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ABSTRACT

Machine learning algorithms have been increasingly deployed in critical auto-
mated decision-making systems that directly affect human lives. When these algo-
rithms are solely trained to minimize the training/test error, they could suffer from
systematic discrimination against individuals based on their sensitive attributes,
such as gender or race. Recently, there has been a surge in machine learning
society to develop algorithms for fair machine learning. In particular, several
adversarial learning procedures have been proposed to impose fairness. Unfortu-
nately, these algorithms either can only impose fairness up to linear dependence
between the variables, or they lack computational convergence guarantees. In
this paper, we use Rényi correlation as a measure of fairness of machine learning
models and develop a general training framework to impose fairness. In particu-
lar, we propose a min-max formulation which balances the accuracy and fairness
when solved to optimality. For the case of discrete sensitive attributes, we sug-
gest an iterative algorithm with theoretical convergence guarantee for solving the
proposed min-max problem. Our algorithm and analysis are then specialized to
fair classification and fair clustering problems. To demonstrate the performance of
the proposed Rényi fair inference framework in practice, we compare it with well-
known existing methods on several benchmark datasets. Experiments indicate that
the proposed method has favorable empirical performance against state-of-the-art
approaches.

1 INTRODUCTION

As we experience the widespread adoption of machine learning models in automated decision-
making, we have witnessed increased reports of instances in which the employed model results
in discrimination against certain groups of individuals – see Datta et al. (2015); Sweeney (2013);
Bolukbasi et al. (2016); Angwin et al. (2016). In this context, discrimination is defined as the un-
wanted distinction against individuals based on their membership to a specific group. For instance,
Angwin et al. (2016) present an example of a computer-based risk assessment model for recidivism,
which is biased against certain ethnicities. In another example, Datta et al. (2015) demonstrate
gender discrimination in online advertisements for web pages associated with employment. These
observations motivated researchers to pay special attention to fairness in machine learning in recent
years; see Calmon et al. (2017); Feldman et al. (2015); Hardt et al. (2016); Zhang et al. (2018); Xu
et al. (2018); Dwork et al. (2018); Fish et al. (2016); Woodworth et al. (2017); Zafar et al. (2017;
2015); Pérez-Suay et al. (2017); Bechavod & Ligett (2017); Liao et al. (2019).

In addition to its ethical standpoint, equal treatment of different groups is legally required by many
countries Act. (1964). Anti-discrimination laws imposed by many countries evaluate fairness by
notions such as disparate treatment and disparate impact. We say a decision-making process suf-
fers from disparate treatment if its decisions discriminate against individuals of a certain protected
group based on their sensitive/protected attribute information. On the other hand, we say it suffers
from disparate impact if the decisions adversely affect a protected group of individuals with cer-
tain sensitive attribute – see Zafar et al. (2015). In simpler words, disparate treatment is intentional
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discrimination against a protected group, while the disparate impact is an unintentional dispropor-
tionate outcome that hurts a protected group. To quantify fairness, several notions of fairness have
been proposed in the recent decade Calders et al. (2009); Hardt et al. (2016). Examples of these
notions include demographic parity, equalized odds, and equalized opportunity.

Demographic parity condition requires that the model output (e.g., assigned label) be independent of
sensitive attributes. This definition might not be desirable when the base ground-truth outcome of the
two groups are completely different. This shortcoming motivated the use of equalized odds notion
Hardt et al. (2016) which requires that the model output is conditionally independent of sensitive
attributes given the ground-truth label. Finally, equalized opportunity requires having equal false
positive or false negative rates across protected groups.

Machine learning approaches for imposing fairness can be broadly classified into three main
categories: pre-processing methods, post-processing methods, and in-processing methods. Pre-
processing methods modify the training data to remove discriminatory information before passing
data to the decision-making process Calders et al. (2009); Feldman et al. (2015); Kamiran & Calders
(2010; 2009; 2012); Dwork et al. (2012); Calmon et al. (2017); Ruggieri (2014). These methods map
the training data to a transformed space in which the dependencies between the class label and the
sensitive attributes are removed Edwards & Storkey (2015); Hardt et al. (2016); Xu et al. (2018);
Sattigeri et al. (2018); Raff & Sylvester (2018); Madras et al. (2018); Zemel et al. (2013); Louizos
et al. (2015). On the other hand, post-processing methods adjust the output of a trained classifier
to remove discrimination while maintaining high classification accuracy Fish et al. (2016); Dwork
et al. (2018); Woodworth et al. (2017). The third category is the in-process approach that enforces
fairness by either introducing constraints or adding a regularization term to the training procedure
Zafar et al. (2017; 2015); Pérez-Suay et al. (2017); Bechavod & Ligett (2017); Berk et al. (2017);
Agarwal et al. (2018); Celis et al. (2019); Donini et al. (2018); Rezaei et al. (2019); Kamishima et al.
(2011); Zhang et al. (2018); Bechavod & Ligett (2017); Kearns et al. (2017); Menon & Williamson
(2018); Alabi et al. (2018). The Rényi fair inference framework proposed in this paper also belongs
to this in-process category.

Among in-processing methods, many add a regularization term or constraints to promote statistical
independence between the classifier output and the sensitive attributes. To do that, various inde-
pendence proxies such as mutual information Kamishima et al. (2011), false positive/negative rates
Bechavod & Ligett (2017), equalized odds Donini et al. (2018), Pearson correlation coefficient Zafar
et al. (2015; 2017), Hilbert Schmidt independence criterion (HSIC) Pérez-Suay et al. (2017) were
used. As will be discussed in Section 2, many of these methods cannot capture nonlinear depen-
dence between random variables and/or lead to computationally expensive algorithms. Motivated
by these limitations, we propose to use Rényi correlation to impose several known group fairness
measures. Rényi correlation captures nonlinear dependence between random variables. Moreover,
Rényi correlation is a normalized measure and can be computed efficiently in certain instances.

