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ABSTRACT

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded and that it exhibits favourable latent
representations on a synthetic manifold as well as on real-world image data sets,
while preserving low reconstruction errors.

1 INTRODUCTION

While topological features, in particular multi-scale features derived from persistent homology,
have seen increasing usage in the machine learning community (Carrière et al., 2019; Guss &
Salakhutdinov, 2018; Hofer et al., 2017; 2019a;b; Ramamurthy et al., 2019; Reininghaus et al., 2015;
Rieck et al., 2019a;b), using topology directly as a constraint for current deep learning methods
remains a challenge. This is due to the inherently discrete nature of these computations, making
backpropagation through the computation of topological signatures immensely difficult or only
possible in certain special circumstances (Chen et al., 2019; Hofer et al., 2019b; Poulenard et al.,
2018).

In this work, we present a novel approach that permits obtaining gradients during the computation of
topological signatures. This permits employing topological constraints while training deep neural
networks as well as building topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space.

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can aid interpretability.

2 BACKGROUND: PERSISTENT HOMOLOGY

Persistent homology (Barannikov, 1994; Edelsbrunner & Harer, 2008) is a method from the field
of computational topology, which develops tools for analysing topological features (connectivity-
based features such as connected components) of data sets. We first need to introduce the underlying
concept of simplicial homology. For a simplicial complex K, i.e. a generalised graph with higher-order
connectivity information such as cliques, simplicial homology employs matrix reduction algorithms
to assign K a family of groups, the homology groups. The dth homology group Hd(K) of K contains
d-dimensional topological features, such as connected components (d = 0), cycles/tunnels (d = 1),
and voids (d = 2). Homology groups are typically summarised by their ranks, thereby obtaining a
simple invariant “signature” of a manifold. For example, a circle in R2 has one feature with d = 1 (a
cycle), and one feature with d = 0 (a connected component). In practice, the underlying manifold
M is unknown and we are working with a point cloud X := {x1, . . . , xn} ⊆ Rd and a metric
dist : X ×X → R such as the Euclidean distance. Persistent homology extends simplicial homology
to this setting: instead of approximatingM by means of a single simplicial complex, which would
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Figure 1: The Vietoris–Rips complex Rε(X) of a point cloud X at different scales ε0, ε1, and ε2.
As the distance threshold ε increases, the connectivity changes. The creation and destruction of
d-dimensional topological features is recorded in the dth persistence diagram Dd.

be an unstable procedure due to the discrete nature of X , persistent homology tracks changes in
the homology groups over multiple scales of the metric. This is achieved by constructing a special
simplicial complex, the Vietoris–Rips complex (Vietoris, 1927). For 0 ≤ ε <∞, the Vietoris–Rips
complex ofX at scale ε, denoted by Rε(X), contains all simplices (i.e. subsets) ofX whose elements
{x0, x1, . . . } satisfy dist(xi, xj) ≤ ε for all i, j. Given a matrix Aof pairwise distances of a point
cloud X , we will use Rε(A) and Rε(X) interchangeably because constructing Rε only requires
distances. Vietoris–Rips complexes satisfy a nesting relation, i.e. Rεi(X) ⊆ Rεj (X) for εi ≤ εj ,
making it possible to track changes in the homology groups as ε increases (Edelsbrunner et al., 2002).
Figure 1 illustrates this process. Since X contains a finite number of points, a maximum ε̃ value
exists for which the connectivity stabilises; therefore, calculating Rε̃ is sufficient to obtain topological
features at all scales.

We write PH(Rε(X)) for the persistent homology calculation of the Vietoris–Rips complex. It results
in a tuple ({D1,D2, . . .}, {π1, π2, . . .}) of persistence diagrams (1st component) and persistence
pairings (2nd component). The d-dimensional persistence diagramDd (Figure 1d) of Rε(X) contains
coordinates of the form (a, b), where a refers to a threshold ε at which a d-dimensional topological
feature is created in the Vietoris–Rips complex, and b refers to a threshold ε′ at which it is destroyed.
When d = 0, for example, the threshold ε′ indicates at which distance two connected components
in X are merged into one; this is related to spanning trees (Kurlin, 2015). The d-dimensional
persistence pairing contains indices (i, j) corresponding to simplices si, sj ∈ Rε(X) that create
and destroy the topological feature identified by (a, b) ∈ Dd, respectively. Persistence diagrams
are known to be stable with respect to small perturbations in the data set (Cohen-Steiner et al.,
2007). Two diagrams D and D′ can be compared using the bottleneck distance db(D,D′) :=
infη : D→D′ supx∈D ‖x − η(x)‖∞, where η : D → D′ denotes a bijection between the points of
the two diagrams, and ‖ · ‖∞ refers to the L∞ norm. We use DX to refer to the set of persistence
diagrams of a point cloud X arising from PH(Rε(X)).

3 PROPOSED METHOD

We propose a generic framework for constraining autoencoders to preserve topological struc-
tures (measured via persistent homology) of the data space in their latent encodings.

3.1 VIETORIS–RIPS COMPLEX CALCULATION

Given a finite metric space S , we first calculate the persistent homology of the Vietoris–Rips complex
of its distance matrix AS . Typically, the usual Euclidean distance is used to calculate AS , but both
the persistent homology calculation and our method are not restricted to any particular distance;
previous research (Wagner & Dłotko, 2014) shows that even similarity measures that do not satisfy
the properties of a metric can be used successfully with PH(·). Subsequently, let ε := maxAS so that
Rε

(
AS
)

is the corresponding Vietoris–Rips complex as described in Section 2. Given a maximum
dimension1 of d ∈ N>0, we obtain a set of persistence diagrams DS , and a set of persistence pairings
πS . The dth persistence pairing πSd contains indices of simplices that are relevant for creating and

1This means that we do not have to consider higher-dimensional topological features, making the calculation
more efficient.
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destroying d-dimensional topological features. We can consider each pairing to represent edge indices,
namely the edges that are deemed to be “topologically relevant” by the computation of persistent
homology (see below for more details). This works because the Vietoris–Rips complex is a clique
complex, i.e. it is fully determined by its edges (Zomorodian, 2010).

