
Under review as a conference paper at ICLR 2018

GROUND-TRUTH ADVERSARIAL EXAMPLES

Anonymous authors
Paper under double-blind review

ABSTRACT

The ability to deploy neural networks in real-world, safety-critical systems is
severely limited by the presence of adversarial examples: slightly perturbed in-
puts that are misclassified by the network. In recent years, several techniques have
been proposed for training networks that are robust to such examples; and each
time stronger attacks have been devised, demonstrating the shortcomings of exist-
ing defenses. This highlights a key difficulty in designing an effective defense: the
inability to assess a network’s robustness against future attacks. We propose to ad-
dress this difficulty through formal verification techniques. We construct ground
truths: adversarial examples with a provably-minimal distance from a given input
point. We demonstrate how ground truths can serve to assess the effectiveness
of attack techniques, by comparing the adversarial examples produced by those
attacks to the ground truths; and also of defense techniques, by computing the dis-
tance to the ground truths before and after the defense is applied, and measuring
the improvement. We use this technique to assess recently suggested attack and
defense techniques.

1 INTRODUCTION

While machine learning, and in particular neural networks, have seen significant success, recent
work Szegedy et al. (2014) has shown that an adversary can cause unintended behavior by per-
forming slight modifications to the input at test-time. In neural networks used as classifiers, these
adversarial examples are produced by taking some normal instance that is classified correctly, and
applying a slight perturbation to cause it to be misclassified (or even misclassified as a specific target
label chosen by the adversary). This phenomenon, which has been shown to affect all state-of-the-art
networks, poses a significant hindrance to deploying neural networks in safety-critical settings.

Many effective techniques have been proposed for generating adversarial examples Szegedy et al.
(2014); Goodfellow et al. (2014); Moosavi-Dezfooli et al. (2015); Carlini & Wagner (2017a); Tramèr
et al. (2017); and, conversely, several techniques have been proposed for training networks that are
more robust to these examples Huang et al. (2015); Zheng et al. (2016); Hendrik Metzen et al.
(2017); Hendrycks & Gimpel (2017); Madry et al. (2017); Tramèr et al. (2017). Unfortunately, it
has proven difficult to accurately assess the robustness of any given defense by evaluating it against
existing techniques for generating adversarial examples. In several cases, a defensive technique that
was at first thought to produce robust networks was later shown to be susceptible to new kinds of
attacks Carlini & Wagner (2017b). This ongoing cycle thus cast a doubt on any newly-proposed
defensive technique.

In recent years, new techniques have been proposed for the formal verification of neural net-
works Pulina & Tacchella (2010; 2012); Katz et al. (2017b); Huang et al. (2016); Ehlers (2017).
These techniques take a network and a desired property, and formally prove that the network satis-
fies the property — or provide an input for which the property is violated, if such an input exists.
Specifically, for a given input point and some allowed amount of distortion under a given metric, ver-
ification can be used for finding an adversarial example or for soundly proving that no such examples
exist within the allowed distortion. While verification tends to be significantly slower in finding ad-
versarial examples than the aforementioned heuristic-based techniques Pulina & Tacchella (2012);
Katz et al. (2017a;b), it can provide the much-needed rigor for assessing the adversarial robustness
of neural networks.

1

Under review as a conference paper at ICLR 2018

In this paper we propose a method for using formal verification to assess the effectiveness of tech-
niques for producing adversarial examples or defending against them. The key idea is to examine
networks and apply verification to identify ground-truth adversarial examples. Formally, given a
neural network F , a distance metric d, and an input x, we say that another input x′ is a ground-truth
adversarial example for x if it is the nearest point (with respect to the metric d) such that F assigns
different labels to x and x′. It follows that all points whose distance to x is smaller than the distance
between x and x′ are assigned the same label as x. The distance to the ground truth is thus an
indication of how robust the network is to adversarial attacks at point x. Ground truths can serve
multiple purposes: (i) if ground-truth adversarial examples are known for a set of points drawn from
some meaningful distribution thought to represent real-world inputs, they can serve to estimate the
robustness of a network as a whole, against any possible attack; (ii) they can be used for assessing
attack techniques, by measuring the proximity of the adversarial examples that these attacks produce
to the ground truths; and (iii) they can be used for assessing the effectiveness of defense techniques,
by computing new ground truths for the hardened network and comparing them to the ground truths
of the original network.

