
Published as a conference paper at ICLR 2019

ON SELF MODULATION FOR GENERATIVE ADVER-
SARIAL NETWORKS

Ting Chen∗
University of California, Los Angeles
tingchen@cs.ucla.edu

Mario Lucic, Neil Houlsby, Sylvain Gelly
Google Brain
{lucic,neilhoulsby,sylvaingelly}@google.com

ABSTRACT

Training Generative Adversarial Networks (GANs) is notoriously challenging.
We propose and study an architectural modification, self-modulation, which im-
proves GAN performance across different data sets, architectures, losses, regu-
larizers, and hyperparameter settings. Intuitively, self-modulation allows the in-
termediate feature maps of a generator to change as a function of the input noise
vector. While reminiscent of other conditioning techniques, it requires no labeled
data. In a large-scale empirical study we observe a relative decrease of 5%− 35%
in FID. Furthermore, all else being equal, adding this modification to the generator
leads to improved performance in 124/144 (86%) of the studied settings. Self-
modulation is a simple architectural change that requires no additional parameter
tuning, which suggests that it can be applied readily to any GAN.1

1 INTRODUCTION

Generative Adversarial Networks (GANs) are a powerful class of generative models successfully
applied to a variety of tasks such as image generation (Zhang et al., 2017; Miyato et al., 2018;
Karras et al., 2017), learned compression (Tschannen et al., 2018), super-resolution (Ledig et al.,
2017), inpainting (Pathak et al., 2016), and domain transfer (Isola et al., 2016; Zhu et al., 2017).

Training GANs is a notoriously challenging task (Goodfellow et al., 2014; Arjovsky et al., 2017;
Lucic et al., 2018) as one is searching in a high-dimensional parameter space for a Nash equilibrium
of a non-convex game. As a practical remedy one applies (usually a variant of) stochastic gradient
descent, which can be unstable and lack guarantees Salimans et al. (2016). As a result, one of the
main research challenges is to stabilize GAN training. Several approaches have been proposed, in-
cluding varying the underlying divergence between the model and data distributions (Arjovsky et al.,
2017; Mao et al., 2016), regularization and normalization schemes (Gulrajani et al., 2017; Miyato
et al., 2018), optimization schedules (Karras et al., 2017), and specific neural architectures (Rad-
ford et al., 2016; Zhang et al., 2018). A particularly successful approach is based on conditional
generation; where the generator (and possibly discriminator) are given side information, for exam-
ple class labels Mirza & Osindero (2014); Odena et al. (2017); Miyato & Koyama (2018). In fact,
state-of-the-art conditional GANs inject side information via conditional batch normalization (CBN)
layers (De Vries et al., 2017; Miyato & Koyama, 2018; Zhang et al., 2018). While this approach
does help, a major drawback is that it requires external information, such as labels or embeddings,
which is not always available.

In this work we show that GANs benefit from self-modulation layers in the generator. Our approach
is motivated by Feature-wise Linear Modulation in supervised learning (Perez et al., 2018; De Vries
et al., 2017), with one key difference: instead of conditioning on external information, we condition
on the generator’s own input. As self-modulation requires a simple change which is easily applicable
to all popular generator architectures, we believe that is a useful addition to the GAN toolbox.

Summary of contributions. We provide a simple yet effective technique that can added univer-
sally to yield better GANs. We demonstrate empirically that for a wide variety of settings (loss

∗Work done at Google.
1Code at https://github.com/google/compare_gan

1

https://github.com/google/compare_gan

Published as a conference paper at ICLR 2019

z x

hi h'ix +

MLPi

β γ

Blocki

z

Self-modulation

Figure 1: (a) The proposed Self-Modulation framework for a generator network, where middle
layers are directly modulated as a function of the generator input z. (b) A simple MLP based
modulation function that transforms input z to the modulation variables β(z) and γ(z).

functions, regularizers and normalizers, neural architectures, and optimization settings) that the pro-
posed approach yields between a 5% and 35% improvement in sample quality. When using fixed
hyperparameters settings our approach outperforms the baseline in 86%(124/144) of cases. Further,
we show that self-modulation still helps even if label information is available. Finally, we discuss the
effects of this method in light of recently proposed diagnostic tools, generator conditioning (Odena
et al., 2018) and precision/recall for generative models (Sajjadi et al., 2018).

