,
the best available response is uncertain and moreover, users can also choose to not provide feedback.

In many applications, obtaining labeled data requires a human expert or expensive experimentation,
while unlabeled data may be cheaply collected in abundance. Learning from unlabeled observations
is the key challenge of semi-supervised learning (Chapelle et al., 2009). We note that the problem of
online semi-supervised leaning is rarely considered, with few exceptions (Yver, 2009; Valko et al.,
2012). In our setting, the problem is further complicated by the bandit-like feedback in place of
labels, rendering existing semi-supervised approaches inapplicable. We will however demonstrate
how one of the recent approaches, Graph Convolutional Networks (GCN) (Kipf & Welling, 2016),
can be extended to our setting.

The multi-armed bandit problem provides a solution to the exploration versus exploitation trade-
off while maximizing cumulative reward in an online learning setting. In Linear Upper Confi-
dence Bound (LINUCB) (Li et al., 2010; Chu et al., 2011) and in Contextual Thompson Sampling
(CTS) (Agrawal & Goyal, 2013), the authors assume a linear dependency between the expected
reward of an action and its context. However, these algorithms assume that the bandit can observe
the reward at each iteration. Several authors have considered variations of partial/corrupted rewards
(Bartók et al., 2014; Gajane et al., 2016), but the case of entirely missing rewards has not been
studied to the best of our knowledge.

The rest of the paper is structured as follows. In section 2, we formally define the Online Partially
Rewarded learning setup and present two extensions to GCN to suit our problem setup. Section 3
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presents quantitative evidence of these methods applied to four datasets and analyses the learned
latent space of these methods.

2 METHODS

We first formally define each of the OPR keywords:

Online: at each step t = 1, . . . , T we observe observation xt and seek to predict its label ŷt using xt
and possibly any information we had obtained prior to step t.

Partially: after we make a prediction ŷt, the environment may not provide feedback (we will use -1
to encode its absence) and we must proceed to step t+ 1 without knowledge of the true yt.

Rewarded: suppose there are K possible labels yt ∈ {1, . . . ,K}. The environment at step t will not
provide true yt, but instead a response ht ∈ {−1, 0, 1}, where ht = 0 indicates ŷt 6= yt and ht = 1
indicates ŷt = yt (-1 indicates missing response).

2.1 REWARDED ONLINE GCN

Algorithm 1 GCNUCB

1: Input: W (k)
1 ,W

(k)
2 , Ck, r·,k, y(k)0 ∀k, X0, Â0, α

2: Set y(k) = y
(k)
0 ∀k, X = X0, Â = Â0

3: for t = T0 + 1 to T do
4: Append xt to X , -1 to each of y(1), . . . , y(K)

5: Update Â with new edges using xt
6: Update GCN weights W

(k)
1 ,W

(k)
2 using

X, Â, y(k),∀k
7: Retrieve GCN embeddings g(X)(k)

8: Ak =
∑
t∈Ck g(X)

(k)
t g(X)

(k)
t

>

9: θk = A−1k
∑
t∈Ck rt,kg(X)

(k)
t

10: θk = θk/‖θk‖2
11: µk = θ>k g(X)

(k)
t

12: σk = α

√
g(X)

(k)
t

>
A−1k g(X)

(k)
t

13: Predict ŷt = argmaxk(µk + σk) and observe ht
14: if ht = 1 then
15: ∀k, y(k)t = 1 if ŷt = k , 0 otherwise
16: Append t to each Ck and 1 to r·,k if ŷt = k

and 0 otherwise
17: else if ht = 0 (learning from mistakes) then
18: y

(ŷt)
t = 0. Append t to Cŷt and 0 to r·,ŷt

19: else if ht = −1 (imputing) then
20: Append t to Cŷt , output of ŷt-th GCN to r·,ŷt

Rewarded Online GCN (ROGCN) is a nat-
ural extension of GCN, adapted to the
online, partially rewarded setting along
with a potential absence of true graph in-
formation. We assume availability of a
small portion of data and labels (size T0)
available at the start, X0 ∈ RT0×D and
y0 ∈ {−1, 1, . . . ,K}T0 . When there
is no graph available we can construct a
k-NN graph (k is a parameter chosen a
priori) based on similarities between ob-
servations - this approach is common in
convolutional neural networks on feature
graphs (Henaff et al., 2015; Defferrard
et al., 2016) and we adopt it here for
graph construction between observations
X0 to obtain graph adjacency A0. Us-
ing X0, y0, A0, we can train GCN with L
hidden units (a parameter chosen a priori)
to obtain initial estimates of hidden layer
weightsW1 ∈ RD×L and softmax weights
W2 ∈ RL×K . Next we start to observe
the stream of data — as new observation
xt arrives, we add it to the graph and data
matrix, and append -1 (missing label) to y.
Then we run additional training steps of
GCN and output a prediction to obtain en-
vironment response ht ∈ {−1, 0, 1}. Here
1 indicates correct prediction, hence we
include it to the set of available labels for future predictions; 0 indicates wrong prediction and -
1 an absence of a response, in the later two cases we continue to treat the label of xt as missing.