For 0-dimensional topological features, it is sufficient to look at the edge indices, i.e. the indices
of “destroyer” simplices, contained in πS0 . Each of these indices corresponds to an edge in the
minimum spanning tree of the data set. This calculation is computationally efficient, having a
worst-case complexity of O

(
m2 · α

(
m2
))

, where m is the batch size and α(·) denotes the extremely
slow-growing inverse Ackermann function (Cormen et al., 2009, Chapter 22). For 1-dimensional
features, where edges are paired with triangles, we obtain edge indices by selecting the edge with the
maximum weight of the triangle. While this procedure (and thus our method) generalises to higher
dimensions, our current implementation supports no higher-dimensional features. Since preliminary
experiments showed that including 1-dimensional topological features merely increases runtime, we
will focus only on 0-dimensional persistence diagrams in the subsequent experiments. We thus use(
DS , πS

)
to denote the 0-dimensional persistence diagram and pairing of S, respectively.

3.2 TOPOLOGICAL AUTOENCODER

In the following, we consider a mini-batch X of size m from the data space X as a point cloud.
Furthermore, we define an autoencoder as the composition of two functions h ◦ g, where g : X → Z
represents the encoder and h : Z → X represents the decoder. We denote latent codes with
Z := g(X). During a forward pass of the autoencoder, we compute the persistent homology
of the mini-batch in both the data as well as the latent space, yielding two sets of tuples, i.e.(
DX , πX

)
:= PH(Rε(X)) and

(
DZ , πZ

)
:= PH(Rε(Z)). The values of the persistence diagram

can be retrieved by subsetting the distance matrix with the indices provided by the persistence pairings;
we write DX ' AX

[
πX
]

to indicate that the diagram, which is a set, contains the same information
as the distances we retrieve with the pairing. We treat AX

[
πX
]

as a vector in R|π
X |. Informally

speaking, the persistent homology calculation can thus be seen as a selection of topologically relevant
edges of the Vietoris–Rips complex, followed by the selection of corresponding entries in the
distance matrix. By comparing both diagrams, we can construct a topological regularisation term
Lt := Lt

(
AX ,AZ , πX , πZ

)
, which we add to the reconstruction loss of an autoencoder, i.e.

L := Lr(X,h(g(X))) + λLt (1)

where λ ∈ R is a parameter to control the strength of the regularisation. Next, we discuss how to
specify Lt: in our case, the PH calculation represents a selection of topologically relevant distances
from the distance matrix. Each persistence diagram entry corresponds to a distance between two data
points. We assume that the distances are unique so that each entry in the diagram has an infinitesimal
neighbourhood that only contains a single point. Given this fixed pairing and a differentiable distance
function, the persistence diagram entries are thus also differentiable with respect to the encoder
parameter. Hence, the persistence pairing does not change upon a small perturbation of the underlying
distances, thereby guaranteeing the existence of the derivative of our loss function. This, in turn,
permits the calculation of gradients for backpropagation.

A straightforward approach to impose the data space topology on the latent space would be to
directly calculate a loss based on the selected distances in both spaces. Such an approach will
not result in informative gradients for the autoencoder, as it merely compares topological features
without matching2 the edges between Rε(X) and Rε(Z). A cleaner approach would be to enforce
similarity on the intersection of the selected edges in both complexes. However, this would initially
include very few edges, preventing efficient training and leading to very biased estimates of the
topological alignments between the spaces3. To overcome this, we account for the union of all
selected edges in X and Z. Our topological loss term decomposes into two components, each

2We use the term “matching” only to build intuition. Our approach does not calculate a matching in the sense
of a bottleneck or Wasserstein distance between persistence diagrams.

3When initialising a random latent space Z, the persistence pairing in the latent space will select random
edges, resulting in only 1 expected matched edge (independent of mini-batch size) between the two pairings.
Thus, only one edge (referring to one pairwise distance between two latent codes) could be used to update the
encoding of these two data points.
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handling the “directed” loss occurring as topological features in one of the two spaces remain fixed.
Hence, Lt = LX→Z +LZ→X , where

LX→Z :=
1

2

∥∥AX[πX]−AZ
[
πX
]∥∥2

and LZ→X :=
1

2

∥∥AZ[πZ]−AX
[
πZ
]∥∥2

, (2)

respectively. The key idea for both terms is to align and preserve topologically relevant distances
from both spaces. By taking the union of all selected edges (and the corresponding distances), we
obtain an informative loss term that is determined by at least |X| distances. This loss can be seen as
a more generic version of the loss introduced by Hofer et al. (2019b), whose formulation does not
take the two directed components into account and optimises the destruction values of all persistence
tuples with respect to a uniform parameter (see also Section 4 for a brief discussion). By contrast, our
formulation aims to to align the distances between X and Z (which in turn will lead to an alignment
of distances between X and Z). If they are aligned perfectly, LX→Z = LZ→X = 0 because both
pairings and their corresponding distances coincide. The converse implication is not true: if Lt = 0,
the persistence pairings (and their corresponding persistence diagrams) are not necessarily identical.

