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ABSTRACT

Survival Analysis (time-to-event analysis) in the presence of multiple possible
adverse events, i.e., competing risks, is a challenging, yet very important problem
in medicine, finance, manufacturing, etc. Extending classical survival analysis
to competing risks is not trivial since only one event (e.g. one cause of death) is
observed and hence, the incidence of an event of interest is often obscured by other
related competing events. This leads to the nonidentifiability of the event times
distribution parameters, which makes the problem significantly more challenging.
In this work we introduce Siamese Survival Prognosis Network, a novel Siamese
Deep Neural Network architecture that is able to effectively learn from data in the
presence of multiple adverse events. The Siamese Survival Network is especially
crafted to issue pairwise concordant time-dependent risks, in which longer event
times are assigned lower risks. Furthermore, our architecture is able to directly
optimize an approximation to the C-discrimination index, rather than relying on
well-known metrics of cross-entropy etc., and which are not able to capture the
unique requirements of survival analysis with competing risks. Our results show
consistent performance improvements on a number of publicly available medical
datasets over both statistical and deep learning state-of-the-art methods.

1 INTRODUCTION

1.1 MOTIVATION

Survival analysis is a method for analyzing data where the target variable is the time to the occur-
rence of a certain adverse event. Competing risks is an extension to the classical survival analysis in
which we distinguish between multiple possible adverse events. The application of survival analysis
are numerous and include medicine, finance, manufacturing etc. While our work is applicable to all
these domains, we will mainly focus on its application to medicine, where competing risk analysis
has emerged in recent years as an important analysis and predictive tool in medicine (Glynn & Ros-
ner (2005); Wolbers et al. (2009); Satagopan et al. (2004)), where an increasingly aging population
is suffering from multiple comorbidities. For instance, studies in cardiology often record the time to
multiple disease events such as heart attacks, strokes, or hospitalization. Competing risks methods
allow for the analysis of the time to the first observed event and the type of the first event. They are
also relevant if the time to a specific event is of primary interest but competing events may preclude
its occurrence or greatly alter the chances to observe it.

1.2 RELATED WORKS

Previous work on classical survival analysis has demonstrated the advantages of deep learning over
statistical methods (Luck et al. (2017); Katzman et al. (2016); Yousefi et al. (2017)). Cox propor-
tional hazards model (Cox (1972)) is the basic statistical model for Survival Analysis. One limitation
of Cox PH model is that its time dependent risk function is the product of a linear covariate function
and a time dependent function. Katzman et al. (2016) replaced the linear covariate function with
a feed-forward neural network and demonstrated performance improvements. They used a neural
network to learn a representation which is then used as the input for the Cox PH model. However,
the problem of competing risks is much less studied, and the literature is based on classical methods
based on statistics (the Fine Gray model (Fine & Gray (1999))), classical machine learning (Ran-
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dom Survival Forest (Ishwaran et al. (2008; 2014))), multi-task learning (Alaa & van der Schaar
(2017)), etc. A challenge of the existing competing risks models is that they do not scale to datasets
where many patients and many covariates. To address this challenge, we are proposing to use a deep
learning architecture. However, designing a deep learning architecture that is able to handle sur-
vival analysis with competing risks is challenging because it needs to optimize the time-dependent
discrimination index, which is not straightforward (see next section).

1.3 CONTRIBUTIONS

In both machine learning and statistics it is common to develop predictive models and compare
them in terms of the area under the receiver operating characteristic curve or the time-dependent
discrimination index (in the survival analysis literature). The equivalence of the two metrics was
established in Heagerty & Zheng (2005). Numerous works on supervised learning (Cortes & Mohri
(2004); Yan et al. (2003); Luaces et al. (2007); Chen et al. (2013); Agarwal et al. (2005); Mayr
& Schmid (2014); Mayr et al. (2016); Schmid et al. (2016)) have shown that training the models
directly optimizing the AUC can lead to much better out-of-sample (generalization) performance (in
terms of AUC) rather than optimizing the error rate (or the accuracy). In this work, we adopt this
idea to survival analysis with competing risks. We develop a novel Siamese feed-forward neural
network (Bromley et al. (1994)) which is designed to optimize concordance and specifically, the
time-dependent discrimination index (Antolini et al. (2005)) (which is able to take competing risks
into account). This is achieved by estimating risks in a relative fashion, meaning, the risk for the
true event of a patient (i.e. the event which actually took place) must be higher than: all other risks
for the same patient and the risks for the same true event of other patients that experienced it at a
later time. Furthermore, the risks for all the causes are estimated jointly in an effort to generate
a shared representation that captures the latent structure of the data and to estimate cause-specific
risks. Because our neural network issues a joint risk for all competing events, our architecture needs
to compare different risks for the different events at different times and arrange them in a concordant
fashion (earlier time means higher risk for any pair of patients).