Using Rényi correlation coefficient as a regularization term, we propose a min-max optimization
framework for fair statistical inference. In particular, we specialize our framework to both classi-
fication and clustering tasks. We show that when the sensitive attribute(s) is discrete (e.g., gender
and/or race), the learning task can be efficiently solved to optimality, using a simple gradient ascent-
descent approach. We summarize our contributions next:

• We introduce Rényi correlation as a tool to impose several notions of group fairness. Unlike
Pearson correlation and HSIC, which only capture linear dependence, Rényi correlation captures
any statistical dependence between random variables as zero Rényi correlation implies indepen-
dence. Moreover, it is more computationally efficient than the mutual information regularizers
approximated by neural networks.

• Using Rényi correlation as a regularization term in training, we propose a min-max formulation
for fair statistical inference. Unlike methods that use an adversarial neural network to impose
fairness, we show that in particular instances such as binary classification, or discrete sensitive
variable(s), it suffices to use a simple quadratic function as the adversarial objective. This obser-
vation helped us to develop a simple multi-step gradient ascent descent algorithm for fair inference
and guarantee its theoretical convergence to first-order stationarity.

• Our Rényi correlation framework leads to a natural fair classification method and a novel fair
K-means clustering algorithm. For K-means clustering problem, we show that sufficiently
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large regularization coefficient yields perfect fairness under disparate impact doctrine. Unlike
the two-phase methods proposed in Chierichetti et al. (2017); Backurs et al. (2019); Rösner &
Schmidt (2018); Bercea et al. (2018); Schmidt et al. (2018), our method does not require any pre-
processing step, is scalable, and allows for regulating the trade-off between the clustering quality
and fairness.

2 RÉNYI CORRELATION

The most widely used notions for group fairness in machine learning are demographic parity, equal-
ized odds, and equalized opportunities. These notions require (conditional) independence between a
certain model output and a sensitive attribute. This independence is typically imposed by adding fair-
ness constraints or regularization terms to the training objective function. For instance, Kamishima
et al. (2011) added a regularization term based on mutual information. Since estimating mutual in-
formation between the model output and sensitive variables during training is not computationally
tractable, Kamishima et al. (2011) approximates the probability density functions using a logistic
regression model. To have a tighter estimation, Song et al. (2019) used an adversarial approach
that estimates the joint probability density function using a parameterized neural network. Although
these works start from a well-justified objective function, they end up solving approximations of the
objective function due to computational barriers. Thus, no fairness guarantee is provided even when
the resulting optimization problems are solved to global optimality in the large sample size limit.

A more tractable measure of dependence between two random variables is the Pearson correla-
tion. The Pearson correlation coefficient between the two random variables A and B is defined
as ρP (A,B) = Cov(A,B)√

Var(A)
√

Var(B)
, where Cov(·, ·) denotes the covariance and Var(·) denotes the

variance. The Pearson correlation coefficient is used in Zafar et al. (2015) to decorrelate the binary
sensitive attribute and the decision boundary of the classifier. A major drawback of Pearson corre-
lation is that it only captures linear dependencies between random variables. In fact, two random
variables A and B may have strong dependence but have zero Pearson correlation. This property
raises concerns about the use of the Pearson correlation for imposing fairness. Similar to the Pear-
son correlation, the HSIC measure proposed in Pérez-Suay et al. (2017) may be zero even if the two
variables have strong dependencies. While universal Kernels can be used to alleviate this issue, they
could arrive at the expense of computational intractability. In addition, HSIC is not a normalized
dependence measure Gretton et al. (2005b;a) which raises concerns about the appropriateness of
using it as a measure of dependence.

In this paper, we suggest to use Hirschfeld-Gebelein-Rényi correlation Rényi (1959); Hirschfeld
(1935); Gebelein (1941) as a dependence measure between random variables to impose fairness.
Rényi correlation, which is also known as maximal correlation, between two random variables A
and B is defined as

ρR(A,B) = sup
f,g

E[f(A)g(B)] s.t. E[f(A)] = E[g(B)] = 0, E[f2(A)] = E[g2(B)] = 1,

(1)
where the supremum is over the set of measurable functions f(·) and g(·) satisfying the constraints.
Unlike HSIC and Pearson correlation, Rényi correlation captures higher-order dependencies be-
tween random variables. Rényi correlation between two random variables is zero if and only if the
random variables are independent, and it is one if there is a strict dependence between the variables
Rényi (1959). These favorable statistical properties of ρR do not come at the price of computational
intractability as opposed to other measures such as mutual information. In fact, as we will discuss in
Section 3, ρR can be used in a computationally tractable framework to impose several group fairness
notions.

3 A GENERAL MIN-MAX FRAMEWORK FOR RÉNYI FAIR INFERENCE

Consider a learning task over a given random variable Z. Our goal is to minimize the average
inference loss L(·) where our loss function is parameterized with parameter θ. To find the optimal
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value of parameter θ with the smallest average loss, we solve the following optimization problem
min
θ

E
[
L(θ , Z)

]
,

where the expectation is taken over Z and possible regularization terms are absorbed in the loss
function L(·). Notice that this formulation is quite general and can include regression, classification,
clustering, or dimensionality reduction tasks as special cases. As an example, in the case of linear
regression Z = (X, Y ) and L(θ , Z) = (Y − θTX)2 where X is a random vector and Y is the
random target variable.