Letting θ refer to the parameters of the encoder, we have

∂

∂θ
LX→Z =

∂

∂θ

(
1

2

∥∥AX[πX]−AZ
[
πX
]∥∥2
)

= −
(
AX
[
πX
]
−AZ

[
πX
])>(∂AZ[πX]

∂θ

)
(3)

= −
(
AX
[
πX
]
−AZ

[
πX
])>|π

X |∑
i=1

∂AZ
[
πX
]
i

∂θ

, (4)

where
∣∣πX ∣∣ denotes the cardinality of a persistence pairing and AZ

[
πX
]
i

refers to the ith entry of the
vector of paired distances. This derivation works analogously for LZ→X (with πX being replaced by
πZ). Furthermore, any derivative of AX with respect to θ must vanish because the distances of the
input samples do not depend on the encoding by definition.

These equations presume infinitesimal perturbations. In fact, the persistence diagrams change in a
non-differentiable manner during the training phase but for a given update step, a diagram is robust to
infinitesimal changes of its entries (Cohen-Steiner et al., 2007). As a consequence, our topological
loss is differentiable for each update step during training. We make our code publicly available4.

3.3 STABILITY

With persistence diagrams being stable under small perturbations of the underlying space (Cohen-
Steiner et al., 2007), we still have to analyse our topological approximation on the level of mini-
batches. The following theorem guarantees that subsampled persistence diagrams are close to the
persistence diagrams of the original point cloud.

Theorem 1. Let X be a point cloud of cardinality n and X(m) be one subsample of X of cardinality
m, i.e. X(m) ⊆ X , sampled without replacement. We can bound the probability of the persistence
diagrams of X(m) exceeding a threshold in terms of the bottleneck distance as

P
(
db

(
DX ,DX

(m)
)
> ε
)
≤ P

(
dH

(
X,X(m)

)
> 2ε

)
, (5)

where dH refers to the Hausdorff distance between the point cloud and its subsample.

Proof. See Section A.1 in the supplementary materials.

For m → n, we have limm→n dH

(
X,X(m)

)
= 0. Please refer to Section A.2 for an analysis of

empirical convergence rates as well as a discussion of a worst-case bound. Given certain independence
assumptions, the next theorem approximates the expected value of the Hausdorff distance. The
calculation of an exact representation is beyond the scope of this work, though.

4https://osf.io/abuce/?view_only=f16d65d3f73e4918ad07cdd08a1a0d4b
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Theorem 2. Let A∈ Rn×m be the distance matrix between samples of X and X(m), where the
rows are sorted such that the first m rows correspond to the columns of the m subsampled points with
diagonal elements aii = 0. Assume that the entries aij with i > m are random samples following
a distance distribution FD with supp(fD) ∈ R≥0. The minimal distances δi for rows with i > m
follow a distribution F∆. Letting Z := max1≤i≤n δi with a corresponding distribution FZ , the
expected Hausdorff distance between X and X(m) for m < n is bounded by:

E
[
dH(X,X

(m))
]
= EZ∼FZ

[Z] ≤
+∞∫
0

(
1− FD(z)(n−1)

)
dz ≤

+∞∫
0

(
1− FD(z)m(n−m)

)
dz (6)

Proof. See Section A.3 in the supplementary materials.

From Eq. 6, we obtain E[dH(X,X
m)] = 0 as m → n, so the expected value converges as the

subsample size approaches the total sample size5. We conclude that our subsampling approach results
in point clouds that are suitable proxies for the large-scale topological structures of the point cloud X .

4 RELATED WORK

Computational topology and persistent homology (PH) have started gaining traction in several areas
of machine learning research. PH is often used as as post hoc method for analysing topological
characteristics of data sets. Thus, there are several methods that compare topological features of
high-dimensional spaces with different embeddings to assess the fidelity and quality of a specific
embedding scheme (Khrulkov & Oseledets, 2018; Paul & Chalup, 2017; Rieck & Leitte, 2015;
2017; Yan et al., 2018). PH can also be used to characterise the training of neural networks (Guss
& Salakhutdinov, 2018; Rieck et al., 2019b), as well as their decision boundaries (Ramamurthy
et al., 2019). Our method differs from all these publications in that we are able to obtain gradient
information to update a model while training. Alternatively, topological features can be integrated
into classifiers to improve classification performance. Hofer et al. (2017) propose a neural network
layer that learns projections of persistence diagrams, which can subsequently be used as feature
descriptors to classify structured data. Moreover, several vectorisation strategies for persistence
diagrams exist (Adams et al., 2017; Carrière et al., 2015), making it possible to use them in kernel-
based classifiers. These strategies have been subsumed (Carrière et al., 2019) in a novel architecture
based on deep sets. The commonality of these approaches is that they treat persistence diagrams as
being fixed; while they are capable of learning suitable parameters for classifying them, they cannot
adjust input data to better approximate a certain topology. Such topology-based adjustments have only
recently become feasible. Poulenard et al. (2018) demonstrated how to optimise real-valued functions
based on their topology. This constitutes the first approach for aligning persistence diagrams by
modifying input data; it requires the connectivity of the data to be known, and the optimised functions
have to be node-based and scalar-valued. By contrast, our method works directly on distances and
sidesteps connectivity calculations via the Vietoris–Rips complex. Chen et al. (2019) use a similar
optimisation technique to regularise the decision boundary of a classifier. However, this requires
discretising the space, which can be computationally expensive. Hofer et al. (2019b), the closest
work to ours, also presents a differentiable loss term. They propose regularising the connectivity of
the latent space by itself. Specifically, their formulation enforces a single scale on the latent space.
The learned encoding is then applied to a classification task. By contrast, our directed loss term aims
to preserve the data space topology in the latent space for dimensionality reduction.