Unlike previous Siamese neural networks architectures (Chopra et al. (2005); Bromley et al. (1994);
Wang et al. (2017)) which were developed for different purposes such as learning the pairwise sim-
ilarity between different inputs, our architecture aims to maximize the gap between output risks
among the different inputs. Instead of learning a representation that captures the similarities be-
tween the inputs, we learn a representation that generates the highest possible difference between
the outputs. We overcome the discontinuity problem of the above metric by introducing a con-
tinuous approximation of the time-dependent discrimination function. This approximation is only
evaluated at the survival times observed in the dataset. However, training a neural network only over
the observed survival times can lead to a model that does not generalize well for other times, which
can lead to poor out of sample performance (in terms of discrimination index computed at different
times). To overcome this problem, we add a loss term (to the loss function) which for any pair of
patients, forces the survival curve of the right patient (longer survival time) to be lower than the
survival curve of the left patient (shorter survival time) up to the event time of the left patient and as
a result, improves the generalization capabilities of our algorithm.

In addition, we address the competing risks nonidentifiability problem (which arises from the in-
ability to estimate the true cause-specific survival curves from the empirical data (Tsiatis (1975)))
by generating concordant risks as opposed to true cause-specific survival curves. By avoiding the
estimation of the true cause-specific survival curves, we are able to avoid the nonidentifiability prob-
lem.

We report modest yet statistically significant improvements over the state-of-the-art methods on
survival analysis with competing risks on both synthetic as well as on real medical data. However,
we wish to remind the reader that our focus is on healthcare were even minor gains are important
because of the potential to save lives. For instance, there are 72809 patients in the SEER dataset we
used. A performance improvement even as low as 0.1% has the potential to save lives and therefore
should not be disregarded.
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2 PROBLEM FORMULATION

We consider a datasetH comprising of time-to-event information aboutN subjects who are followed
up for a finite amount of time. Each subject (patient) experiences an event D ∈ {0, 1, ..,M}, where
D is the event type. D = 0 means the subject is censored (lost in follow-up or study ended). If
D ∈ {1, ..,M}, then the subject experiences one of the events of interest (for instance, subject
develops cardiac disease). We assume that a subject can only experience one of the above events
and that the censorship times are independent of them (Lim et al. (2010); Lambert et al. (2010);
Satagopan et al. (2004); Fine & Gray (1999); Crowder (2001); Gooley et al. (1999); Tsiatis (1975)).
T is defined as the time-to-event, where we assume that time is discrete T ∈ {t1, ..., tK} and t1 = 0
(ti = 0 denotes the elapsed time since t1). Let H = {Ti, Di, xi}Ni=1, where Ti is the time-to-
event for subject i, Di is the event experienced by the subject i and xi ∈ RS are the covariates of the
subject (the covariates are measured at baseline, which may include age, gender, genetic information
etc.).

The Cumulative Incidence Function (CIF) (Fine & Gray (1999)) computed at time t for a certain
event D is the probability of occurrence of a particular event D before time t conditioned on the
covariates of a subject x, and is given as F (t,D|x) = Pr(T ≤ t,D|x). The cumulative incidence
function evaluated at a certain point can be understood as the risk of experiencing a certain event
before a specified time.

In this work, our goal is to develop a neural network that can learn the complex interactions in the
data and is particularly suited to this setting of competing risks survival analysis. We need to decide
the loss function to use and the architecture of the neural network. Time-dependent discrimination
index is the most commonly used metric for evaluating models in survival analysis (Antolini et al.
(2005)). There are many works in the supervised learning literature that have shown that approxi-
mating the area under the curve (AUC) directly and training a classifier leads to better generalization
performance in terms of the AUC (see e.g. Cortes & Mohri (2004); Yan et al. (2003); Luaces et al.
(2007); Chen et al. (2013); Agarwal et al. (2005); Mayr & Schmid (2014); Mayr et al. (2016);
Schmid et al. (2016)). However, these ideas were not explored in the context of survival analysis
with competing risks. We will follow the same principles to construct an approximation of the time-
dependent discrimination index to train our neural network. We first describe the time-dependent
discrimination index below.