Assume that, in addition to minimizing the average loss, we are interested in bringing fairness to
our learning task. Let S be a sensitive attribute (such as age or gender) and Ŷθ(Z) be a certain
output of our inference task using parameter θ. Assume we are interested in removing/reducing
the dependence between the random variable Ŷθ(Z) and the sensitive attribute S. To balance the
goodness-of-fit and fairness, one can solve the following optimization problem

min
θ

E
[
L(θ,Z)

]
+ λ ρ2R

(
Ŷθ(Z), S

)
, (2)

where λ is a positive scalar balancing fairness and goodness-of-fit. Notice that the above framework
is quite general. For example, Ŷθ may be the assigned label in a classification task, the assigned
cluster in a clustering task, or the output of a regressor in a regression task.

Using the definition of Rényi correlation, we can rewrite optimization problem in equation 2 as

min
θ

sup
f,g

E
[
L(θ,Z)

]
+ λ

(
E
[
f(Ŷθ(Z)) g(S)

])2
,

s.t. E
[
f(Ŷθ(Z))

]
= E

[
g(S)

]
= 0, E

[
f2(Ŷθ(Z))

]
= E

[
g2(S)

]
= 1,

(3)

where the supremum is taken over the set of measurable functions. The next natural question to ask
is whether this optimization problem can be efficiently solved in practice. This question motivates
the discussions of the following subsection.

3.1 COMPUTING RÉNYI CORRELATION

The objective function in equation 3 may be non-convex in θ in general. Several algorithms have
been recently proposed for solving such non-convex min-max optimization problems Sanjabi et al.
(2018); Nouiehed et al. (2019); Jin et al. (2019). Most of these methods require solving the inner
maximization problem to (approximate) global optimality. More precisely, we need to be able to
solve the optimization problem described in equation 1. While popular heuristic approaches such
as parameterizing the functions f and g with neural networks can be used to solve equation 1, we
focus on solving this problem in a more rigorous manner. In particular, we narrow down our focus
to the discrete random variable case. This case holds for many practical sensitive attributes among
which are the gender and race. In what follows, we show that in this case, equation 1 can be solved
“efficiently” to global optimality.
Theorem 3.1 (Witsenhausen (1975)). Let a ∈ {a1, . . . , ac} and b ∈ {b1, . . . , bd} be two discrete
random variables. Then the Rényi coefficient ρR(a, b) is equal to the second largest singular value
of the matrix Q = [qij ]i,j ∈ Rc×d, where qij =

P(a=ai,b=bj)√
P(a=ai)P(b=bj)

.

The above theorem provides a computationally tractable approach for computing the Rényi coeffi-
cient. This computation could be further simplified when one of the random variables is binary.
Theorem 3.2. Suppose that a ∈ {1, . . . , c} is a discrete random variable and b ∈ {0, 1} is a
binary random variable. Let ã be a one-hot encoding of a, i.e., ã = ei if a = i, where ei =
(0, . . . , 0, 1, 0 . . . , 0) is the i-th standard unit vector. Let b̃ = b− 1/2. Then,

ρR(a, b) =

√
1− γ

P(b = 1)P(b = 0)
,

where γ , minw∈Rc E
[
(wT ã− b̃)2

]
. Equivalently,

γ , min
w∈Rc

c∑
i=1

w2
i P(a = i)−

c∑
i=1

wi
(
P(a = i, b = 1)− P(a = i, b = 0)

)
+ 1/4.
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Proof. The proof is relegated to the appendix.

Let us specialize our framework to classification and clustering problems in the next two sections.

4 RÉNYI FAIR CLASSIFICATION

In a typical (multi-class) classification problem, we are given samples from a random variable Z ,
(X, Y ) and the goal is to predict Y from X. Here X ∈ Rd is the input feature vector, and Y ∈
Y , {1, . . . , c} is the class label. Let Ŷθ be the output of our classifier taking different values in the
set {1, . . . , c}. Assume further that

P(Ŷθ = i | X) = Fi(θ,X), ∀i = 1, . . . , c.

Here θ is that parameter of the classifier that needs to be tuned. For example, F(θ,X) =
(F1(θ,X), . . . ,Fc(θ,X)) could represent the output of a neural network after softmax layer; the
soft probability label assigned by a logistic regression model; or the 0-1 probability values obtained
by a deterministic classifier. In order to find the optimal parameter θ, we need to solve the optimiza-
tion problem

min
θ

E
[
L(F

(
θ,X

)
, Y )

]
, (4)

where L is the loss function and the expectation is taken over the random variable Z = (X, Y ). Let
S be the sensitive attribute. We say a model satisfies demographic parity if the assigned label Ŷ is
independent of the sensitive attribute S, see Dwork et al. (2012). Using our regularization frame-
work, to find the optimal parameter θ balancing classification accuracy and fairness objective, we
need to solve

min
θ

E
[
L
(
F(θ,X), Y

)]
+ λρ2R

(
Ŷθ, S

)
. (5)

4.1 GENERAL DISCRETE CASE

When S ∈ {s1, . . . , sd} is discrete, Theorem 3.1 implies that equation 5 can be rewritten as

min
θ

max
v⊥v1, ‖v‖2≤1

(
fD(θ,v) , E

[
L
(
F(θ,X),Y

)]
+ λvTQT

θQθv

)
. (6)

Here v1 =
[√

P(S = s1), . . . ,
√

P(S = sd)
]
∈ Rd is the right singular vector corresponding to

the largest singular value of Qθ = [qij ]i,j ∈ Rc×d, with qij ,
P(Ŷθ = i |S = sj)P(S = sj)√

P(Ŷθ = i)P(S = sj)
.