5 EXPERIMENTS

Our main task is to learn a latent space in an unsupervised manner such that topological features of
the data space—measured using persistent homology approximations on every batch—are preserved
as much as possible.

5For m = n, the two integrals switch their order as m(n−m) = 0 < n− 1 (for n > 1).
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(a) PCA (b) Isomap (c) t-SNE

(d) UMAP (e) AE (f) TopoAE

Figure 2: Latent representations of the SPHERES data set. Only our method is capable of representing
the complicated nesting relationship inherent to the data. TopoAE used a batch-size of 28. See
Figure A.2 in the supplementary materials for an enlarged version.

5.1 EXPERIMENTAL SETUP

Data sets We use a SPHERES data set that consists of ten high-dimensional 100-spheres living in
101−dimensional space that are enclosed by one larger sphere that consists of the same number of
points as the total of inner spheres (please refer to Section A.4 for more details). We also use three
image data sets (MNIST, FASHION-MNIST, and CIFAR-10), which are particularly amenable to
our topology-based analysis because real-world images are known to lie on or near low-dimensional
manifolds (Lee et al., 2003; Peyré, 2009).

Baselines & Training We compare our approach with several dimensionality reduction techniques,
including UMAP (McInnes et al., 2018), t-SNE (van der Maaten & Hinton, 2008), Isomap (Tenen-
baum et al., 2000), PCA, as well as standard autoencoders (AE). We apply our proposed topological
constraint to this standard autoencoder architecture (TopoAE). For comparability and interpretability,
each method is restricted to two latent dimensions. We split each data set into training and test-
ing (using the predefined split if available; 90% versus 10% otherwise). Additionally, we remove
15% of the training split as a validation data set for tuning the hyperparameters. We normalised our
topological loss term by the batch size m in order to disentangle λ from it. All autoencoders employ
batch-norm and are optimized using ADAM (Kingma & Ba, 2014). Since t-SNE is not intended to
be applied applying to previously unseen test samples, we evaluate this method only on the train split.
In addition, significant computational scaling issues forced us to forgo running a hyperparameter
search for Isomap on real-world data sets, so we only compare this algorithm on the synthetic data
set. Please refer to Section A.5 for more details on architectures and hyperparameters.

Evaluation We evaluate the quality of latent representations in terms of (1) low-dimensional visu-
alisations, (2) dimensionality reduction quality metrics (evaluated between input data and latent
codes), and (3) reconstruction errors (Data MSE; evaluated between input and reconstructed data),
provided that invertible transformations are available6. For (2), we consider several measures (please
refer to Section A.6 for more details). First, we calculate KLσ, the Kullback–Leibler divergence
between the density estimates of the input and latent space, based on density estimates (Chazal et al.,
2011; 2014b), where σ ∈ R>0 denotes the length scale of the Gaussian kernel, which is varied to
account for multiple data scales. We chose minimising KL0.1 as our hyperparameter search objective.
Furthermore, we calculate common non-linear dimensionality reduction (NLDR) quality metrics,
which use the pairwise distance matrices of the input and the latent space (as indicated by the “`” in
the abbreviations), namely the root mean square error (`-RMSE), which—despite its name—is not

6Invertible transformations are available for PCA and all autoencoder-based methods.
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(a) PCA (b) t-SNE (c) UMAP (d) AE (e) TopoAE

(f) PCA (g) t-SNE (h) UMAP (i) AE (j) TopoAE

(k) PCA (l) t-SNE (m) UMAP (n) AE (o) TopoAE

Figure 3: Latent representations of the FASHION-MNIST (top row), MNIST (middle row),
CIFAR-10 (bottom row) data sets. TopoAE batch-sizes (same data set order): (95, 126, 82). Please
refer to Figures A.3, A.4, and A.5 in the supplementary materials for enlarged versions.

related to the reconstruction error of the autoencoder but merely measures to what extent the two
distributions of distances coincide, the mean relative rank error (`-MRRE), the continuity (`-Cont),
and the trustworthiness (`-Trust) . The reported measures are computed on the testing splits (except
for t-SNE where no transformation between splits is available, so we report the measures on a random
subsample of the train split).

5.2 RESULTS

Quantitative Results Table 1 reports the quantitative results. Overall, we observe that our method
shines in preserving the data density over multiple length scales (as measured by KL). Furthermore,
we find that TopoAE displays competitive continuity values (`-Cont) and reconstruction errors (Data
MSE). The remaining classical measures favour the baselines (foremost the train (!) performance of
t-SNE). However, we will subsequently see that those classic measures fail at detecting the relevant
structural information, as exemplified with known ground truth manifolds, such as the SPHERES data
set.

Visualisation of latent spaces For the SPHERES data set (Figure 2), we observe that only our
method is capable of assessing the nesting relationship of the high-dimensional spheres correctly. By
contrast, t-SNE “cuts open” the enclosing sphere, distributing most of its points around the remaining
spheres. We see that the KL-divergence confirms the visual assessment that only our proposed method
preserves the relevant structure of this dataset. Several classical evaluation measures, however, favour
t-SNE, even though this method fails to capture the global structure and nesting relationship of the
enclosing sphere manifold accounting for half of the dataset. On FASHION-MNIST (Figure 3a–e),
we see that, as opposed to AE, which is purely driven by the reconstruction error, our method has the
additional objective of preserving structure. Here, this constraint helps the autoencoder to “organise”
the latent space, resulting in a comparable pattern as in UMAP, which is also topologically motivated.
Furthermore, we observe that t-SNE tends to fragment certain classes (dark orange, red) into multiple
distinct subgroups. This is very likely not to reflect the underlying manifold structure, but constitutes
an artefact frequently observed with this method. For MNIST, the latent embeddings (Figure 3f–j)
demonstrate that the non-linear competitors—mostly by pulling apart distinct classes—lose some
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Table 1: Multiple evaluation metrics (Section 5.1). The hyperparameters of all tunable methods were
selected to minimise the objective KL0.1. The winner is shown in bold and underlined, the runner-up
in bold. Please refer to Supplementary Table A.2 for more σ scales and variance estimates.