Consider an ordered pair of two subjects (i, j) in the dataset. If the subject i experiences event m,
i.e.,Di 6= 0 and if subject j’s time-to-event exceeds the time-to-event of subject i, i.e., Tj > Ti, then
the pair (i, j) is a comparable pair. The set of all such comparable pairs is defined as the comparable
set for event m, and is denoted as Xm.

A model outputs the risk of the subject x for experiencing the event m before time t, which is given
as Rm(t, x) = F (t,D = m|x). The time-dependent discrimination index for a certain cause m is
the probability that a model accurately orders the risks of the comparable pairs of subjects in the
comparable set for event m. The time-dependent discrimination index (Antolini et al. (2005)) for
cause m is defined as

Ctd(m) =

∑K
k=1AUC

m(tk)wm(tk)∑K
k=1 w

m(tk)
(1)

where
AUCm(tk) = Pr{Rm(tk, xi) > Rm(tk, xj)|Ti = tk, Tj > tk, Di = m} (2)

wm(tk) = Pr{Ti = tk, Tj > tk, Di = m} (3)

The discrimination index in (1) cannot be computed exactly since the distribution that generates the
data is unknown. However, the discrimination index can be estimated using a standard estimator
described next (the estimator takes as input the risk values associated with subjects in the dataset).
Antolini et al. (2005) defines the estimator for (1) as

Ĉtd(m) =

∑N
j=1

∑N
i=1 1{Rm(Ti, xi) > Rm(Ti, xj) · 1{Tj > Ti, Di = m}}∑N

j=1

∑N
i=1 1{Tj > Ti, Di = m}

(4)
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Note that in the above equation (4) only the numerator depends on the model. Henceforth, we will
only consider the quantity in the numerator and we write it as

C̄td(m) =

N∑
j=1

N∑
i=1

1{Rm(Ti, xi) > Rm(Ti, xj) · 1{Tj > Ti, Di = m}} (5)

The above equation can be simplified as

C̄td(m) =

|Xm|∑
i=1

1{Rm(Ti,left, X
m
i (left)) > Rm(Ti,left, X

m
i (right))} (6)

where 1(x) is the indicator function, Xm
i (left) (Xm

i (right)) is the left (right) element of the ith
comparable pair in the set Xm and Ti,left (Ti,right) is the respective time-to-event. In the next
section, we will use the above simplification (6) to construct the loss function for the neural network.

3 SIAMESE SURVIVAL PROGNOSIS NETWORK

In this section, we will describe the architecture of the network and the loss functions that we propose
to train the network.

Denote H as a feed-forward neural network which is visualized in figure 1. It is composed of a
sequence of L fully connected hidden layers with “scaled exponential linear units” (SELU) acti-
vation. The last hidden layer is fed to M layers of width K. Each neuron in the latter M layers
estimates the probability that a subject x experiences cause m occurs in a time interval tk, which is
given as Prm(tk, x). For an input covariate x the output from all the neurons is a vector of prob-

abilities given as
{[
Prm(tk, x)

]K
k=1

}M
m=1

. The estimate of cumulative incidence function com-

puted for cause m at time tk is given as R̃m(tk, x) =
∑k
i=1 Pr

m(ti, x). The final output of the
neural network for input x is vector of estimates of the cumulative incidence function given as

H(x) =
{[
R̃m(tk, x)

]K
k=1

}M
m=1

.

In this section, we describe the loss functions that are used to train the network. The loss function is
composed of three terms: discrimination, accuracy, and a loss term.

We cannot use the metric in (6) directly to train the network because it is a discontinuous function
(composed of indicators) and this can lead to poor training of the network. We overcome this prob-
lem by approximating the indicator function using a scaled sigmoid function σ(αx) = 1

1+exp(−αx) .
The approximated discrimination index is given as

ˆ̄Ctd(m) ∼= C̃td(m) =

|Xm|∑
i=1

σ
[
α
[
R̃m(Ti,left, X

m
i (left))− R̃m(Ti,left, X

m
i (right))

]]
(7)

The scaling parameter α determines the sensitivity of the loss function to discrimination. If the value
of α is high, then the penalty for error in discrimination is also very high. Therefore, higher values
of alpha guarantee that the subjects in a comparable pair are assigned concordant risk values.