2.2 MULTI-GCN EMBEDDED UCB

ROGCN is unable to learn from missclassified observations and has to treat them as missing labels.
The bandit perspective allows one to learn from missclassfied observations, i.e. when the environ-
ment response ht = 0, and the neural network perspective facilitates learning better features such
that linear classifier is sufficient. This observation motivates us to develop a more sophisticated syn-
thesis of GCN and LINUCB approaches, where we can combine advantages of both perspectives.
Notice that if K = 2, a ht = 0 environment response identifies the correct class, hence the OPR
reduces to online semi-supervised learning for which GCN can be trivially adjusted using ideas from
ROGCN. To take advantage of this for K > 2, we propose to use a suite of class specific GCNs,
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where the hidden layer representation from the k-th class GCN, i.e. g(X)(k) = Â ReLU(ÂXW
(k)
1 )

and g(X)
(k)
t denotes the embedding of observation xt, is used as context by the contextutal bandit

for the predictions of the k-th arm. Based on the environment response to the prediction, we up-
date the labels and the reward information to reflect a correct, incorrect, or a missing environment
response. The reward is imputed from the corresponding GCN when the response is missing.

As we add new observation xt+1 to the graph and update weights of the GCNs, the embedding
of the previous observations x1, . . . , xt evolves. Therefore instead of dynamically updating bandit
parameters, we maintain a set of indices for each of the arms Ck = {t : ŷt = k or ht = 1} and use
observations and responses from only these indices to update the corresponding bandit parameters.

Similar to ROGCN, we can use a small amount of data X0 and labels y0 converted to binary labels
y
(k)
0 ∈ {−1, 0, 1}T0 (as before -1 encodes missing label) for each class k to initialize GCNs weights
W

(k)
1 ,W

(k)
2 for k = 1, . . . ,K. We present the GCNUCB in Algorithm 1, where rt,k ∈ [0, 1] denotes

the reward observed or imputed at step t for arm k as described in the algorithm.

3 EXPERIMENTS

In this section we compare baseline method LINUCB which ignores the data with missing rewards to
ROGCN and GCNUCB. We consider four different datasets: CNAE-9 and Internet Advertisements
from the the UCI Machine Learning Repository1, Cora 2, and Warfarin (Sharabiani et al., 2015).
Cora is naturally a graph structured data which can be utilized by ROGCN and GCNUCB. For other
datasets we use a 5-NN graph built online from the available data as follows.

Suppose at step t we have observed data points xi ∈ RD for i = 1, . . . , t. Weights of the similarity
graph computed as follows: Aij = exp

(
‖xi−xj‖22

σ2

)
. As it was done by Defferrard et al. (2016)

we set σ = 1
t

∑t
i=1 d(i, ik), where d(i, ik) denotes L2 distance between observation i and its k-th

nearest neighbour indexed ik. The k-NN adjacency A is obtained by setting all but k (excluding
itself) corresponding closest entries of Aij , i, j = 1, . . . , t to 0 and symmetrizing. Then, as in Kipf
& Welling (2016), we add self connections and row normalize Â = (D + IT )−1/2(A + IT )(D +

IT )−1/2, where Dii =
∑T
j=1Aij is the diagonal matrix of node degrees.

For pre-processing we discarded features with large magnitudes (3 features in Internet Advertise-
ments and 2 features in Warfarin) and row normalized all observations to have unit l1 norm. For
all the methods that use GCN, we use 16 hidden units for GCN, and use Adam optimizer with a
learning rate of 0.01, and regularization strength of 5e-4, along with a dropout of 0.5.

Table 1: Total average accuracy
25% Missing labels

CNAE-9 Internet Ads Warfarin Cora

LINUCB 67.57 ± 2.90 90.08 ± 0.64 53.70 ± 0.77 38.06 ± 3.45
ROGCN 64.73 ± 2.67 88.22 ± 1.73 47.72 ± 9.40 48.57 ± 7.75
GCNUCB 77.10 ± 1.89 93.14 ± 0.39 55.19 ± 3.40 66.01 ± 1.35

75% Missing labels
CNAE-9 Internet Ads Warfarin Cora

LINUCB 61.67 ± 3.16 86.66 ± 0.99 52.99 ± 2.61 33.92 ± 0.04
ROGCN 65.67 ± 5.28 88.31 ± 1.81 47.48 ± 5.41 49.63 ± 5.06
GCNUCB 70.82 ± 2.33 91.45 ± 0.89 53.31 ± 2.98 58.29 ± 2.80

To simulate the OPR setting,
we randomly permute the or-
der of the observations in a
dataset and remove labels for
25% and 75% of the observa-
tions chosen at random. For
all methods we consider ini-
tial data X0 and y0 to repre-
sent a single observation per
class chosen randomly (T0 =
K). At a step t = T0 +
1, . . . , T each algorithm is
given a feature vector xt and is ought to make a prediction ŷt. The environment response
ht ∈ {−1, 0, 1} is then observed and algorithms moves onto step t + 1. To compare performance
of different algorithms at each step t we compare ŷt to true label yt available from the dataset (but
concealed from the algorithms themselves) to evaluate running accuracy.