Our contributions can thus be summarized as follows:

• We suggest to use ground-truth adversarial examples, the provably closest adversarial with
respect to some distance metric, as a tool for studying attacks and defenses.

• We find that first-order attack algorithms often produce near-optimal results, i.e. results
that are close to a ground-truth adversarial example.

• We study adversarial training and find that it does increase robustness and does not overfit
to a specific attack, as long as the attack is iterative.

The rest of this paper is organized as follows. In Section 2 we provide some necessary background.
We then describe the experiments that we conducted in Section 3, and analyze their results in Sec-
tion 4. Finally, we conclude with Section 5.

2 BACKGROUND AND NOTATION

Neural network notation. We regard a neural network as a function F (·) consisting of multiple
layers F = Fn ◦ Fn−1 ◦ · · · ◦ F1 ◦ F0. In this paper we exclusively study feed-forward neural
networks used for classification, where Fn is the softmax activation function. We refer to the output
of the second-to-last-layer of the network (the input to Fn) as the logits and denote this as Z =
Fn−1 ◦ · · · ◦ F1 ◦ F0. We define `F (x, y) to be the cross-entropy loss of the network F on instance
x with true label y.

We focus here on networks for classifying greyscale MNIST LeCun et al. (1998) images. Input
images with width W and height H are represented as points in the space [0, 1]W ·H .

Adversarial examples. Szegedy et al. (2014) Given an input x, classified originally as target t =
F (x), and a new desired target t′ 6= t, we call x′ a targeted adversarial example if F (x′) = t′ and
x′ is close to x under some given distance metric. In this paper we focus on the L∞ and L1 distance
metrics. In the non-targeted case, t′ is not provided and the only requirement is that F (x′) 6= F (x).

Generating adversarial examples. We consider three popular methods for constructing adversarial
examples:

1. The Fast Gradient Method (FGM) Goodfellow et al. (2014) is a one-step algorithm that
takes a single step in the direction of the gradient.

x′ = FGM(x) = clip[0,1](x+ εsign(∇`F (x, y)))

where ε controls the step size taken, and clip ensures that the adversarial example resides
in the valid image space from 0 to 1.

2

Under review as a conference paper at ICLR 2018

2. The Basic Iterative Method (BIM) Kurakin et al. (2016) (sometimes also called Projected
Gradient Descent Madry et al. (2017)) can be regarded as an iterative application of the
fast gradient method. Initially it lets x′0 = x and then uses the update rule

x′i+1 = clip[x−α,x+α](FGM(x′i))

Intuitively, in each iteration this attack takes a step of size ε as per the FGM method, but it
iterates this process while keeping each x′i within the α-sized ball of x.

3. The Carlini and Wagner (CW) Carlini & Wagner (2017a) method is an iterative attack
that constructs adversarial examples by approximately solving the minimization problem
min d(x, x′) such that F (x′) = t′ for the attacker-chosen target t′, where d(·) is an appro-
priate distance metric. Since the constrained optimization is difficult, instead they choose
to solve min d(x, x′) + c · g(x′) where g(x′) is a loss function that encodes how close x′ is
to being adversarial. Specifically, they set

g(x′) = max(max{Z(x′)i : i 6= t′} − Z(x′)t′ , 0).

Z(·), the logits of the network, are used instead of the softmax output because it was found
to provide superior results. Although it was originally constructed to optimize for L2 and
L∞ distortion, we add the ability to use it with L1 distortion in this paper.

Neural network verification. Neural networks excel at generalization: they are trained over a
small set of inputs, and can then perform well, in general, on previously-unseen inputs. However,
the intended use of deep neural networks as controllers in safety-critical systems Julian et al. (2016);
Bojarski et al. (2016), on which human lives will depend, has created an interest in formally proving
that a network behaves as expected for any possible input. In software and hardware systems, the
rigorous checking that a system satisfies a prescribed property for any possible input is referred
to as verification; and in recent years, several techniques have emerged for verifying deep neural
networks Pulina & Tacchella (2010; 2012); Huang et al. (2016); Ehlers (2017); Katz et al. (2017b).

