
Transferable and Configurable Audio Adversarial
Attack from Low-Level Features

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recent works revealed that state-of-the-art machine learning based Automatic1

Speech Recognition systems (ASR) have a considerable vulnerability to the crafted2

adversarial examples. However, limited by individual ASR system’s specific ma-3

chine learning models, the current audio adversarial attacks still lack certain model4

transferability as well as configurability for different deployment scenarios. In this5

work, we propose a novel untargeted adversarial example generation method to6

ASR systems, which shifts the adversarial example generation from the high-level7

machine learning models to the low-level feature extraction stage. By taking advan-8

tage of the fundamental impact and direct configuration of the low-level features,9

the proposed method can generate transferable and configurable adversarial exam-10

ples for ASR system perturbation. During the evaluation, we use 6 commercial11

ASR models to test the proposed attack method. The results show that the proposed12

method can achieve strong transferability and outstanding perturbation effective-13

ness. Also, it can configure the adversarial examples with desired audio attributes14

for better scenario adaptation capability.15

1 Introduction16

Rapid progress in the machine learning technologies have largely promoted the performance of17

Automatic Speech Recognition systems (ASR). However, recent research works have shown that the18

machine learning models in the ASR systems can be easily perturbed by the adversarial examples19

and therefore mislead the systems to incorrect recognition results. Many works have been proposed20

[1,2,3,4,5,6,7], and most of them share a same methodology, which applies the backpropagation21

algorithm through the ASR machine learning models (e.g. Recurrent Neural Network (RNN)) to cast22

the logit errors to input data. However, because of the huge variance among different machine learning23

models and the indirect backpropagation casting process through the models, these methods fail to24

generate adversarial examples with strong model transferability to attack arbitrary ASR systems, and25

can’t directly configure the adversarial examples with desired audio attributes.26

In this paper, we propose a novel untargeted adversarial attack method to address these two issues.27

Different with previous works focusing on the machine learning models, we apply the adversarial28

example generation on the low-level feature extraction stage. Specifically, we use Mel-Frequency29

Cepstral Coefficient (MFCC) features as low-level features which transfer the input audio waveform30

to MFCC feature vectors. Shared by all the ASR systems, low-level feature extraction stage like31

MFCC has the fundamental impact to later high-level machine learning models. Therefore, the32

adversarial examples generated from the low-level features are expected to have strong transferability33

for different ASR systems. Meanwhile, the adversarial example generation over the MFCC stage can34

direct regulate the audio attributes and achieve flexible attack configuration. During the evaluation,35

we evaluate our proposed attack method on multiple commercial ASR systems (e.g. Google Voice).36

The results show that the proposed method can achieve strong transferability and and outstanding37

Submitted to 32nd Conference on Neural Information Processing Systems (NIPS 2018). Do not distribute.

perturbation effectiveness. Also, it can configure the adversarial examples with desired audio38

attributes for better scenario adaptation capability.39

2 Low-Level Feature based Attack Method40

ASR

What’s

your name

he asked
+

=

Perturbation δ

Original Audio Waveform 𝑋

𝑋′Adversarial Audio Waveform

Wha ou

ma e la

MFCC
Adversarial

Noise

Generation

ASR

Parameter Unknow

Parameter Unknow

Pre-defined

Figure 1: Adversarial Example Generation Process

2.1 General Adversarial At-41

tack Definition Typically, the42

ASR process can be formulated43

as f(·), while the original input44

waveform is X , and the recogni-45

tion result is f(X) = Y . When46

superposing a human impercepti-47

ble noise δ on the original input48

waveform X , we can get adver-49

sarial example X + δ, and the50

recognition result is expected to51

be changed as f(X + δ) 6= Y .52

According to our preliminary ex-53

periment, by considering both perturbation performance and method implementation convenience,54