The discrimination part defined above captures a model’s ability to discriminate subjects for each
cause separately. We also need to ensure that the model can predict the cause accurately. We define
the accuracy of a model in terms of a scaled sigmoid function with scaling parameter κ as follows:

Acc =

|Xm|∑
i=1

σ
[
κ
(
R̃Dleft(Ti,left, X

m
i (left))−

∑
m 6=Dleft

R̃m(Ti,left, X
m
i (left))

)]
(8)

The accuracy term penalizes the risk functions only at the event times of the left subjects in compa-
rable pairs. However, it is important that the neural network is optimized to produce risk values that
interpolate well to other time intervals as well. In order to this, we introduce a loss term below.

Loss = β

M∑
m=1

|Xm|∑
i=1

∑
tk<Ti,left

Rm(tk, X
m
i (right))2 (9)
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Figure 1: Illustration of the architecture.

The loss term ensures that the risk of each right
subject is kept to as small a value as possible
for all the times before time-to-event of the left
subject in the respective comparable pair. Intu-
itively, the loss term can be justified as follows.
The right subjects do not experience an event
before the time Ti,left. Hence, the probabil-
ity that they experience an event before Ti,left
should take a small value.

The final loss function is the sum of the dis-
crimination terms (described above), the accu-
racy and the loss terms, and is given as

M∑
m=1

ˆ̄Ctd(m) +Acc+ Loss (10)

Finally, we adjust for the event imbalance and
the time interval imbalance caused by the un-
equal number of pairs for each event and time
interval with inverse propensity weights. These weights are the frequency of the occurrence of
the various events at the various times and are multiplying the loss functions of the corresponding
comparable pairs.

We train the feed-forward network using the above loss function (10) and regularize it using SELU
dropout (Klambauer et al. (2017)). Since the loss function involves the discrimination term, each
term in the loss function involves a pairwise comparison. This makes the network training similar
to a Siamese network (Bromley et al. (1994)). The backpropagation terms now depend on each
comparable pair.

4 EXPERIMENTS

This section includes a discussion of hyper-parameter optimization which is followed by compet-
ing risk and survival analysis experiments. For single event problems we compare against Cox
PH model (”survival” R package), (Katzman et al. (2016)) (github) and Survival Random Forest
(”randomForestSRC” R package). For competing risk problems we compare against Fine-Gray
model (”cmprsk” R package), Competing Random Forest (”randomForestSRC” R package) and the
cause-specific (cs) extension of two single event (non-competing risks) methods, Cox PH model and
(Katzman et al. (2016)). In cause-specific extension of single event models, we mark the occurrence
of any event apart from the event of interest as censorship and decouple the problem into separate
single event problem (one for each cause); this is a standard way of extending single-event models
to competing risk models. In the following results we refer to our method with the acronym SSPN.

Table 1: Summary of hyper-parameters
Parameter batch size # hidden layers hidden layers width dropout rate

SEER 2048 3 50 0.4
Synthetic data 2048 2 40 0.4
UNOS 4096 3 40 0.4
UK Biobank 1024 3 30 0.3

4.1 HYPER-PARAMETER OPTIMIZATION

Optimization was performed using a 5-fold cross validation with fixed censorship rates in each fold.
We choose 60-20-20 division for training, validation and testing sets. A standard grid search was
used to determine the batch size, the number of hidden layers and the width of the hidden layers
and the dropout rate. The optimal values of α and β were consistently 500 and 0.01 for all datasets.
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As previously mentioned, the sets are comprised of patient pairs. In each training iteration, a batch
size of pairs was sampled with replacement from the training set which reduces convergence speed
but doesn’t lower performance relative to the standard non replacement sampled batches (Recht &
Re (2012)). The validation performance was measured every 1000 training iterations during which
the stopping criterion conditions were evaluated. We defined the stopping criterion as the lack
of validation improvement in terms of our metric on all of the causes over the last x evaluations.
We note that the training sets are commonly in the tens of million pairs with patients appearing
multiple times in both sides of the pair. A standard definition of an epoch would compose of a single
iteration over all patient. However, in our case, we not only learn patient specific characteristics
but also patient comparison relationships, which means an epoch with number of iterations equal
to the number of patients is not sufficient. On the other hand, an epoch definition as an iteration
over all pairs is impractical. Our best empirical results were attained after 100K iterations with
Tensorflow on 8-core Xeon E3-1240 with 32GB Ram The usage of SELU activation and dropout
followed confirmation of its superiority over ReLU on the tested datasets. We note that ReLU
activation generated similar performance gains over the benchmarks although lesser than SELU. We
used SELU weight initialization, N (0, inputsize

−1), Adam optimizer (Kingma & Ba (2014)) and
a decaying learning rate, LR−1(i) = LR(0) + i, LR(0) = 0.001. Table 1 summarizes the different
optimized hyper-parameters.