Given training data (xn, yn)Nn=1 sampled from the random variable Z = (X, Y ), we can estimate

the entries of the matrix Qθ using P
(
Ŷθ = i

)
= E[P(Ŷθ = i | X)] ≈ 1

N

∑N
n=1 Fi(θ,xn),

and P
(
Ŷθ = i |S = sj

)
≈ 1

|Xj |
∑

x∈Xj
Fi(θ,x), where Xj is the set of samples with sensitive

attribute sj . Motivated by the algorithm proposed in Jin et al. (2019), we present Algorithm 1 for
solving equation 6.

Algorithm 1 Rényi Fair Classifier for Discrete Sensitive Attributes
1: Input: θ0 ∈ Θ, step-size η.
2: for t = 0, 1, . . . , T do
3: Set vt+1 ← maxv∈⊥v1,‖v‖≤1 fD(θt,v) by finding the second singular vector of Qθt

4: Set θt+1 ← θt − η∇θfD(θt,vt+1)
5: end for

To understand the convergence behavior of Algorithm 1 for the nonconvex optimization prob-
lem equation 6, we need to first define an approximate stationary solution. Let us define g(θ) =
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maxv∈⊥v1,‖v‖≤1 f(θ,v). Assume further that f(·,v) has L1-Lipschitz gradient, then g(·) is L1-
weakly convex; for more details check Rafique et al. (2018). For such weakly convex function, we
say θ∗ is a ε-stationary solution if the gradient of its Moreau envelop is smaller than epsilon, i.e.,

‖∇gβ(·)‖ ≤ ε with gβ(θ) , minθ′ g(θ′) +
1

2β
‖θ− θ′‖ and β <

1

2L1
is a given constant. The fol-

lowing theorem demonstrates the convergence of Algorithm 1. This theorem is a direct consequence
of Theorem 27 in Jin et al. (2019).

Theorem 4.1. Suppose that f is L0-Lipschitz and L1-gradient Lipschitz. Then Algorithm 1 com-
putes an ε-stationary solution of the objective function in equation 6 in O(ε−4) iterations.

4.2 BINARY CASE

When S is binary, we can obtain a more efficient algorithm compared to Algorithm 1 by exploiting
Theorem 3.2. Particularly, by a simple scaling of λ and ignoring the constant terms, the optimization
problem in equation 5 can be written as

min
θ

max
w

f(θ,v) , E
[
L
(
F(θ,X), Y

)]
− λ
[∑c

i=1 w
2
i P
(
Ŷθ = i

)
−
∑c
i=1 wi

(
P
(
Ŷθ = i, S = 1

)
− P

(
Ŷθ = i, S = 0

))]
.

(7)

Defining S̃ = 2S − 1, the above problem can be rewritten as

min
θ

max
w

E
[
L(F(θ,X), Y )− λ

c∑
i=1

w2
iFi(θ,X) + λ

c∑
i=1

wiS̃Fi(θ,X)
]
.

Thus, given training data (xn, yn)Nn=1 sampled from the random variable Z = (X, Y ), we solve

min
θ

max
w

[
fB(θ,w) ,

1

N

N∑
n=1

[
L
(
F(θ,xn), yn

)
− λ

c∑
i=1

w2
iFi(θ,xn) + λ

c∑
i=1

wis̃nFi(θ,xn)
]]
.

(8)
Notice that the maximization problem in equation 8 is concave, separable, and has a closed-form
solution. We propose Algorithm 2 for solving equation 8.

Algorithm 2 Rényi Fair Classifier for Binary Sensitive Attributes
1: Input: θ0 ∈ Θ, step-size η.
2: for t = 0, 1, . . . , T do
3: Set wt+1 ← arg maxw fB(θt,w), i.e., set wt+1

i ←
∑N

n=1 s̃nFi(θ
t,xn)

2
∑N

n=1 Fi(θt,xn)
, ∀i = 1, . . . , c

4: Set θt+1 ← θt − η∇θfB(θt,wt+1)
5: end for

While the result in Theorem 4.1 can be applied to Algorithm 2, under the following assumption, we
can show a superior convergence rate.

Assumption 4.1. We assume that there exists a constant scalar µ > 0 such that
∑N
n=1 Fi(θ,xn) ≥

µ, ∀i = 1, . . . , C.

This assumption is reasonable when soft-max is used. This is because we can always assume θ lies
in a compact set in practice, and hence the output of the softmax layer cannot be arbitrarily small.

Theorem 4.2. Suppose that f is L1-gradient Lipschitz. Then Algorithm 2 computes an ε-stationary
solution of the objective function in equation 8 in O(ε−2) iterations.

Proof. The proof is relegated to the appendix.

Notice that this convergence rate is clearly a faster rate than the one obtained in Theorem 4.1. More-
over, this rate of convergence matches the oracle lower bound for general non-convex optimization;

6



Published as a conference paper at ICLR 2020

see Carmon et al. (2019). This observation shows that the computational overhead of imposing fair-
ness is negligible as compared to solving the original non-convex training problem without imposing
fairness.