Basic Iterative Method (BIM) [9] is utilized in there to iteratively generate adversarial noise through55

backpropagation and can be formulated as:56

X0 = X,

XN+1 = Clip{XN + δN},
δN = 5J(θ,XN , Yw),

(1)

where θ is the parameters for ASR process f(·), Yw indicates the desired manipulation result. δN is57

the adversarial perturbation generated in the N th iteration. Clip means that the generated adversarial58

examples will be limited in a certain strength range. J is the cost function that measures the difference59

between f(XN + δN) and Yw, and 5 represents the partial differentiate process. Previous works60

generate δN by attacking f(·) through the high-level machine learning models as Eq. 1 shows, thus61

the δN is highly related to specific model. Therefore, such a methodology defects the transferability62

of the adversarial attacks.63

2.2 MFCC Based Adversarial Example Generation64

In this part, we will describe our attack approach including method formulation, MFCC process65

analysis and final generation method design in detailed.66

In our method, which can be shown in the Fig. 1, instead of attacking f(·), we use a MFCC process67

which formulates as fP (·) to generate adversarial examples. The parameter of fP (·) is pre-defined.68

Since fP (·) is not part of f(·), our method can be considered as a black-box attack.69

During the adversarial example generation, we need to use backpropagation to differentiate the cost70

function J . Therefore, it is necessary to formulate and integrate MFCC process to facilitate our71

method design. For MFCC process, it transforms an input speech waveform into feature vectors72

composed of coefficients of Mel-Frequency Cepstrum by following 6 steps. 1) Speech waveform X73

is preprocessed to Xs and further be pre-emphasized as speech vector ypre according to the equation74

ypre = Xs − αXs−1 (WIN). 2) ypre is further divided into Nfra frames yfra with frame length n.75

3) A hamming windowing function is applied to each frame: ywin =
{
0.54− 0.46cos(2π(n−1)

Nfra−1
)
}
×76

yfra (WIN). 4) Each frame ywin do a NFFT points Fast Fourier-Transforming and calculate77

the power spectrum by using equation: yFFT = 1
NFFT |(

∑NFFT

n=1 ywine−j2πkn/N
FFT

)
2

|, 1 ≤ k ≤78

K (FFT), where K is the total frequency points. 5) A set of Mel-Filter vectors MB(f1, f2, ..., fL)79

are applied to the power spectrum yFFT and the Mel-power spectrum yMel can be obtained according80

to: yMel = yFFT ×MB(f1, f2, ..., fL), 1 ≤ l ≤ L (MFB) , where L is number of filters. 6) We81

apply Discrete Cosine Transform to calculate MFCC features YMFCC : yMFCC = yMelcos[(l −82

0.5)πl
L
] (DCT). With the aforementioned 6 steps, the input speech waveform X can be transfered83

as MFCC feature vectors of YMFCC , which offers speech perceptive features for the ASR process.84

In our case, we first take YMFCC into J in Eq. 1. Then we replace fP (·) and θ with parameters in85

MFCC process. Finally, we set Yw to 0 for maximizing the perturbation effectiveness regardless the86

2

Table 1: WER Performance of MFCC and CTC
Iteration 1 10 100 1000
MFCC 56.5% 84.6% 100% 100%
CTC 36.0% 77.1% 93.3% 100%

speech content. Furthermore, according to the chain rule of partial differentiation, we differentiate J87

from DCT process to PRE process step by step. Such a differentiation can be formulated as:88

δMFCC =DCT ′(·)·MFB′(·)·FFT ′(·)·WIN ′(·)·PEM ′(·),

(X+δMFCC → 0 and δMFCC < Tadv).
(2)

As the derivation value of equations in step 3 and step 5 are constants, which can be obtained directly,89

Eq. 2 can be simplified as:90

δMFCC =MB(f1, f2, ..., fL)×
{
0.54−0.46cos(2π(n−1)

Nfra−1)

}
×DCT ′(·)·FFT ′(·)·PEM ′(·),

(X+δMFCC → 0 and δMFCC < Tadv),

(3)

where δMFCC is the generated adversarial noise and Tadv is its strength constraints.91

By use Eq. 3, we can obtain the adversarial noise in each iteration. With the number of iteration92

increase, the adversarial noise will approach to a best perturbation performance which we will show93

in the experiment section.94

2.3 Adversarial Example Configuration In this part, we further explore the configurability of95

generated adversarial example in our proposed method. During the process of adding adversarial96

noise δ into original input waveform X , many practical constraints should be taken into consideration97

such as frequency range configuration. Therefore, generated adversarial examples should have strong98

configurability with respect to these different practical constraints.99

However, because of indirect and long casting process through the machine learning model, traditional100

methods cannot regulate input waveform precisely. On the contrary, MFCC process has simple and101

short casting during the backpropagation. Therefore, we can accurately regulate audio attributes in102