2 SELF-MODULATION FOR GENERATIVE ADVERSARIAL NETWORKS

Several recent works observe that conditioning the generative process on side information (such
as labels or class embeddings) leads to improved models (Mirza & Osindero, 2014; Odena et al.,
2017; Miyato & Koyama, 2018). Two major approaches to conditioning on side information s have
emerged: (1) Directly concatenate the side information swith the noise vector z (Mirza & Osindero,
2014), i.e. z′ = [s, z]. (2) Condition the hidden layers directly on s, which is usually instantiated
via conditional batch normalization (De Vries et al., 2017; Miyato & Koyama, 2018).

Despite the success of conditional approaches, two concerns arise. The first is practical; side infor-
mation is often unavailable. The second is conceptual; unsupervised models, such as GANs, seek
to model data without labels. Including them side-steps the challenge and value of unsupervised
learning.

We propose self-modulating layers for the generator network. In these layers the hidden activations
are modulated as a function of latent vector z. In particular, we apply modulation in a feature-wise
fashion which allows the model to re-weight the feature maps as a function of the input. This is
also motivated by the FiLM layer for supervised models (Perez et al., 2018; De Vries et al., 2017)
in which a similar mechanism is used to condition a supervised network on side information.

Batch normalization (Ioffe & Szegedy, 2015) can improve the training of deep neural nets, and it is
widely used in both discriminative and generative modeling (Szegedy et al., 2015; Radford et al.,
2016; Miyato et al., 2018). It is thus present in most modern networks, and provides a convenient
entry point for self-modulation. Therefore, we present our method in the context of its application
via batch normalization. In batch normalization the activations of a layer, h, are transformed as

h′` = γ � h` − µ
σ

+ β, (1)

where µ and σ2 are the estimated mean and variances of the features across the data, and γ and β
are learnable scale and shift parameters.

Self-modulation for unconditional (without side information) generation. In this case the pro-
posed method replaces the non-adaptive parameters β and γ with input-dependent β(z) and γ(z),
respectively. These are parametrized by a neural network applied to the generator’s input (Figure 1).
In particular, for layer `, we compute

h′` = γ`(z)� h` − µ
σ

+ β`(z) (2)

2

Published as a conference paper at ICLR 2019

Table 1: Techniques for generator conditioning and modulation.

Only first layer Other Arbitrary layers

Side information s N/A
Conditional batch normalization

(De Vries et al., 2017; Miyato & Koyama, 2018)

Latent vector z
Unconditional Generator
(Goodfellow et al., 2014) (Unconditional) Self-Modulation (this work)

Both s and z
Conditional Generator

(Mirza & Osindero, 2014) (Conditional) Self-Modulation (this work)

In general, it suffices that γ`(·) and β`(·) are differentiable. In this work, we use a small one-
hidden layer feed-forward network (MLP) with ReLU activation applied to the generator input z.
Specifically, given parameter matrices U (`) and V (`), and a bias vector b(`), we compute

γ`(z) = V (`) max(0, U (`)z + b(`)).

We do the same for β(z) with independent parameters.

Self-modulation for conditional (with side information) generation. Having access to side in-
formation proved to be useful for conditional generation. The use of labels in the generator (and
possibly discriminator) was introduced by Mirza & Osindero (2014) and later adapted by Odena
et al. (2017); Miyato & Koyama (2018). In case that side information is available (e.g. class labels
y), it can be readily incorporated into the proposed method. This can be achieved by simply com-
posing the information y with the input z ∈ Rd via some learnable function g, i.e. z′ = g(y,z). In
this work we opt for the simplest option and instantiate g as a bi-linear interaction between z and
two trainable embedding functions E,E′ : Y → Rd of the class label y, as

z′ = z + E(y) + z � E′(y). (3)

This conditionally composed z′ can be directly used in Equation 1. Despite its simplicity, we demon-
strate that it outperforms the standard conditional models.

Discussion. Table 1 summarizes recent techniques for generator conditioning. While we choose
to implement this approach via batch normalization, it can also operate independently by removing
the normalization part in the Equation 1. We made this pragmatic choice due to the fact that such
conditioning is common (Radford et al., 2016; Miyato et al., 2018; Miyato & Koyama, 2018).

The second question is whether one benefits from more complex modulation architectures, such as
using an attention network (Vaswani et al., 2017) whereby β and γ could be made dependent on all
upstream activations, or constraining the elements in γ to (0, 1) which would yield a similar gating
mechanism to an LSTM cell (Hochreiter & Schmidhuber, 1997). Based on initial experiments we
concluded that this additional complexity does not yield a substantial increase in performance.