For GCNUCB we use baseline LINUCB for first 300 steps, and for both we use exploration-
exploitation trade-off parameter α = 0.25. Results are summarized in Table 1. Since ordering
of the data can affect the problem difficulty, we performed 10 data resampling for each setting to
obtain error margins. GCNUCB outperforms the LINUCB baseline and ROGCN in all of the ex-

1https://archive.ics.uci.edu/ml/datasets.html
2https://people.cs.umass.edu/ mccallum/data.html
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periments, validating our intuition that a method synthesizing the exploration capabilities of bandits
coupled with the effective feature representation power of neural networks is the best solution to
the OPR problem. We see the greatest increase in accuracy between GCNUCB and the alternative
approaches on the Cora dataset which has a natural adjacency matrix. This suggests that GCNUCB
has a particular edge in OPR applications with graph structure. Such problems are ubiquitous. Con-
sider our motivating example of dialog systems - for dialog systems deployed in social network or
workplace environments, there exists graph structure between users, and user information can be
considered alongside queries for personalization of responses.

Visualizing GCNUCB context space. Recall that the context for each arm of GC-
NUCB is provided by the corresponding binary GCN hidden layer. The motivation for
using binary GCNs to provide the context to LINUCB is the ability of GCN to con-
struct more powerful features using graph convolution and neural networks expressiveness.

Figure 1: t-SNE embeddings
of context and bandit weight
vectors for LINUCB

Figure 2: t-SNE embeddings
of context and bandit weight
vectors for GCNUCB

To see how this procedure
improves upon the baseline
LINUCB utilizing input fea-
tures as context, we project
the context and the corre-
sponding bandit weight vec-
tors, θ1, . . . , θK , for both
LINUCB and GCNUCB to
a 2-dimensional space using
t-SNE (Maaten & Hinton,
2008). In this experiment
we analyzed CNAE-9 dataset
with 25% missing labels. Re-
call that the bandit makes
prediction based on the upper
confidence bound of the re-
gret: argmaxk(θ

>
k xk,t + σk)

and that xk,t = xt ∀k =

1, . . . ,K for LINUCB and xk,t = g(X)
(k)
t for GCNUCB. To better visualize the quality of the

learned weight vectors, for this experiment we set α = 0 and hence σk = 0 resulting in a greedy
bandit, always selecting an arm maximizing expected reward θ>k xt,k. In this case, a good combina-
tion of contexts and weight vectors is the one where observations belonging to the same class are
well clustered and corresponding bandit weight vector is directed at this cluster.

For LINUCB (Figure 1, 68% accuracy) the bandit weight vectors mostly point in the direction of
their respective context clusters, however the clusters themselves are scattered, thereby inhibiting
the capability of LINUCB to effectively distinguish between different arms given the context. In the
case of GCNUCB (Figure 2, 77% accuracy) the context learned by each GCN is tightly clustered into
two distinguished regions - one with context for corresponding label and binary GCN when it is the
correct label (points with bolded colors), and the other region with context for the label and GCN
when a different label is correct (points with faded colors). The tighter clustered contexts allow
GCNUCB to effectively distinguish between different arms by assigning higher expected reward
to contexts from the correct binary GCN than others, thereby resulting in better performance of
GCNUCB than other methods.

4 CONCLUSION AND DISCUSSION

We have defined and studied the problem of Online Partially Rewarded (OPR) learning, which
combines challenges from semi-supervised learning and multi-armed contextual bandits. Our main
contribution, GCNUCB algorithm, is the efficient synthesis of the strengths of the two approaches.
Our experiments show that GCNUCB, which combines feature extraction capability of the graph
convolution neural networks and natural ability of contextual bandits to handle online learning with
reward (instead of labels), is the best approach for OPR across a LINUCB baseline and our proposed
GCN extension, ROGCN. In our current implementation of GCNUCB we use all of the data seen
so far to update parameters. This may not be a permissible choice for large data sizes, however
some of the recent work (Hamilton et al., 2017; Chen et al., 2018) has already proposed variants of
the mini-batch GCN training, enabling us to make GCNUCB applicable to larger datasets in future
work. Theoretical studies of our algorithms will also follow in future work.
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