Data set Method KL0.01 KL0.1 KL1 `-MRRE `-Cont `-Trust `-RMSE Data MSE

SPHERES

Isomap 0.181 0.420 0.00881 0.246 0.790 0.676 10.4 –
PCA 0.332 0.651 0.01530 0.294 0.747 0.626 11.8 0.9610
TSNE 0.152 0.527 0.01271 0.217 0.773 0.679 8.1 –
UMAP 0.157 0.613 0.01658 0.250 0.752 0.635 9.3 –
AE 0.566 0.746 0.01664 0.349 0.607 0.588 13.3 0.8155
TopoAE 0.085 0.326 0.00694 0.272 0.822 0.658 13.5 0.8681

F-MNIST

PCA 0.356 0.052 0.00069 0.057 0.968 0.917 9.1 0.1844
TSNE 0.405 0.071 0.00198 0.020 0.967 0.974 41.3 –
UMAP 0.424 0.065 0.00163 0.029 0.981 0.959 13.7 –
AE 0.478 0.068 0.00125 0.026 0.968 0.974 20.7 0.1020
TopoAE 0.392 0.054 0.00100 0.032 0.980 0.956 20.5 0.1207

MNIST

PCA 0.389 0.163 0.00160 0.166 0.901 0.745 13.2 0.2227
TSNE 0.277 0.133 0.00214 0.040 0.921 0.946 22.9 –
UMAP 0.321 0.146 0.00234 0.051 0.940 0.938 14.6 –
AE 0.620 0.155 0.00156 0.058 0.913 0.937 18.2 0.1373
TopoAE 0.341 0.110 0.00114 0.056 0.932 0.928 19.6 0.1388

CIFAR

PCA 0.591 0.020 0.00023 0.119 0.931 0.821 17.7 0.1482
TSNE 0.627 0.030 0.00073 0.103 0.903 0.863 25.6 –
UMAP 0.617 0.026 0.00050 0.127 0.920 0.817 33.6 –
AE 0.668 0.035 0.00062 0.132 0.851 0.864 36.3 0.1403
TopoAE 0.556 0.019 0.00031 0.108 0.927 0.845 37.9 0.1398

of the relationship information between clusters when comparing against our proposed method or
PCA. Finally, we observe that CIFAR-10 (Figure 3k–o), is challenging to embed in two latent
dimensions in a purely unsupervised manner. Interestingly, our method (repeatedly) identified a linear
substructure separating the latent space in two additional groups of classes.

6 DISCUSSION AND CONCLUSIONS

We presented topological autoencoders, a novel method for preserving topological information,
measured in terms of persistent homology, of the input space when learning latent representations
with deep neural networks. Under weak theoretical assumptions, we showed how our persistent
homology (PH) calculations can be combined with backpropagation; moreover, we proved that
approximating PH on the level of mini-batches is theoretically justified.

In our experiments, we observed that our method is uniquely able to capture spatial relationships
between nested high-dimensional spheres. This is relevant, as the ability to cope with several
manifolds in the domain of manifold learning still remains a challenging task. On real-world data sets,
we observed that our topological loss leads to competitive performance in terms of numerous quality
metrics (such as a density preservation metric), while not adversely affecting the reconstruction
error. In both synthetic and real-world data sets, we obtain interesting representations, as our method
does not merely pull apart different classes, but tries to spatially arrange them meaningfully. Thus,
we do not observe mere distinct “clouds”, but rather entangled structures, which we consider to
constitute a more meaningful representation of the underlying manifolds (an auxiliary analysis in
Supplementary Section A.9 confirms that our method influences topological features, measured using
PH, in a beneficial manner).

Our topological loss formulation is highly generic; it only requires the existence of a distance matrix
between individual samples (either globally, or on the level of batches). As a consequence, our
topological loss term can be directly integrated into a variety of different architectures and is not
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limited to standard autoencoders. For instance, we can also apply our constraint to variational
setups (see Figure A.7 for a sketch).

Employing our generic constraint to more involved architectures will be an exciting route for future
work. One issue with the calculation is that, given the computational complexity of calculating
Rε(·), for higher-dimensional features we would scale progressively worse with increasing batch
size. However, in our low-dimensional setup, we observed that runtime tends to grow with decreasing
batch-size, i.e. the mini-batch speed-up still dominates runtime (for more details concerning the effect
of batch sizes, see Supplementary Section A.7). In future work, scaling to higher dimensions could be
mitigated by approximating the calculation of persistent homology (Choudhary et al., 2018; Kerber &
Sharathkumar, 2013; Sheehy, 2013) or by exploiting recent advances in parallelising it (Bauer et al.,
2014; Lewis & Morozov, 2015).
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Figure A.1: Empirical convergence rate (mean) of the Hausdorff distance for a subsample of size m
of 100 points in a d-dimensional space, following a standard normal distribution.