3 EXPERIMENTS

We perform a large-scale study of self-modulation to demonstrate that this method yields robust
improvements in a variety of settings. We consider loss functions, architectures, discriminator reg-
ularization/normalization strategies, and a variety of hyperparameter settings collected from recent
studies (Radford et al., 2016; Gulrajani et al., 2017; Miyato et al., 2018; Lucic et al., 2018; Kurach
et al., 2018). We study both unconditional (without labels) and conditional (with labels) generation.
Finally, we analyze the results through the lens of the condition number of the generator’s Jacobian
as suggested by Odena et al. (2018), and precision and recall as defined in Sajjadi et al. (2018).

3.1 EXPERIMENTAL SETTINGS

Loss functions. We consider two loss functions. The first one is the non-saturating loss proposed
in Goodfellow et al. (2014):

VD(G,D) = Ex∼Pd(x)[log σ(D(x))] + Ez∼P (z)[log(1− σ(D(G(z))))]

VG(G,D) = −Ez∼P (z)[log σ(D(G(z)))]

3

Published as a conference paper at ICLR 2019

The second one is the hinge loss used in Miyato et al. (2018):

VD(G,D) = Ex∼Pd(x)[min(0,−1 +D(x))] + Ez∼P (z)[min(0,−1−D(G(z)))]

VG(G,D) = −Ez∼P (z)[D(G(z))]

Controlling the Lipschitz constant of the discriminator. The discriminator’s Lipschitz constant
is a central quantity analyzed in the GAN literature (Miyato et al., 2018; Zhou et al., 2018). We
consider two state-of-the-art techniques: gradient penalty (Gulrajani et al., 2017), and spectral nor-
malization (Miyato et al., 2018). Without normalization and regularization the models can perform
poorly on some datasets. For the gradient penalty regularizer we consider regularization strength
λ ∈ {1, 10}.
Network architecture. We use two popular architecture types: one based on DCGAN (Radford
et al., 2016), and another from Miyato et al. (2018) which incorporates residual connections (He
et al., 2016). The details can be found in the appendix.

Optimization hyper-parameters. We train all models for 100k generator steps with the Adam
optimizer (Kingma & Ba, 2014) (We also perform a subset of the studies with 500K steps and
discuss it in. We test two popular settings of the Adam hyperparameters (β1, β2): (0.5, 0.999)
and (0, 0.9). Previous studies find that multiple discriminator steps per generator step can help
the training (Goodfellow et al., 2014; Salimans et al., 2016), thus we also consider both 1 and
2 discriminator steps per generator step2. In total, this amounts to three different sets of hyper-
parameters for (β1, β2, disc iter): (0, 0.9, 1), (0, 0.9, 2), (0.5, 0.999, 1). We fix the learning rate to
0.0002 as in Miyato et al. (2018). All models are trained with batch size of 64 on a single nVidia
P100 GPU. We report the best performing model attained during the training period; although the
results follow the same pattern if the final model is report.

Datasets. We consider four datasets: CIFAR10, CELEBA-HQ, LSUN-BEDROOM, and IMAGENET.
The LSUN-BEDROOM dataset (Yu et al., 2015) contains around 3M images. We partition the images
randomly into a test set containing 30588 images and a train set containing the rest. CELEBA-
HQ contains 30k images (Karras et al., 2017). We use the 128 × 128 × 3 version obtained by
running the code provided by the authors3. We use 3000 examples as the test set and the remaining
examples as the training set. CIFAR10 contains 70K images (32 × 32 × 3), partitioned into 60000
training instances and 10000 testing instances. Finally, we evaluate our method on IMAGENET,
which contains 1.3M training images and 50K test images. We re-size the images to 128× 128× 3
as done in Miyato & Koyama (2018) and Zhang et al. (2018).

Metrics. Quantitative evaluation of generative models remains one of the most challenging tasks.
This is particularly true in the context of implicit generative models where likelihood cannot be
effectively evaluated. Nevertheless, two quantitative measures have recently emerged: The Inception
Score and the Frechet Inception Distance. While both of these scores have some drawbacks, they
correlate well with scores assigned by human annotators and are somewhat robust.

Inception Score (IS) (Salimans et al., 2016) posits that that the conditional label distribution p(y|x)
of samples containing meaningful objects should have low entropy, while the marginal label dis-
tribution p(y) should have high entropy. Formally, IS(G) = exp(Ex∼G[dKL(p(y|x), p(y)]). The
score is computed using an Inception classifier (Szegedy et al., 2015). Drawbacks of applying IS to
model comparison are discussed in Barratt & Sharma (2018).