Here we focus on the recently-proposed Reluplex algorithm Katz et al. (2017b): an approach that can
effectively tackle networks with piecewise-linear activation functions, such as rectified linear units
(ReLUs) or max-pooling layers. Reluplex takes as input a network F and a property ϕ, given as a
convex set of linear constraints on the network’s inputs and outputs, and checks whether F satisfies
ϕ (this problem is NP-complete Katz et al. (2017b)). Reluplex is a simplex-based SMT solver, and
it operates by repeatedly finding inputs that satisfy the network’s linear constraints (the weighted
sums and the constraints in ϕ) and then adjusting them so that they also satisfy the network’s non-
linear constraints (the activation functions). Reluplex is known to be sound and complete, making it
suitable for establishing ground truths.

In Katz et al. (2017b) it is shown that Reluplex can be used to determine whether there exists an ad-
versarial example within distance δ of some input point x. This is performed by encoding the neural
network itself and the constraints regarding δ as a set of linear equations and ReLU constraints, and
then having Reluplex attempt to prove the property that “there does not exist an input point within
distance δ of x that is assigned a different label than x”. Reluplex either responds that the property
holds, in which case there is no adversarial example within distance δ of x, or it returns a counter-
example which constitutes the sought-after adversarial input (a similar query can test the existence
of targeted adversarial examples). By invoking Reluplex iteratively and applying binary search, one
can approximate the optimal δ (i.e., the largest δ for which no adversarial example exists) up to a
desired precision Katz et al. (2017b).

The proof-of-concept implementation of Reluplex described in Katz et al. (2017b) supported only
networks with the ReLU activation function, and could only handle the L∞ norm as a distance
metric. Here we use a simple encoding that allows us to use it for the L1 norm as well.

Adversarial training. Adversarial training Szegedy et al. (2014) is perhaps the first proposed de-
fense against adversarial examples, and is a conceptually straightforward approach. The defender
trains a classifier, generates adversarial examples for that classifier, retrains the classifier using the
adversarial examples, and repeats.

3

Under review as a conference paper at ICLR 2018

Recent work has shown Madry et al. (2017) that for networks with sufficient capacity, adversar-
ial training can be an effective defense even against the most powerful attacks today. However, it
has been shown that performing adversarial training with a weaker attack, such as the fast gradient
method, does not increase robustness substantially against stronger attacks. It is an open question
whether adversarial training using stronger attacks actually increases robustness against arbitrary
adversarial examples, or whether such training would only be effective against known attacks but
would be vulnerable against future, stronger attacks. In our evaluation below, we find that adver-
sarially training a small network using strong iterative attacks does indeed increase its adversarial
robustness.

3 MODEL SETUP

Standard MNIST model. The problem of neural network verification that we consider here is an
NP-complete problem Katz et al. (2017b), and despite recent progress only networks with a few
hundred nodes can be soundly verified. Thus, in order to evaluate our approach we trained a small
network over the MNIST data set. This network is a fully-connected, 3-layer network that achieves a
97% accuracy despite having only 20k weights and consisting of fewer than 100 hidden neurons (24
in each layer). As verification of neural networks becomes more scalable in the future, our approach
could become applicable to larger networks and additional data sets.

Adversarially trained MNIST model. We construct our adversarially trained network as described
in Madry et al. (2017). To summarize the process, we perform training in the usual manner, with
the following modification: given the current model Fθ, after a given minibatch {xi, yi} is selected,
we construct a new minibatch {x′i, yi} so that x′i is an adversarial example. Specifically, we set
x′i = xi + δi where ‖δi‖∞ ≤ ε, and Fθ(x′i) 6= yi. Madry et al. (2017) use the basic iterative method
described in Section 2 to generate these adversarial examples.

We applied this adversarial training to our small network described above. Because our network
capacity is smaller than that of the original network used by Madry et al. (2017), we set ε to 0.15
instead of the original 0.3.

Reluplex implementation. For verification, we use the proof-of-concept implementation of Relu-
plex available online Katz et al. (2017c). The only non-linear operator that this implementation was
originally designed to support is the ReLU function, but we observe that it can support also max
operators using the following encoding:

max(x, y) = ReLU(x− y) + y

This allows the encoding of absolute values as well:

|x| = max(x,−x) = ReLU(2x)− x

Because the L1 distance between two points is defined as a sum of absolute values, using this
encoding we were able to use the tool from Katz et al. (2017b) to measure distances with the L1

norm in addition to the L∞ norm, without modifying the tool’s code. (Note that this encoding can be
used to encode max-pooling layers into Reluplex, although we did not experiment with such layers
in this paper.) We point out, however, that an increase in the number of ReLU constraints in the input
adversely affects Reluplex’s performance. For example, in the case of the MNIST dataset, encoding
an L1 distance constraint entails adding a ReLU operator for each of the 784 input coordinates; and
indeed, as we show below, experiments using L1 typically took longer to finish than those using
L∞.