the input waveform by adding regulation directly in the MFCC process.103

The configurability of adversarial example has significant potential for different applications. We can104

take human hearing perception quality as a case study. We leverage two auditory masking effects to105

reduce the impact of adversarial noise on human hearing perception: 1) The significant sensitivity106

frequency range of human hearing perception is from 200Hz to 5KHz. 2) Frequency component with107

higher sound intensity CH may prevent its adjacent lower frequency component CL from human108

perception, which can be formulates as:109

D(CH) = 0, if CL < CH , (4)

where D represents the human perception system.110

During the FFT step of MFCC process, we can get multiple yFFT and each of them represents111

certain frequency band. So, we first prevent yFFT which represent the frequency range from 20Hz112

to 20kHz from being differentiated during the backpropagation process. Then, we locate the top113

t% frequency component with the highest sound intensity (empirically, t≈10). Adversarial noises114

are further generated around those frequency components. We will evaluate the performance of this115

configurability in the experiment section.116

3 Evaluation117

The proposed method is implemented on the Tensorflow platform [11], and evaluated on a desktop118

server equipped with Intel Xeon and NIVIDA 1080. During the implementation, the MFCC parameter119

configuration is adopted from [2][10], the original speech data is from the Common Voice Dataset120

[12], and the rest of ASR system is based on DeepSpeech platform [10]. During the evaluation, 6121

different state-of-the-art ASR systems are considered to evaluate the effectiveness and transferability.122

3.1 Perturbation Effectiveness and Efficiency To evaluate the proposed method, we first compare123

the perturbation of our low-level feature based to one machine learning model based adversarial attack,124

3

Table 2: WER of MFCC, CTC and Original on 6 ASR Models
Google Sphinx Wit.ai Microsoft Houndify IBM

Original 8% 21.2% 19.2% 15.8% 20.9% 18%
MFCC 51% 77.8% 62.3% 67.8% 72.1% 63.9%
CTC 16.3% 51.1% 33.8% 38.5% 40.9% 31.5%

Original Method Optimized Method

F
re

q
u

en
cy

 (
K

H
z)

Time

S
en

si
ti

v
e

ra
n

g
e

0

6

1

2

3

4

5

7

8

0

6

1

2

3

4

5

7

8

S
e
n

si
ti

v
e

R
a

n
g

e

5kHz Boundary

Pertb.
Removed

Figure 2: Feature configuration Example with Human Hearing Quality
which is referred as the CTC attack. The CTC attack is a state-of-the-art method that attacks the125

high-level CTC features and generates adversarial examples from RNN models [2]. As the proposed126

MFCC based method is designed as an untargeted attack, the CTC is also configured for misleading127

the ASR results to random noises. Table 1 shows the perturbation effectiveness on DeepSpeech128

model by comparing the WER achieved by 2000 adversarial examples from each method, among129

which every 500 examples are generated with different amounts of iterations. For the limitation130

of the adversarial noise strength Tadv, we set it as 28dB. With the iteration incremented from 1 to131

1000, the proposed MFCC based attack could achieve an WER of 56.5%∼100%, and the CTC attack132

achieves 36.0%∼100%. However, the MFCC based attack only takes 100 iterations to achieve the133

100% WER, while the CTC attack needs 10 times more effort. From such a comparison, we can tell134

that the MFCC based attack can effective achieve the same perturbation effectiveness as the machine135

learning based method, but with significant efficiency improvement.136

3.2 Attack Transferability to Different ASR Systems To further evaluate the transferability of137

the proposed MFCC based attack, another 6 different state-of-the-art ASR systems are also tested138

(i,e, Google Voice, Sphinx, Wit.ai, Microsoft, Houndify, and IBM). 500 adversarial examples are139

generated respectively from the proposed MFCC based and CTC attack method with 1000 iterations140

on DeepSpeech system. The original examples are also tested as the baseline. Table 2 illustrates the141

experiment results. In Table 2, different ASR systems have different recognition performance with142

varying WERs of 8%∼21.2%. The proposed method can effectively maintain a high WER over 50%143

(51%∼77.8%) over different ASR systems, while the WER of CTC attack drops to 16.3%∼51.1%.144

Therefore, the proposed MFCC based attack method demonstrates strong model transferability.145

3.3 Attack Configurability In this part, we will evaluate the configurability under the case of human146

hearing perception quality. Since the sampling rat of audio samples in Common Voice Dataset is147