A APPENDIX

A.1 PROOF OF THEOREM 1

Theorem 1. Let X be a point cloud of cardinality n and X(m) be one subsample of X of cardinality
m, i.e. X(m) ⊆ X , sampled without replacement. We can bound the probability of X(m) exceeding a
threshold in terms of the bottleneck distance as

P
(
db

(
DX ,DX

(m)
)
> ε
)
≤ P

(
dH

(
X,X(m)

)
> 2ε

)
, (7)

where dH refers to the Hausdorff distance between the point cloud and its subsample, i.e.

dH(X,Y ) := max

{
sup
x∈X

inf
y∈Y

dist(x, y), sup
y∈Y

inf
x∈X

dist(x, y)

}
(8)

for a baseline distance dist(x, y) such as the Euclidean distance.

Proof. The stability of persistent homology calculations was proved by Chazal et al. (2014a) for
finite metric spaces. More precisely, given two metric spaces X and Y , we have

db

(
DX ,DY

)
≤ 2 dGH(X,Y ), (9)

where dGH(X,Y ) refers to the Gromov–Hausdorff distance (Burago et al., 2001, p. 254) of the two
spaces. It is defined as the infimum Hausdorff distance over all isometric embeddings of X and Y .
This distance can be employed for shape comparison (Chazal et al., 2009; Mémoli & Sapiro, 2004),
but is hard to compute. In our case, with X = X and Y = X(m), we consider both spaces to have
the same metric (for Y , we take the canonical restriction of the metric from X to the subspace Y ).
By definition of the Gromov–Hausdorff distance, we thus have dGH(X,Y ) ≤ dH(X,Y ), so Eq. 8
leads to

db

(
DX ,DY

)
≤ 2 dH(X,Y ), (10)

from which the original claim from Eq. 7 follows by taking probabilities on both sides.

A.2 EMPIRICAL CONVERGENCE RATES OF dH

(
X,X(m)

)
Figure A.1 depicts the mean of the convergence rate (mean) of the Hausdorff distance for a sub-
sample of size m of 100 points in a d-dimensional space, following a standard normal distribution.
We can see that the convergence rate is roughly similar, but shown on different absolute levels
that depend on the ambient dimension. While bounding the convergence rate of this expression
is feasible (Chazal et al., 2015a;b), it requires more involved assumptions on the measures from
which X and X(m) are sampled. Additionally, we can give a simple bound using the diame-
ter diam(X) := sup{dist(x, y) | x, y ∈ X}. We have dH

(
X,X(m)

)
≤ diam(X) because the

supremum is guaranteed to be an upper bound for the Hausdorff distance. This worst-case bound
does not account for the sample size (or mini-batch size) m, though (see Theorem 2 for an expression
that takes m into account).
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A.3 PROOF OF THEOREM 2

Prior to the proof we state two observations that arise from our special setting of dealing with finite
point clouds.
Observation 1. Since X(m) ⊆ X , we have supx′∈X(m) infx∈X dist(x, x′) = 0. Hence, the Haus-
dorff distance simplifies to:

dH

(
X,X(m)

)
:= sup

x∈X
inf

x′∈Xm
dist(x, x′) (11)

In other words, we only have to consider a “one-sided” expression of the distance because the
distance from the subsample to the original point cloud is always zero.
Observation 2. Since our point clouds of interest are finite sets, the suprema and infima of the
Hausdorff distance coincide with the maxima and minima, which we will subsequently use for easier
readability.

Hence, the computation of dH(X,X
(m) can be divided into three steps.

1. Using the baseline distance dist(·, ·), we compute a distance matrix A ∈ Rn×m between
all points in X and X(m).

2. For each of the n points in X , we compute the minimal distance to the m samples of X(m)

by extracting the minimal distance per row of A and gather all minimal distances in δ ∈ Rn.

3. Finally, we return the maximal entry of δ as dH

(
X,X(m)

)
.

In the subsequent proof, we require an independence assumption of the samples.

Proof. Using Observations 1 and 2 we obtain a simplified expression for the Hausdorff distance, i.e.

dH

(
X,X(m)

)
:= max

i,1≤i≤n

(
min

j,1≤j≤m
(aij)

)
. (12)

The minimal distances of the first m rows of A are trivially 0. Hence, the outer maximum is
determined by the remaining n−m row minima {δi | m < i ≤ n } with δi = min

1≤j≤m
(aij). Those

minima follow the distribution F∆(y) with

F∆(y) = P(δi ≤ y) = 1− P(δi > y) = 1− P
(

min
1≤j≤m

aij > y

)
(13)

= 1− P

⋂
j

aij > y

 = 1− (1− FD(y)m) = FD(y)
m. (14)

Next, we consider Z := max1≤i≤n δi. To evaluate the density of Z, we first need to derive its
distribution FZ :

FZ(z) = P(Z ≤ z) = P
(

max
m<i≤n

δi ≤ z
)

= P

 ⋂
m<i≤n

δi ≤ z

 (15)

Next, we approximate Z by Z ′ by imposing i.i.d sampling of the minimal distances δi from F∆.
This is an approximation because in practice, the rows m+ 1 to n are not stochastically independent
because of the triangular inequality that holds for metrics. However, assuming i.i.d., we arrive at

FZ′(z) = F∆(z)n−m (16)

. Since Z ′ has positive support its expectation can then be evaluated as:

EZ′∼FZ′ [Z
′] =

+∞∫
0

(1− FZ′(z)) dz =

+∞∫
0

(
1− F∆(z)n−m

)
dz (17)

=

+∞∫
0

(
1− FD(z)m(n−m)

)
dz ≥

+∞∫
0

(
1− FD(z)(n−1)

)
dz (18)
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(a) PCA (b) Isomap (c) t-SNE

(d) UMAP (e) AE (f) TopoAE

Figure A.2: A depiction of all latent spaces obtained for the SPHERES data set. TopoAE used
batch-size 28. This is an enlarged version of the figure shown in Section 5.2.