Finding ground truths. Each individual experiment that we conducted included a network F , a dis-
tance metric d ∈ {L1, L∞}, an input point x, a target label t′ 6= F (x), and an initial input x′init for
which F (x′init) = t′. The goal of the experiment was then to find a ground-truth example xt′ , such
that F (xt′) = t′ and d(x, xt′) is minimal. As explained in Section 2, this is performed by iteratively
invoking Reluplex and performing a binary search. This procedure is given as Algorithm 1.

4

Under review as a conference paper at ICLR 2018

Algorithm 1 Find Ground Truth (F, d, x, t′, x′init)

1: δmin := 0
2: δmax := ‖x− x′init‖d
3: x′best := x′init

4: while δmax − δmin > 10−4 do
5: δ := (δmax + δmin)/2
6: Invoke Reluplex to test whether ∃x′. ‖x− x′‖d ≤ δ ∧ F (x′) = t′

7: if x′ exists then
8: δmax := ‖x− x′‖d
9: x′best := x′

10: else
11: δmin := δ
12: return δmax, x

′
best

Intuitively, δmax indicates the distance to the closest adversarial input currently known, and the
distance to the ground-truth input is known to be in the range between δmin and δmax. Thus, δmax
is initialized using the distance of the initial example provided via x′init, and δmin is initialized to 0.
The search procedure iteratively shrinks the range δmax − δmin until it is below a certain threshold
(we used 10−4 for our experiments). It then returns δmax as the distance to the ground truth, and
this is guaranteed to be accurate up to the specified precision. The ground-truth input itself is also
returned.

For the initial x′init in our experiments we used an adversarial input found using the CW attack.
This was done to improve performance: while the experiment would work with any point x′init
that is labeled t′, Reluplex invocations are computationally expensive, and so it is better to start
with an x′init that is as close as possible to x in order to reduce the number of required iterations
until δmax − δmin is sufficiently small. This was another reason due to which experiments using
the L1 distance metric were slower than those using L∞ (in addition to the higher number of ReLU
constraints): the initial distances when using L1 were typically much larger, which required a higher
number of iterations.

4 EVALUATION

For evaluation purposes we arbitrarily selected 10 source images with known labels from the MNIST
test set. We considered two neural networks — the one described in Section 3, denoted N , and also
a version of N that had been trained with adversarial training as described in Section 3, denoted N̄ .
We also considered two distance metrics, L1 and L∞. For every combination of neural network,
distance metric and labeled source image x, we considered each of the 9 other possible labels for
x. For each of these we used the CW attack to produce an initial targeted adversarial example, and
then used Algorithm 1 to search for a ground-truth example. An analysis of the results is given in
Table 1, and a graphical depiction of some of results appears in Fig. 1. A more extensive depiction
appears in the appendix at the end of the paper.

Each major row of Table 1 corresponds to a specific neural network and distance metric (as indicated
in the first column), and describes 90 individual experiments (10 inputs, times 9 target labels for each
input). The first sub-row within each row considers just those experiments for which Algorithm 1
terminated successfully, whereas the second sub-row considers all 90 examples, including those
where Algorithm 1 timed out. Whenever a timeout occurred, we considered the last (smallest) δmax
that was discovered by the search before it timed out as the algorithm’s output. The other columns
of the table indicate the average distance to the adversarial examples found by the CW attack, the
average distance to the ground-truth adversarial examples found by our technique, and the average
improvement rate of our technique over the CW attack.

Performance-wise, our experiments displayed a high degree of variability. The number of iterations
required by Algorithm 1 ranged from 1 to 19, and was affected by the test point, the target label, the
network, the distance metric and the level of precision that we used (10−4). The time each iteration
took also varied significantly, between a few seconds and several days, with a median time of 2.3
hours.

5

Under review as a conference paper at ICLR 2018

Original (unmodified) MNIST digits:

Adversarial examples on baseline network N , using the CW attack:

Ground truth adversarial examples on baseline network N , using Reluplex:

Adversarial examples on adversarially trained network N̄ , using the CW attack:

Ground truth adversarial examples on adversarially trained network N̄ , using Reluplex:

Figure 1: Our 10 test points, and non-targeted adversarial inputs for these points in our various test settings.