16kHz, fully frequency range for each audio samples will be from 0Hz to 8kHz. During the FFT stage148

in MFCC process, there are 257 value numbers and each of them represents a frequency bands around149

31Hz. Then we do the configuration according to the Section 2.3 and the result is shown in the Fig. 2.150

The left one is the frequency spectrum of generated adversarial example without configuration, while151

the right one is generated after configuration. We can clearly find that much adversarial noise are152

restricted outside of human sensitive range which indicated by a clear boundary presents around 5kHz153

and white circles in sensitive frequency range. Also, the adversarial noise remain in the sensitive154

range is more concentrated to the speech component with high sound intensity.155

4 Conclusion156

In this work, we proposed a transferable and configurable audio adversarial attack method. By157

generating adversarial examples from low-level features in the ASR system, we show that transferable158

adversarial examples can be well generated in the fundamental stage before the machine learning159

models. Also, without complex backpropagation process through the machine learning models, the160

proposed method can directly configure the adversarial examples with desired audio attributes for161

better scenario adaptation. The proposed attack method can be well utilized as an effective and162

efficient non-target attack method, which can be well deployed in scenarios of transferable attack,163

black-box attack, and even audio encryption against undesired analysis.164

4

References165

[1] Cisse, M., Adi, Y., Neverova, N. and Keshet, J. (2017) Houdini: Fooling deep structured prediction models.166

arXiv:1707.05373.167

[2] Carlini, N. and Wagner, D. (2018) Audio adversarial examples: Targeted attacks on speech-to-text.168

arXiv:1801.01944.169

[3] Alzantot, M., Balaji, B. and Srivastava, M. (2018) Did you hear that? adversarial examples against automatic170

speech recognition. arXiv:1801.00554.171

[4] Taori, R., Kamsetty, A., Chu, B. and Vemuri, N. (2018) Targeted Adversarial Examples for Black Box Audio172

Systems. arXiv:1805.07820.173

[5] Yuan, X., Chen, Y., Zhao, Y., Long, Y., Liu, X., Chen, K., Zhang, S., Huang, H., Wang, X. and174

Gunter, C.A. (2018) CommanderSong: A Systematic Approach for Practical Adversarial Voice Recognition.175

arXiv:1801.08535.176

[6] Kreuk, F., Adi, Y., Cisse, M. and Keshet, J. (2018) Fooling End-to-end Speaker Verification by Adversarial177

Examples. arXiv:1801.03339.178

[7] Gong, Y. and Poellabauer, C. (2017) Crafting Adversarial Examples For Speech Paralinguistics Applications.179

arXiv:1711.03280.180

[8] Këpuska, V.Z. and Elharati, H.A. (2015) Robust speech recognition system using conventional and hybrid181

features of mfcc, lpcc, plp, rasta-plp and hidden markov model classifier in noisy conditions. Journal of Computer182

and Communications, 3(06), p.1.183

[9] Kurakin, A., Goodfellow, I. and Bengio, S. (2016) Adversarial examples in the physical world.184

arXiv:1607.02533,.185

[10] Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., Prenger, R., Satheesh, S., Sengupta,186

S., Coates, A. and Ng, A.Y. (2014) Deep speech: Scaling up end-to-end speech recognition. arXiv:1412.5567.187

[11] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,188

M. and Kudlur, M. (2016) Tensorflow: a system for large-scale machine learning. in Proceedings of the USENIX189

Symposium on Operating Systems Design and Implementation (OSDI), Vol. 16, pp.265-283190

[12] Mozilla. (2018) Common Voice. https://voice.mozilla.org/en191

[13] Google. (2018) Google Cloud Speech-to-Text. https://cloud.google.com/speech-to-text/192

[14] Sphinx. (2018) CMUSphix. https://cmusphinx.github.io/wiki/193

[15] Wit.ai. (2018) Wit.ai. https://wit.ai/194

[16] Microsoft. (2018) Microsoft Bing Voice Recognition. https://azure.microsoft.com/zh-cn/services/cognitive-195

services/speech/196

[17] SoundHound. (2018) Houndify API. https://www.houndify.com/197

[18] IBM. (2018) IBM Speech to Text. https://www.ibm.com/watson/developercloud/speech-to-text.html198

5

	Introduction
	Low-Level Feature based Attack Method
	Evaluation
	Conclusion