The independence assumption leading to Z ′ results in overestimating the variance of the drawn
minima δi. Thus, the expected maximum of those minima, E[Z ′], is overestimating the actual
expectation of the maximum E[Z], which is why Eq. 17 to Eq. 18 constitute an upper bound of
E[Z], and equivalently, an upper bound of E

[
dH(X,X

(m))
]
. When increasing m, E[dH(X,X

m)]
decreases monotonically since for a particular m, we draw n−m samples from the minimal distance
distribution F∆, and their maximum determines the Hausdorff distance. In contrast, our preliminary
upper bound on the left-hand side of Eq. 18 forms a downwards-facing parabola due to the quadratic
form in the exponent. This indicates that a tighter bound is achieved for m 6= n by using the minimal
subsample size of m = 1.

A.4 SYNTHETIC DATASET

SPHERES consists of eleven high-dimensional 100-spheres living in 101−dimensional space. Ten
spheres of radius r = 5 are each shifted in a random direction (by adding the same Gaussian noise
vector per sphere). To this end, we draw ten d-dimensional Gaussian vectors followingN (0, I(10/

√
d))

for d = 101. Crucially, to add interesting topological information to the data set, the ten spheres are
enclosed by an additional larger sphere of radius 5r. The spheres were generated using the library
scikit-tda.

A.5 ARCHITECTURES AND HYPERPARAMETER TUNING

Architectures for synthetic data set For the synthetically generated dataset we use a simple
Multilayer perceptron architecture consisting of two hidden layer with 32 neurons each both encoder
and decoder and a bottleneck of two neurons such that the sequence of hidden-layer neurons is
32 − 32 − 2 − 32 − 32. ReLU non-linearities and batch normalization were applied between the
layers excluding the output layer and the bottleneck layer. The networks were fit using mean squared
error loss.
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(a) PCA (b) t-SNE

(c) UMAP (d) AE (e) TopoAE (proposed)

Figure A.3: Latent representations of the FASHION-MNIST data set. TopoAE used batch-size 95.
This is a larger extension of the figure shown in Section 5.2.

(a) PCA (b) t-SNE

(c) UMAP (d) AE (e) TopoAE (proposed)

Figure A.4: Latent representations of the MNIST data set. TopoAE used batch-size 126. This is a
larger extension of the figure shown in Section 5.2.

Architectures for real world data sets For the MNIST, FASHION-MNIST, and CIFAR-10
datasets, we use an architecture inspired by DeepAE (Hinton & Salakhutdinov, 2006). This architec-
ture is composed of 3 layers of hidden neurons of decreasing size (1000− 500− 250) for the encoder
part, a bottleneck of two neurons, and a sequence of three layers of hidden neurons in decreasing size
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(a) PCA (b) t-SNE

(c) UMAP (d) AE (e) TopoAE (proposed)

Figure A.5: Latent representations of the CIFAR-10 data set. TopoAE used batch-size 82. This is a
larger extension of the figure shown in Section 5.2.

(250− 500− 1000) for the decoder. In contrast to the originally proposed architecture, we applied
ReLU non-linearities and batch normalization between the layers as we observed faster and more
stable training. For the non-linearities of the final layer, we applied the tanh non-linearity, such that
the image of the activation matches the range of input images scaled between −1 and 1. Also here,
we applied mean squared error loss.

All neural network architectures were fit using Adam and weight-decay of 10−5.

Hyperparameter tuning For hyperparameter tuning we apply random sampling of hyperparam-
eters using the scikit-optimize library (scikit-optimize contributers, 2018) with 20 calls per
method on all datasets. We select the best model parameters in terms of KL0.1 on the validation split
and evaluate and report it on the test split. To estimate performance means and standard deviations,
we repeated the evaluation on an independent test split 5 times by using the best parameters (as
identified in the hyperparameter search on the validation split) and refitting the models by resampling
the train-validation split.

Neural networks For the neural networks we sample the learning rate log-uniformly in the range
10−4 − 10−2, the batch-size uniformly between 16 and 128, and for the TopoAE method we sample
the regularization strength log-uniformly in the range 10−1 − 3. Each model was allowed to train for
at most 100 epochs, whereas we applied early stopping with patience = 10 based on the validation
loss.

Competitor methods For t-SNE, we sample the perplexity uniformly in the range 5− 50 and the
learning rate log-uniformly in the range 10− 1000. For Isomap and UMAP, the number of neighbors
included in the computation was varied between 15 − 500. For UMAP, we additionally vary the
min_dist parameter uniformly between 0 and 1.

A.6 MEASURING THE QUALITY OF LATENT REPRESENTATIONS

Next to the reconstruction error (if available; please see the paper for a discussion on this), we
use a variety of NLDR metrics to assess the quality of our method. Our primary interest concerns
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the quality of the latent space because, among others, it can be used to visualise the data set. We
initially considered classical quality metrics from non-linear dimensionality reduction (NLDR)
algorithms (see Bibal & Frénay (2019); Gracia et al. (2014); van der Maaten et al. (2009) for more
in-depth descriptions), namely

(1) the root mean square error (`-RMSE) between the distance matrix of the original space and the
latent space (as mentioned in the main text, this is not related to the reconstruction error),

(2) the mean relative rank error (`-MRRE), which measures the changes in ranks of distances in the
original space and the latent space (Lee & Verleysen, 2009),

(3) the trustworthiness (`-Trust) measure (Venna & Kaski, 2006), which checks to what extent the
k nearest neighbours of a point are preserved when going from the original space to the latent
space, and

(4) the continuity (`-Cont) measure (Venna & Kaski, 2006), which is defined analogously to `-Trust,
but checks to what extent neighbours are preserved when going from the latent space to the
original space.