Remark 4.3 (Extension to multiple sensitive attributes). Our discrete Rényi classification frame-
work can naturally be extended to the case of multiple discrete sensitivity attributes by concatenat-
ing all attributes into one. For instance, when we have two sensitivity attribute S1 ∈ {0, 1} and
S2 ∈ {0, 1}, we can consider them as a single attribute S ∈ {0, 1, 2, 3} corresponding to the four
combinations of {(S1 = 0, S2 = 0), (S1 = 0, S2 = 1), (S1 = 0, S2 = 0), (S1 = 1, S2 = 1)}.
Remark 4.4 (Extension to other notions of fairness). Our proposed framework imposes the demo-
graphic parity notion of group fairness. However, other notions of group fairness may be represented
by (conditional) independence conditions. For such cases, we can again apply our framework. For
example, we say a predictor Ŷθ satisfies equalized odds condition if the predictor Ŷθ is conditionally
independent of the sensitive attribute S given the true label Y . Similar to formulation equation 5,
the equalized odds fairness notion can be achieved by the following min-max problem

min
θ

E
[
L
(
F(θ,X), Y

)]
+ λ

∑
y∈Y

ρ2R

(
Ŷθ, S

∣∣ Y = y
)
. (9)

5 RÉNYI FAIR CLUSTERING

In this section, we apply the proposed fair Rényi framework to the widespread K-means clustering
problem. Given a set of data points x1, . . . ,xN ∈ RN×d, in the K-means problem, we seek to
partition them into K clusters such that the following objective function is minimized:

min
A,C

N∑
n=1

K∑
k=1

akn‖xn − ck‖2 s.t.

K∑
k=1

akn = 1, ∀n, akn ∈ {0, 1}, ∀k, n (10)

where ck is the centroid of cluster k; the variable akn = 1 if data point xn belongs to cluster k
and it is zero otherwise; A = [akn]k,n and C = [c1, . . . , cK ] represent the association matrix and
the cluster centroids respectively. Now, suppose we have an additional sensitive attribute S for each
one of the given data points. In order to have a fair clustering under disparate impact doctrine, we
need to make the random variable an = [a1n, . . . , aKn] independent of S. In other words, we need
to make the clustering assignment independent of the sensitive attribute S. Using our framework
in equation 2, we can easily add a regularizer to this problem to impose fairness under disparate
impact doctrine. In particular, for binary sensitive attribute S, using Theorem 3.2, and absorbing the
constants into the hyper-parameter λ, we need to solve

min
A,C

max
w∈RK

N∑
n=1

K∑
k=1

akn‖xn − ck‖2 − λ
N∑
n=1

(aTnw − sn)2

s.t.
∑K
k=1 akn = 1, ∀n, akn ∈ {0, 1}, ∀ k, n.

(11)

where an = (a1n, . . . , aKn)T encodes the clustering information of data point xn and sn is the
sensitive attribute for data point n.

Fixing the assignment matrix A, and cluster centers C, the vector w can be updated in closed-form.
More specifically, wk at each iteration equals to the current proportion of the privileged group in
the k-th cluster. Combining this idea with the update rules of assignments and cluster centers in the
standard K-means algorithm, we propose Algorithm 3, which is a fair K-means algorithm under
disparate impact doctrine. To illustrate the behavior of the algorithm, a toy example is presented in
Appendix C.

The main difference between this algorithm and the popular K-means algorithm is in Step 6 of
Algorithm 3. This step is a result of optimizing equation 11 over A when both C and w are fixed.
When λ = 0, this step would be identical to the update of cluster assignment variables in K-
means. However, when λ > 0, Step 6 considers fairness when computing the distance considered in
updating the cluster assignments.
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Algorithm 3 Rényi Fair K-means
1: Input: X = {x1, . . . ,xN} and S = {s1, . . . , sN}
2: Initialize: Random assignment A s.t.

∑K
k=1 akn = 1∀n; and akn ∈ {0, 1}. Set Aprev = 0.

3: while Aprev 6= A do
4: Set Aprev = A
5: for n = 1, . . . , N do . Update A
6: k∗ = arg mink ‖xn − ck‖2 − λ(wk − sn)2

7: Set ak∗n = 1 and akn = 0 for all k 6= k∗

8: Set wk =

∑N
n=1 snakn∑N
n=1 akn

, ∀k = 1, . . . ,K. . Update w

9: end for

10: Set ck =

∑N
n=1 aknxn∑N
n=1 akn

, ∀k = 1, . . . ,K. . Update c

11: end while

Remark 5.1. Note that in Algorithm 3, the parameter w is being updated after each assignment of
a point to a cluster. More specifically, for every iteration of the algorithm, w is updated N times. If
we otherwise update w after completely updating the matrix A, then with a simple counterexample
we can show that the algorithm can get stuck; see more details in Appendix C.1.

6 NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the proposed Rényi fair classifier and Rényi fair k-
means algorithm on three standard datasets: Bank, German Credit, and Adult datasets. The detailed
description of these datasets is available in the supplementary material.

We evaluate the performance of our proposed Rényi classifier under both demographic parity, and
equality of opportunity notions. We have implemented a logistic regression classifier regular-
ized by Rényi correlation on Adult dataset considering gender as the sensitive feature. To mea-
sure the equality of opportunity we use the Equality of Opportunity (EO) violation, defined as
EO Violation =

∣∣P(Ŷ = 1|S = 1, Y = 1) − P(Ŷ = 1|S = 0, Y = 1)
∣∣, where Ŷ and Y

represent the predicted, and true labels respectively. Smaller EO violation corresponds to a more
fair solution. Figure 1, parts (a) and (b) demonstrate that by increasing λ, the Rényi regularizer co-
efficient decreases implying a more fair classifier at the price of a higher training and testing errors.
Figure 1, part (c) compares the fair Rényi logistic regression model to several existing methods in
the literature Hardt et al. (2016); Zafar et al. (2015); Rezaei et al. (2019); Donini et al. (2018). As we
can see in plot (c), the Rényi classifier outperforms other methods in terms of accuracy for a given
level of EO violation.