Table 2: Summary of competing Ctd index on SEER.
Dataset CVD Breast Cancer Other

cs-Cox PH 0.656 [0.629-0.682] 0.634 [0.626-0.642] 0.695 [0.675-0.714]
cs-(Katzman et al. (2016)) 0.645 [0.625-0.664] 0.697 [0.686-0.708] 0.675 [0.644-0.706]
Fine-Gray 0.659 [0.605-0.714] 0.636 [0.622-0.650] 0.691 [0.673-0.708]
Competing Random Forest 0.601 [0.565-0.637] 0.705 [0.692-0.718] 0.636 [0.624-0.648]

SSPN 0.663 [0.625-0.701] 0.735 [0.678-0.793] 0.699 [0.681-0.716]
*p-value < 0.05

4.2 SEER

The Surveillance, Epidemiology, and End Results Program (SEER)1 dataset provides information
on breast cancer patients during the years 1992-2007. A total of 72,809 patients, experienced breast
cancer, cardiovascular disease (CVD), other diseases, or were right-censored. The cohort consists of
23 features, including age, race, gender, morphology information, diagnostic information, therapy
information, tumor size, tumor type, etc. Missing values were replaced by mean value for real-
valued features and by the mode for categorical features. 1.3% of the patients experienced CVD and
15.6% experienced breast cancer. Table 2 displays the results for this dataset. We can notice that for
the infrequent adverse event, CVD, the performance gain is negligible while for the frequent breast
cancer event, the gain is significant.

4.3 SYNTHETIC DATA

Due to the relative scarcity of competing risks datasets and methods, we have created an additional
synthetic dataset to further demonstrate the performance of our method. We have constructed two
stochastic processes with parameters and the event times as follows:

x1i , x
2
i , x

3
i ∼ N (0, I), T 1

i ∼ exp
(
(x3i )

2 + x1i
)
, T 2
i ∼ exp

(
(x3i )

2 + x2i
)

(11)

where (x1i , x
2
i , x

3
i ) is the vector of features for patient i. For k = 1, 2, the features xk only have

an effect on the event time for event k, while x3 has an effect on the event times of both events.
Note that we assume event times are exponentially distributed with a mean parameter depending on
both linear and non-linear (quadratic) function of features. Given the parameters, we first produced
30, 000 patients; among those, we randomly selected 15, 000 patients (50%) to be right-censored
at a time randomly drawn from the uniform distribution on the interval [0,min{T 1

i , T
2
i }]. (This

1https://seer.cancer.gov/causespecific/
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censoring fraction was chosen to be roughly the same censoring fraction as in the real datasets, and
hence to present the same difficulty as found in those datasets.) Table 3 displays the results for the
above dataset. We can notice the same consistent performance gain as in the previous case.

Table 3: Summary of competing Ctd index on synthetic data.
Method Cause 1 Cause 2

cs-Cox PH 0.571 [0.554-0.588] 0.581 [0.570-0.591]
cs-(Katzman et al. (2016)) 0.580 [0.556-0.603] 0.593 [0.576-0.611]
Fine-Gray 0.574 [0.559-0.590] 0.586 [0.577-0.594]
Competing Random Forest 0.591 [0.575-0.606] 0.573 [0.557-0.588]

SSPN 0.603 [0.593-0.613] 0.613 [0.598-0.627]
*p-value < 0.05

5 CONCLUSION

Competing risks settings are ubiquitous in medicine. They can be encountered in cardiovascular
diseases, in cancer, and in the geriatric population suffering from multiple diseases. To solve the
challenging problem of learning the model parameters from time-to-event data while handling right
censoring, we have developed a novel deep learning architecture for estimating personalized risk
scores in the presence of competing risks which is based on the well-known Siamese network archi-
tecture. Our method is able to capture complex non-linear representations missed out by classical
machine learning and statistical models. Experimental results show that our method is able to out-
perform existing competing risk methods by successfully learning representations which can flexibly
describe non-proportional hazard rates with complex interactions between covariates and survival
times that are common in many diseases with heterogeneous phenotypes.
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Margaux Luck, Tristan Sylvain, Héloı̈se Cardinal, Andrea Lodi, and Yoshua Bengio. Deep learning
for patient-specific kidney graft survival analysis. arXiv preprint arXiv:1705.10245, 2017.