Table 1: Evaluating our technique on the MNIST dataset

#Points CW Ground Truth % Improvement

N , L∞ 39/90 0.042 0.039 11.346
90/90 0.063 0.061 6.402

N , L1 12/90 2.919 2.69 19.947
90/90 7.551 7.488 3.375

N̄ , L∞ 83/90 0.215 0.197 11.423
90/90 0.219 0.206 10.587

N̄ , L1 71/90 7.205 7.13 5.691
90/90 8.187 8.128 4.491

Below we analyze the results in order to draw conclusions regarding the CW attack and the defense
of Madry et al. (2017). While these results naturally hold only for the networks we used and the
inputs we tested, we believe they provide some intuition as to how well the tested attack and defense
techniques perform in general. We intend to make our data publicly available, and we encourage
others to (i) evaluate new attack techniques using the ground-truth examples we have already dis-
covered; and (ii) use this approach for evaluating new defensive techniques.

4.1 EVALUATING ATTACKS

Iterative attacks produce near-optimal adversarial examples. As shown by Table 1, the adver-
sarial examples produced by the CW attack are, on average, within 11.4% of the ground truth when
using the L∞ norm, and within 5.7% of the ground truth when using L1 (we consider here just the
terminated experiments, and ignore the N,L1 category where too few experiments terminated to
draw a meaningful conclusion).

Additional experiments that we ran (not displayed in Table 1) indicated that the iterative CW attack
performs substantially better than the single-step FGM method. On theN network withL∞ distance
metric, with ε set to 0.12 which is twice the average distance to the ground truth, FGM was only able
to generate a targeted adversarial example in 39% of the cases. This is to be expected: FGM was
designed to show the linearity of neural networks, not to produce high-quality adversarial examples.

6

Under review as a conference paper at ICLR 2018

Table 2: Comparing the 37 instances on which Algorithm 1 terminated for both N,L∞ and N̄ , L∞.

#Points CW Ground Truth % Improvement

N , L∞ 37/37 0.043 0.04 11.814
N̄ , L∞ 37/37 0.185 0.171 10.624

There is still room for improving iterative attacks. Even on this very small and simple neural
network, we observed that in many instances the ground-truth adversarial example has a 30% or
40% lower distortion rate than the best iterative adversarial example.

The cause for this is simple: gradient descent only finds a local minimum, not a global minimum.
We have found that if we take a small step from the original image in the direction of the ground
truth, then gradient descent will converge to the ground truth much more often. This is in line with
the suggestion raised in Carlini & Wagner (2017a) and Tramèr et al. (2017), that it is useful to take
a random step before searching for the nearest adversarial example.

Suboptimal results are correlated. We have found that whenever the iterative attack performs
suboptimally compared to the ground truths for a specific input and target label, it will often perform
poorly for that input and many other target labels as well. These instances are not always of a large
absolute distortion — but rather, a large relative gap on one instance often indicates that the relative
gap will be large for other target labels. For instance, on the adversarially trained network attacked
under L∞ distance, all ground-truth adversarial examples for one of the instances (the image of a
“9” that we used) were between 21% and 47% better than the iterative attack results.

When we examined the most extreme cases in which this phenomenon was observed, we found that,
similarly to the case described above, the large gap was caused by gradient descent initially leading
away from the ground truth for most targets, resulting in the discovery of an inferior, local minimum.

4.2 EVALUATING DEFENSES

For the purpose of evaluating the defensive technique of Madry et al. (2017), we compared the
N,L∞ and N̄ , L∞ experiments (the L1 experiments were disregarded because of the small num-
ber of experiments that terminated for the N,L1 case). Specifically, we compared the N,L∞ and
N̄ , L∞ experiments on the subset of 37 instances that terminated for both experiments. The results
are analyzed in Table 2.

The defense of Madry et al. (2017) is effective. Our evaluation suggests that the Madry defense
is indeed effective: it improves the distance to the ground truth by an average of 427% (from an
average of 0.04 to an average of 0.171) on our small network.