The better performance of the Rényi fair classifier compared to the baselines could be attributed
to the following. Hardt et al. (2016) is a post-processing approach where the output of the classi-
fication is modified to promote a fair prediction. This modification is done without changing the
classification process. Clearly, this approach limits the design space and cannot explore the possibil-
ities that can reach with “in-processing” methods where both fairness and classification objectives
are optimized jointly. Zafar et al. (2015) imposes fairness by using linear covariance and thus can
only capture linear dependence between the predictor and the sensitive attribute. Consequently,
there might exist nonlinear dependencies which are revealed in fairness measures such as DP or EO
violation. Rezaei et al. (2019); Donini et al. (2018), on the other hand, propose to use nonlinear
measures of dependence as regularizers. However, due to computational barriers, they approximate
the regularizer and solve the approximate problem. The approximation step could potentially have
an adverse effect on the performance of the resulting classifier. Notice that while these methods are
different in terms of the way they impose fairness, they are all implemented for logistic regression
model (with the exception of SVM model used in Donini et al. (2018)). Thus, the difference in the
performance is not due to the classification model used in the experiments.

To show the practical benefits of Rényi correlation over Pearson correlation and HSIC regulariz-
ers under the demographic parity notion, we evaluate the logistic regression classifier regularized
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by these three measures on Adult, Bank, and German Credit datasets. For the first two plots,
we use p% = min(P(Ŷ=1|S=1)

P(Ŷ=1|S=0)
, P(Ŷ=1|S=0)

P(Ŷ=1|S=1)
) as a measure of fairness. Since p% is defined only

for binary sensitive variables, for the last two plots in Figure 2 (German dataset with gender and
marital status, and Adult dataset with gender and race as the sensitive features), we use the in-
verse of demographic parity (DP) violation as the fairness measure. We define DP violation as
DP Violation = maxa,b

∣∣P(Ŷ = 1|S = a) − P(Ŷ = 1|S = b)
∣∣. As it is evident from the figure,

Rényi classifier outperforms both HSIC and Pearson classifiers, especially when targeting high lev-
els of fairness. For the last two experiments in Figure 2, we could not further increase fairness by
increasing the regularization coefficient for Pearson and HSIC regularizers (see green and red curves
cannot go beyond a certain point on the fairness axis). This can be explained by the nonlinear corre-
lation between the predictor and the sensitive variables in these two scenarios which cannot be fully
captured using linear or quadratic independence measures. Interestingly, our experiments indicate
that minimizing Rényi correlation eventually minimizes the Normalized Mutual Information (NMI)
between the variables (See Supplementary Figure 6). Recall that similar to Rényi correlation, NMI
can capture any dependence between two given random variables.

Finally, to evaluate the performance of our fair k-means algorithm, we implement Algorithm 3 to
find clusters of Adult and Bank datasets. We use the deviation of the elements of the vector w as
a measure of fairness. The element wk of w represents the ratio of the number of data points that
belong to the privileged group (S = 1) in cluster k over the number of data points in that cluster. This
notion of fairness is closely related to minimum balance introduced by Chierichetti et al. (2017). The
deviation of these elements is a measure for the deviation of these ratios across different clusters. A
clustering solution is exactly fair if all entries of w are the same. For K = 14, we plot in Figure 3
the minimum, maximum, average, and average ± standard deviation of the entries of w vector for
different values of λ. For an exactly fair clustering solution, these values should be the same. As we
can see in Figure 3, increasing λ yields exact fair clustering at the price of a higher clustering loss.

Figure 1: Trade-off between the accuracy of classifier and fairness on the adult dataset under the
equality of opportunity notion. (a, b) By increasing λ from 0 to 1000, EO violation (the blue curve
on the left axis) approaches to 0. The fairer solution comes at the price of a slight increase of the
training/test error (Red curve, right axis). (c) Comparison of the existing approaches with Rényi
classifier, under the equality of opportunity notion. Rényi classifier demonstrates a better accuracy
for a given level of fairness measured by EO violation.

7 CONCLUSION

In this paper, we proposed Rényi fair inference as an in-process method to impose fairness in em-
pirical risk minimization. Fairness is defined as (conditional) independence between a sensitive
attribute and the inference output from the learning machine. As statistical independence is only
measurable when the data distributions are fully known, we can only hope to promote independence
through empirical surrogates in this framework. Our method imposes a regularizer in the form of
the Rényi correlation (maximal correlation) between a sensitive attribute(s) and the inference output.
Rényi correlation between two random variables is zero if and only if they are independent, which
is a desirable property for an independence surrogate. We pose Rényi fair correlation as a minimax
optimization problem. In the case where the sensitive attributes are discrete (e.g., race), we present
an algorithm that finds a first-order optimal solution to the problem with convergence guarantees. In
the special case where the sensitive attribute is binary (e.g., gender), we show an algorithm with op-
timal convergence guarantees. Our numerical experiments show that Rényi fair inference captures
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nonlinear correlations better than Pearson correlation or HSIC. We also show that increasing the
regularization hyperparameter results in near statistical independence between the sensitive attribute
and the inference output. Future work would naturally consider extension to continuous sensitive
attributes and problems with missing or non-explicit sensitive labels such as fair word embedding
problem.

Figure 2: Trade-off between accuracy and fairness for logistic regression classifier regularized with
Rényi, HSIC, and Pearson measures, on German Credit, Adult, and Bank datasets. (Top) The drop
in the accuracy of the model regularized by Rényi, is less than the same model regularized by
HSIC, and Pearson correlation. Moreover, as can be observed for both Bank and Adult datasets,
Pearson and HSIC regularizers usually cannot increase p% beyond a certain limit, due to the fact
that removing all linear correlations does not guarantee independence between the predictor and
the sensitive attribute. (Down) When the sensitive attribute is not binary (or we have more than
one sensitive attribute), obtaining a fair model for HSIC and Pearson regularizers is even harder.
The model regularized by HSIC or Pearson, cannot minimize the DP violation (or maximize its
reciprocal) beyond a threshold.