Andreas Mayr and Matthias Schmid. Boosting the concordance index for survival data–a unified
framework to derive and evaluate biomarker combinations. PloS one, 9(1):e84483, 2014.

Andreas Mayr, Benjamin Hofner, and Matthias Schmid. Boosting the discriminatory power of
sparse survival models via optimization of the concordance index and stability selection. BMC
bioinformatics, 17(1):288, 2016.

Benjamin Recht and Christopher Re. Beneath the valley of the noncommutative arithmetic-
geometric mean inequality: conjectures, case-studies, and consequences. 2012.

JM Satagopan, L Ben-Porat, M Berwick, M Robson, D Kutler, and AD Auerbach. A note on
competing risks in survival data analysis. British journal of cancer, 91(7):1229–1235, 2004.

Matthias Schmid, Marvin N Wright, and Andreas Ziegler. On the use of harrells c for clinical risk
prediction via random survival forests. Expert Systems with Applications, 63:450–459, 2016.

Anastasios Tsiatis. A nonidentifiability aspect of the problem of competing risks. Proceedings of
the National Academy of Sciences, 72(1):20–22, 1975.

8



Under review as a conference paper at ICLR 2018

Juan Wang, Zhiyuan Fang, Ning Lang, Huishu Yuan, Min-Ying Su, and Pierre Baldi. A multi-
resolution approach for spinal metastasis detection using deep siamese neural networks. Comput-
ers in Biology and Medicine, 84:137–146, 2017.

Marcel Wolbers, Michael T Koller, Jacqueline CM Witteman, and Ewout W Steyerberg. Prognostic
models with competing risks: methods and application to coronary risk prediction. Epidemiology,
20(4):555–561, 2009.

Lian Yan, Robert H Dodier, Michael Mozer, and Richard H Wolniewicz. Optimizing classifier
performance via an approximation to the wilcoxon-mann-whitney statistic. In Proceedings of the
20th International Conference on Machine Learning (ICML-03), pp. 848–855, 2003.

Safoora Yousefi, Fateme Amrollahi, Mohamed Amgad, Coco Dong, Joshua E Lewis, Congzheng
Song, David A Gutman, Sameer H Halani, Jose Enrique Velazquez Vega, Daniel J Brat, et al.
Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models.
bioRxiv, pp. 131367, 2017.

A SURVIVAL ANALYSIS RESULTS

A.1 UNOS

The United Network for Organ Sharing (UNOS) database2 consists of patients who underwent heart
transplantation in the period 1985-2015. Of the total of 60,400 patients who received heart trans-
plants, 29,436 patients (48.7%) were followed until death; the remaining 30,964 patients (51.3%)
were right-censored. A total of 50 features (30 recipient-relevant, 9 donor-relevant and 11 donor-
recipient compatibility) were used. Table 4 presents the results for the UNOS dataset. The results
show clear performance improvements for the Siamese Survival Prognosis Network.

Table 4: Summary of survival Ctd index.
Method UNOS UK Biobank

Cox PH 0.564 [0.558-0.570] 0.743 [0.731-0.754]
(Katzman et al. (2016)) 0.576 [0.550-0.601] 0.693 [0.651-0.734]
Survival Random Forest 0.577 [0.571-0.582] 0.686 [0.674-0.699]

SSPN 0.594 [0.576-0.611] 0.748 [0.723-0.774]
*p-value < 0.05

A.2 UK BIOBANK

UK Biobank is a comprehensive dataset consisting of health records, diagnoses and treatments of a
wide array of diseases, including Cardiovascular disease (CVD) events. There is a total of 413,119
patients, followed for 10 years, with no previous history of CVD, out of whom 6,051 (1.5%) de-
veloped a CVD. The records consist of 8 covariates (gender, age, smoking habits, systolic blood
pressure, blood pressure treatment, total cholesterol, HDL cholesterol and diabetes). Similarly to
UNOS, the results in table 4 show clear performance improvements for the Siamese Survival Prog-
nosis Network.

2https://www.unos.org/data/
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