Another interesting observation is that while the Madry defense improves the overall situation, we
found several points for which it actually made things worse — i.e., the ground truth for the hardened
network was smaller than that of the original network. This behavior was observed for 7 out of the
37 aforementioned experiments, with the average percent of degradation being 12.8%. This seems
to highlight the necessity of evaluating the effectiveness of a defensive technique, and the robustness
of a network in general, over a large dataset of points. The question of how to pick a “good” set
of points that would adequately represent the behavior of the network remains open; one possible
direction is to use a clustering-based approach Gopinath et al. (2017).

Training on iterative attacks does not overfit. Overfitting is an issue that is often encountered
when performing adversarial training, meaning that the hardened network becomes specifically tai-
lored for the type of attack used during training. When this occurs, the hardened network will have
high accuracy against that specific attack, but low accuracy on other attacks. We have found no
evidence of overfitting when performing the adversarial training of Madry et al. (2017): the ground
truths improve on the CW attack by approximately 11.4% on both the hardened and untrained net-
works. This indicates that the Madry network did not become more susceptible to the CW attack as
a result of its hardening using a different technique.

7

Under review as a conference paper at ICLR 2018

The defense of Madry et al. (2017) makes networks easier to formally analyze. For both the L∞
and L1 distance metrics, it seems significantly easier to analyze the robustness of the adversarially
trained network: when using L∞, Algorithm 1 terminated on 83 of the 90 instances on the adver-
sarially trained network, versus 39 on the standard network; and for L1, the termination rate was 71
for the hardened network compared to just 12 on the standard network. We are still looking into the
reason for this behavior. Naively, one might assume that, because the initial adversarial examples
x′init provided to Algorithm 1 are farther away in the hardened network, these experiments would
take longer to converge — but we see an opposite behavior.

One possible explanation could be that the adversarially trained network makes less use of the non-
linear ReLU units, and is therefore more amenable to analysis with Reluplex. We empirically
checked that this was not the case. For a given instance, we tracked, for each ReLU unit in the
network, whether it was in the saturated zero region, or the linear x = y region. We then computed
the nonlinearity of the network as the number of units that change from the saturated region to the
linear region, or vice versa, when going from the given input to the discovered adversarial example.
We found that there was no statistically significant difference between the nonlinearity of the two
networks.

5 CONCLUSION

Neural networks hold great potential as controllers in safety-critical systems, but their susceptibility
to adversarial examples poses a significant hindrance. The development of defensive techniques
is difficult when they are measured only against existing attacks. The burgeoning field of neural
network verification can mitigate this problem, by allowing us to obtain an absolute measurement
of the usefulness of a defense, regardless of the attack to be used against it.

In this paper, we introduce ground-truth adversarial examples and show how to construct them with
formal verification approaches. We evaluate one recent attack Carlini & Wagner (2017a) and find
it often produces adversarial examples whose distance is within 5.9% to 12.9% of optimal, and one
defense Madry et al. (2017), and find that it increases distortion to the nearest adversarial example
by an average of 427% on the MNIST dataset for our tested networks. To the best of our knowledge,
this is the first proof of robustness increase for a defense.

Currently available verification tools afford limited scalability, which means experiments can only
be conducted on small networks. However, as better verification techniques are developed, this limi-
tation is expected to be mitigated. Orthogonally, when preparing to use a neural network in a safety-
critical setting, users may choose to design their networks as to make them particularly amenable
to verification techniques — e.g., by using specific activation functions or network topologies — so
that strong guarantees about their correctness and robustness may be obtained.

REFERENCES

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. Jackel, M. Monfort,
U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba. End to end learning for self-driving cars.
arXiv preprint arXiv:1604.07316, 2016.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. IEEE
Symposium on Security and Privacy, 2017a.

Nicholas Carlini and David Wagner. Adversarial examples are not easily detected: Bypassing ten
detection methods. arXiv preprint arXiv:1705.07263, 2017b.

R. Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In Proc. 15th Int.
Symp. on Automated Technology for Verification and Analysis (ATVA), 2017.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

D. Gopinath, G. Katz, C. Păsăreanu, and C. Barrett. Deepsafe: A data-driven approach for checking
adversarial robustness in neural networks. arXiv preprint arXiv:1710.00486, 2017.

8

Under review as a conference paper at ICLR 2018

Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On detecting adversarial
perturbations. In International Conference on Learning Representations, 2017. arXiv preprint
arXiv:1702.04267.

Dan Hendrycks and Kevin Gimpel. Early methods for detecting adversarial images. In International
Conference on Learning Representations (Workshop Track), 2017.

Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba Szepesvári. Learning with a strong adver-
sary. CoRR, abs/1511.03034, 2015.

X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety verification of deep neural networks.
arXiv preprint arXiv:1610.06940, 2016.

K. Julian, J. Lopez, J. Brush, M. Owen, and M. Kochenderfer. Policy compression for aircraft
collision avoidance systems. In Proc. 35th Digital Avionics Systems Conf. (DASC), pp. 1–10,
2016.

G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Towards proving the adversarial
robustness of deep neural networks. In Proc. 1st. Workshop on Formal Verification of Autonomous
Vehicles (FVAV), pp. 19–26, 2017a.

G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: An efficient SMT solver for
verifying deep neural networks. In Proc. 29th Int. Conf. on Computer Aided Verification (CAV),
pp. 97–117, 2017b.

G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex, 2017c. https:
//github.com/guykatzz/ReluplexCav2017.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world. In
International Conference on Learning Representations (Workshop Track), 2016.

Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of handwritten digits,
1998.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. arXiv preprint arXiv:1511.04599, 2015.

L. Pulina and A. Tacchella. An abstraction-refinement approach to verification of artificial neural
networks. In Proc. 22nd Int. Conf. on Computer Aided Verification (CAV), pp. 243–257, 2010.

L. Pulina and A. Tacchella. Challenging SMT solvers to verify neural networks. AI Communications,
25(2):117–135, 2012.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. 2014.

F. Tramèr, A. Kurakin, N. Papernot, D. Boneh, and P. McDaniel. Ensemble adversarial training:
Attacks and defenses. arXiv preprint arXiv:1705.07204, 2017.

Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. Improving the robustness of deep
neural networks via stability training. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4480–4488, 2016.

9

https://github.com/guykatzz/ReluplexCav2017
https://github.com/guykatzz/ReluplexCav2017

Under review as a conference paper at ICLR 2018

Appendix
Algorithm 1, N , L∞, Target Label

0 1 2 3 4 5 6 7 8 9

So
ur

ce
L

ab
el

9
8

7
6

5
4

3
2

1
0

(a)

CW, N , L∞, Target Label
0 1 2 3 4 5 6 7 8 9

So
ur

ce
L

ab
el

9
8

7
6

5
4

3
2

1
0

(b)

Figure 2: Adversarial examples constructed on a standard MNIST classifier under theL∞ distance metric using
(left) Reluplex and (right) Carlini and Wagner’s attack.

Algorithm 1, N̄ , L∞, Target Label
0 1 2 3 4 5 6 7 8 9

So
ur

ce
L

ab
el

9
8

7
6

5
4

3
2

1
0

(a)

CW, N̄ , L∞, Target Label
0 1 2 3 4 5 6 7 8 9

So
ur

ce
L

ab
el

9
8

7
6

5
4

3
2

1
0

(b)

Figure 3: Adversarial examples constructed on a adversarially trained MNIST classifier under the L∞ distance
metric using (left) Reluplex and (right) Carlini and Wagner’s attack.

10

Under review as a conference paper at ICLR 2018

Algorithm 1, N , L1, Target Label
0 1 2 3 4 5 6 7 8 9

So
ur

ce
L

ab
el

9
8

7
6

5
4

3
2

1
0

(a)

CW, N , L1, Target Label
0 1 2 3 4 5 6 7 8 9

So
ur

ce
L

ab
el

9
8

7
6

5
4

3
2

1
0

(b)

Figure 4: Adversarial examples constructed on a standard MNIST classifier under the L1 distance metric using
(left) Reluplex and (right) Carlini and Wagner’s attack.

Algorithm 1, N̄ , L1, Target Label
0 1 2 3 4 5 6 7 8 9

So
ur

ce
L

ab
el

9
8

7
6

5
4

3
2

1
0

(a)

CW, N̄ , L1, Target Label
0 1 2 3 4 5 6 7 8 9

So
ur

ce
L

ab
el

9
8

7
6

5
4

3
2

1
0

(b)

Figure 5: Adversarial examples constructed on a adversarially trained MNIST classifier under the L1 distance
metric using (left) Reluplex and (right) Carlini and Wagner’s attack.

11

	Introduction
	Background and Notation
	Model Setup
	Evaluation
	Evaluating Attacks
	Evaluating Defenses

	Conclusion