Figure 3: Performance and fairness of K-means algorithm in terms of Rényi regularizer hyper-
parameter λ. By increasing λ, the standard deviation of the w vector components (each component
represents the relative proportion of the privileged group in the corresponding cluster) is reduced
accordingly. Both plots demonstrate that the standard deviation of w is reduced fast with respect to
λ, and the increase in loss is small when λ ≤ 0.005. However, to reach a completely fair clustering,
a λ ≥ 1 must be chosen that can increase the loss (the right axis, red curve) drastically.
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Adrián Pérez-Suay, Valero Laparra, Gonzalo Mateo-Garcı́a, Jordi Muñoz-Marı́, Luis Gómez-Chova,
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A APPENDIX: PROOF OF THEOREM 3.2

Proof. First, notice that since ã is a one-hot encoding of a, any function f : {1, . . . , c} 7→ R can be
equivalently represented as f(ã) = uT ã for some u ∈ Rc. Therefore, following the definition of
Rényi correlation, we can write

ρR(a, b) = max
u,g

E
[
(uT ã)g(b)

]
s.t. E

[
(uT ã)2

]
≤ 1, E[uT ã] = 0

E[g2(b)] ≤ 1, E[g(b)] = 0

.

Notice that since b is binary, there is a unique function g(b) = b−q√
q(1−q)

satisfying the constraints

where q , P(b = 1). Therefore, the above optimization problem can be written as

ρR(a, b) = max
u

uTE [ãg(b)]

s.t. uTE
[
ããT

]
u ≤ 1

uTE[ã] = 0

.

The last constraint simply implies that u should be orthogonal to p , E[ã], which is a stochastic
vector capturing the distribution of a. Equivalently, we can write u =

(
I− ppT

‖p‖2

)
v for some

v ∈ Rc. Thus, we can simplify the above optimization problem as

ρR(a, b) = max
v

vT
(
I− ppT

‖p‖2

)
E [ãg(b)]

s.t. vT
(
I− ppT

‖p‖2

)
diag(p)

(
I− ppT

‖p‖2

)
v ≤ 1,

where in the constraint, we used the equality E
[
ããT

]
= diag(p), which follows the definition.

Let us do the change of variable v̂ = diag(
√
p)(I − ppT

‖p‖2 )v. Then the above optimization can be
simplified to

ρR(a, b) = max
v̂

v̂T diag(1/
√
p)E [ãg(b)]

s.t. ‖v̂‖ ≤ 1.

Clearly, this leads to

ρ2R(a, b) =

∥∥∥∥diag
(

1
√
p

)
E [ãg(b)]

∥∥∥∥2
=

c∑
i=1

1

P(a = i)

(
P(a = i, b = 1)

√
1− q
q
− P(a = i, b = 0)

√
q

1− q

)2

,

(12)

where in the last equality we use the fact that g(1) =
√

1−q
q and g(0) = −

√
q

1−q . Define pi0 ,

P(a = i, b = 0) and pi1 , P(a = i, b = 0), pi , P(a = i) = pi0 + pi1. Then, using simple
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algebraic manipulations, we have that

ρ2R(a, b) =

c∑
i=1

1

pi

(
pi1

√
1− q
q
− pi0

√
q

1− q

)2

=

c∑
i=1

(2pi1(1− q)− 2pi0q)
2

4piq(1− q)
−

c∑
i=1

(pi0 − pi1)2

4piq(1− q)
+

c∑
i=1

(pi0 − pi1)2

4piq(1− q)

=

c∑
i=1

((3− 2q)pi1 − (1 + 2q)pi0)((1− 2q)pi1 + (1− 2q)pi0)

4piq(1− q)
+

c∑
i=1

(pi0 − pi1)2

4piq(1− q)

=
1− 2q

4q(1− q)
((3− 2q)q − (1 + 2q)(1− q)) +

c∑
i=1

(pi0 − pi1)2

4piq(1− q)

= 1−
1−

∑c
i=1(pi0 − pi1)2/pi
4q(1− q)

= 1− γ

q(1− q)
,

where in the last equality we used the definition of γ and the optimal value of equation 3.2.

B PROOF OF THEOREM 4.2

Proof. Define gB(θ) = maxw fB(θ,w). Since the optimization problem maxw fB(θ,w) is
strongly concave in w, using Danskin’s theorem (see Danskin (1967) and Bertsekas (1971)), we
conclude that the function gB(·) is differentiable. Moreover,

∇θgB(θ̄) = ∇θfB(θ̄, w̄)

where w̄ = arg maxw fB(θ̄,w). Thus Algorithm 2 is in fact equivalent to the gradient descent
algorithm applied to gB(θ). Thus according to (Nesterov, 2018, Chapter 1), the algorithm finds a
point with ‖∇gB(θ)‖ ≤ ε in O(ε−2) iterations.