All of these measures are defined based on comparisons of the original space and the latent space; the
reconstructed space is not used here. As an additional measure, we calculate the Kullback–Leibler
divergence between density distributions of the input space and the latent space. Specifically, for
a point cloud X with an associated distance dist, we first use the distance to a measure density
estimator (Chazal et al., 2011; 2014b), defined as fσX (x) :=

∑
y∈X exp

(
−σ−1 dist(x, y)

2
)

, where
σ ∈ R>0 represents a length scale parameter. For dist, we use the Euclidean distance and normalise
it between 0 and 1. Given σ, we evaluate KLσ := KL

(
fσ
X ‖ fσZ

)
, which measures the similarity

between the two density distributions. Ideally, we want the two distributions to be similar because
this implies that density estimates in a low-dimensional representation are similar to the ones in the
original space.

A.7 ASSESSING THE BATCH SIZE

As we used fixed architectures for the hyperparameter search, the batch-size remains the main
determinant for the runtime of TopoAE. In Figure A.6, we display trends (linear fits) on how loss
measures vary with batch size. Addtionally, we draw runtime estimates. As we applied early stopping,
for better comparability, we approximated the epoch-wise runtime by dividing the execution time of a
run by its number of completed epochs. Interestingly, these plots suggest that the runtime grows with
decreasing batch-size (even though the topological computation is more costly for larger batch-sizes!).
In these experiments, sticking to 0−dimensional topological features we conclude that the benefit of
using mini-batches for neural network training still dominate the topological computations. The few
steep peaks most likely represent outliers (the corresponding runs stopped after few epochs, which is
why the effective runtime could be overestimated).

For the loss measures, we see that reconstruction loss tends to decrease with increasing batch-size,
while our topological loss tends to increase with increasing batch-size (despite normalization). The
second observation might be due to larger batch-size enabling more complex data point arrangements
and corresponding topologies.

A.8 EXTENDING TO VARIATIONAL AUTOENCODERS

In Figure A.7 we sketch a preliminary experiment, where we apply our topological constraint to
variational autoencoders for the SPHERES dataset. Also here, we observe that our constraint helps
identifying the nesting structure of the enclosing sphere.

A.9 TOPOLOGICAL DISTANCE CALCULATIONS

To assess the topological fidelity of the resulting latent spaces, we calculate several topological
distances between the test data set (full dimensionality) and the latent spaces obtained from each
method (two dimensions). More precisely, we calculate (i) the 1st Wasserstein distance (W1), (ii) the
2nd Wasserstein distance (W2), and (iii) the bottleneck distance (W∞) between the persistence
diagrams obtained from the test data set of the SPHERES data and their resulting 2D latent representa-
tions. Even though our loss function is not optimising this distance, we observe in Table A.1 that
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(a) FASHION-MNIST (b) MNIST

(c) CIFAR-10 (d) SPHERES

Figure A.6: From our hyperparameter searches we scatter batch-sizes against three measures of
interest: Topological Loss, Reconstruction Loss, and KL0.1, our objective for hyperparameter search.
Additionally, we draw epoch-wise runtime estimates.

(a) VAE (b) TopoVAE

Figure A.7: A depiction of latent spaces obtained for the SPHERES data set with variational autoen-
coders (VAEs). Here, VAE represents a standard MLP-based VAE, whereas TopoVAE represents the
same architecture plus our topological constraint.
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Table A.1: Various topological distances calculated between the test data set and the corresponding
latent space. For computational efficiency reasons, we used subsamples of sizem = 500 and repeated
the process 10 times. Individual cells thus contain a mean and a standard deviation.

Method W1 W2 W∞

Isomap 4.32±0.037 0.477±0.0045 0.165±0.00096
PCA 4.42±0.053 0.476±0.0046 0.158±0.00108
t-SNE 4.38±0.038 0.478±0.0045 0.164±0.00094
UMAP 4.47±0.042 0.478±0.0045 0.160±0.00092
AE 3.99±0.037 0.469±0.0053 0.154±0.00128

TopoAE 3.73±0.076 0.459±0.0055 0.152±0.00268

the topological distance of our method (“TopoAE”) is always the lowest among all the methods. In
particular, it is always smaller than the topological distance of the latent space of the autoencoder
architecture; this is true for all distance measures, even though W∞, for example, is known to be
susceptible to outliers. Said experiment serves as a simple “sanity check” as it demonstrates that
the changes induced by our method are beneficial in that they reduce the topological distance of the
latent space to the original data set. For a proper comparison of topological features between the two
sets of spaces, a more involved approach would be required, though.
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A
B

C

d1

d3
d2

(a) X

A

B
C

d2
d3

d1

(b) Z

Figure A.8: An undesirable configuration of the latent space of three non-collinear points. Pairwise
distances are shown as dotted lines. This configuration results in equal persistence diagrams for X
and Z . We prevent this by not explicitly minimising the distances between persistence diagrams but
by instead including the persistence pairing information.

A.10 ALTERNATIVE LOSS FORMULATIONS

Our choice of loss function was motivated by the observation that only aligning the persistence
diagrams between mini-batches of X and Z can lead to degenerate or ‘meaningless’ latent spaces.
As a simple example (see Figure A.8 for a visualisation), imagine three non-collinear points in the
input space and the triangle they are forming. Now assume that the latent space consists of the same
triangle (in terms of its side lengths) but with permuted labels. A loss term of the form

L′ :=
∥∥AX[πX]−AZ

[
πZ
]∥∥2

(19)

only measures the distance between persistence diagrams (which would be zero in this situation) and
would not be able to penalise such a configuration.
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