C RÉNYI FAIR K-MEANS

To illustrate the behavior of Algorithm 3, we deployed a simple two-dimensional toy example. In
this example we generated data by randomly selecting 5 center points and then randomly generating
500 data points around each center according to a normal distribution with small enough variance.
The data is shown in Figure 4 with different colors corresponding to different clusters. Moreover, we
assigned for each data point xi a binary value si ∈ {0, 1} that corresponds to its sensitive attribute.
This assignment was also performed randomly except for points generated around center 2 (green
points in Figure 4) which were assigned a value of 1 and points generated around center 4 (blue
points in Figure 4) which were assigned a value of 0. Without imposing fairness, traditional K-
means algorithm would group points generated around center 2 in one cluster regardless of the fact
that they all belong to the same protected group. Similarly, points generated around center 4 will
belong to the same cluster. Hence, according to traditional K-means clustering shown in Figure 4,
the proportion of the protected group in clusters 2 and 4 are 1 and 0 respectively. However, when
imposing our fairness scheme, we expect these points to be distributed among various clusters to
achieve balanced clustering. This is illustrated in Figure 5. It is evident from Figure 5 that increasing
lambda, data points corresponding to centers 2 and 4 are now distributed among different clusters.
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Figure 4: Applying K-means algorithm without fairness on the synthetic dataset.

Figure 5: Applying fair K-means algorithm with different values of λ on the synthetic dataset.

C.1 UPDATING w AFTER UPDATING THE ASSIGNMENT OF EACH DATA POINT IN ALGORITHM
3

To understand the reasoning behind updating the vector of proportions w after updating each ai
which is the assignment of data point i, we discuss a simple one-dimensional counterexample.
Consider the following four data points X1 = −5, X2 = −4, X3 = 4, and X4 = 5 with their
corresponding sensitive attributes S1 = S2 = 1 and S3 = S4 = 0. Moreover, assume the following
initial A0 and C0

A0 =

1 0
1 0
0 1
0 1

 , C0 = [−4.5, 4.5].

Hence, X1 and X2 which both have a sensitive attribute of 1 are assigned to cluster 1 with center
C0

1 = −4.5 and X3 and X4 which both have a sensitive attribute of 0 are assigned to cluster 2 with
center C0

2 = 4.5. Then w which is the current proportion of the privileged group in the clusters will
be w0 = [1, 0]. Now, for sufficiently large λ if we update A according to Step 6 of Algorithm 3, we
get the following new assignment

A1 =

0 1
0 1
1 0
1 0

 , C1 = [4.5,−4.5], w1 = [0, 1].

Hence, the points just switch their clusters. Then, performing another iteration will get us back to
the initial setup and the algorithm will get stuck between these two states that are both not fair. To
overcome this issue we update the proportions w after updating the assignment of each data point.
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D DATASETS DESCRIPTION

In this section we introduce the datasets used in numerical experiment discussed in Section 6. All
of these datasets are publicly available at UCI repository.

• German Credit Dataset:1 German Credit dataset consists of 20 features (13 categorical
and 7 numerical) regarding to social, and economic status of 1000 customers. The assigned
task is to classify customers as good or bad credit risks. Without imposing fairness, the
DP violation of the trained model is larger than 20%. We chose first 800 customers as the
training data, and last 200 customers as the test data. The sensitive attributes are gender,
and marital-status.

• Bank Dataset:2 Bank dataset contains the information of individuals contacted by a Por-
tuguese bank institution. The assigned classification task is to predict whether the client
will subscribe a term deposit. For the classification task we consider all 17 attributes (ex-
cept martial status as the sensitive attribute). Removing the sensitive attribute, and train a
logistic regression model on the dataset, yields to a solution that is biased under the de-
mographic parity notion (p% = 70.75%). To evaluate the performance of the classifier,
we split data into the training (32000 data points), and test set (13211 data points). For
the clustering task, we sampled 3 continuous features: Age, balance, and duration. The
sensitive attribute is the marital status of the individuals.

• Adult Dataset:3 Adult dataset contains the census information of individuals including
education, gender, and capital gain. The assigned classification task is to predict whether a
person earns over 50K annually. The train and test sets are two separated files consisting
of 32000 and 16000 samples respectively. We consider gender and race as the sensitive
attributes (For the experiments involving one sensitive attribute, we have chosen gender).
Learning a logistic regression model on the training dataset (without imposing fairness)
shows that only 3 features out of 14 have larger weights than the gender attribute. Note
that removing the sensitive attribute (gender), and retraining the model does not eliminate
the bias of the classifier. the optimal logistic regression classifier in this case is still highly
biased (p% = 31.49% ). For the clustering task, we have chosen 5 continuous features
(Capital-gain, age, fnlwgt, capital-loss, hours-per-week), and 10000 samples to cluster.
The sensitive attribute of each individual is gender.

E SUPPLEMENTARY FIGURES

Figure 6: The relationship between Rényi correlation, Pearson correlation, and normalized mutual
information. Direct optimization of normalized mutual information is intractable due to its non-
convexity. However, as we can observe on the right-hand-side, by minimizing Rényi correlation to
0, the normalized mutual information is converging to 0 accordingly.

1https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
2 https://archive.ics.uci.edu/ml/datasets/Bank%20Marketing.
3https://archive.ics.uci.edu/ml/datasets/adult.
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F FAIR NEURAL NETWORK

In this section, we train a 2-layers neural network on the adult dataset regularized by the Rényi
correlation. In this experiment, the sensitive attribute is gender. We set the number of nodes in
the hidden layer, the batch-size, and the number of epochs to 12, 128, and 50, respectively. The
following table depicts the performance of the trained model.

p% Test Accuracy Time (Seconds)
31.49% 85.33 731
80.42% 83.34 915

Table 1: Performance and training time of a neural network trained on the Adult dataset. The first
and second rows correspond to the networks not regularized, and regularized by Rényi correlation
respectively. As can be seen in the table, while adding Rényi regularizer makes the classifier more
fair, it does so by bringing a minimum amount of additional computational overhead.
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