An alternative score, the Frechet Inception Distance (FID), requires no labeled data (Heusel et al.,
2017). The real and generated samples are first embedded into a feature space (using a specific layer
of InceptionNet). Then, a multivariate Gaussian is fit each dataset and the distance is computed as
FID(x, g) = ||µx − µg||22 + Tr(Σx + Σg − 2(ΣxΣg)

1
2), where µ and Σ denote the empirical mean

and covariance and subscripts x and g denote the true and generated data, respectively. FID was
shown to be robust to various manipulations and sensitive to mode dropping (Heusel et al., 2017).

2We also experimented with 5 steps which didn’t outperform the 2 step setting.
3Available at https://github.com/tkarras/progressive_growing_of_gans.

4

https://github.com/tkarras/progressive_growing_of_gans

Published as a conference paper at ICLR 2019

Table 2: In the unpaired setting (as defined in Section 3.2), we compute the median score (across
random seeds) and report the best attainable score across considered optimization hyperparameters.
SELF-MOD is the method introduced in Section 2 and BASELINE refers to batch normalization. We
observe that the proposed approach outperforms the baseline in 30 out of 32 settings. The relative
improvement is detailed in Table 3. The standard error of the median is within 3% in the majority
of the settings and is presented in Table 6 for clarity.

TYPE ARCH LOSS METHOD BEDROOM CELEBAHQ CIFAR10 IMAGENET

GRADIENT
PENALTY

RES

HINGE
SELF-MOD 22.62 27.03 26.93 78.31
BASELINE 27.75 30.02 28.14 86.23

NS
SELF-MOD 25.30 26.65 26.74 85.67
BASELINE 36.79 33.72 28.61 98.38

SNDC

HINGE
SELF-MOD 110.86 55.63 33.58 90.67
BASELINE 119.59 68.51 36.24 116.25

NS
SELF-MOD 120.73 125.44 33.70 101.40
BASELINE 134.13 131.89 37.12 122.74

SPECTRAL
NORM

RES

HINGE
SELF-MOD 14.32 24.50 18.54 68.90
BASELINE 17.10 26.15 20.08 78.62

NS
SELF-MOD 14.80 26.27 20.63 80.48
BASELINE 17.50 30.22 23.81 120.82

SNDC

HINGE
SELF-MOD 48.07 22.51 24.66 75.87
BASELINE 38.31 27.20 26.33 90.01

NS
SELF-MOD 46.65 24.73 26.09 76.69
BASELINE 40.80 28.16 27.41 93.25

BEST OF ABOVE
SELF-MOD 14.32 22.51 18.54 68.90
BASELINE 17.10 26.15 20.08 78.62

3.2 ROBUSTNESS EXPERIMENTS FOR UNCONDITIONAL GENERATION

To test robustness, we run a Cartesian product of the parameters in Section 3.1 which results in 36
settings for each dataset (2 losses, 2 architectures, 3 hyperparameter settings for spectral normaliza-
tion, and 6 for gradient penalty). For each setting we run five random seeds for self-modulation and
the baseline (no self-modulation, just batch normalization). We compute the median score across
random seeds which results in 1440 trained models.

We distinguish between two sets of experiments. In the unpaired setting we define the model as
the tuple of loss, regularizer/normalization, neural architecture, and conditioning (self-modulated
or classic batch normalization). For each model compute the minimum FID across optimization
hyperparameters (β1, β2, disc iters). We therefore compare the performance of self-modulation
and baseline for each model after hyperparameter optimization. The results of this study are reported
in Table 2, and the relative improvements are in Table 3 and Figure 2.

We observe the following: (1) When using the RESNET style architecture, the proposed method
outperforms the baseline in all considered settings. (2) When using the SNDCGAN architecture, it
outperforms the baseline in 87.5% of the cases. The breakdown by datasets is shown in Figure 2.
(3) The improvement can be as high as a 33% reduction in FID. (4) We observe similar improvement
to the inception score, reported in the appendix.

In the second setting, the paired setting, we assess how effective is the technique when simply
added to an existing model with the same set of hyperparameters. In particular, we fix everything
except the type of conditioning – the model tuple now includes the optimization hyperparameters.
This results in 36 settings for each data set for a total of 144 comparisons. We observe that self-
modulation outperforms the baseline in 124/144 settings. These results suggest that self-modulation
can be applied to most GANs even without additional hyperparameter tuning.

Conditional Generation. We demonstrate that self-modulation also works for label-conditional
generation. Here, one is given access the class label which may be used by the generator and the

5

Published as a conference paper at ICLR 2019

Table 3: Reduction in FID over a large class of hyperparameter settings, losses, regularization,
and normalization schemes. We observe from 4.3% to 33% decrease in FID. When applied to
the RESNET architecture, independently of the loss, regularization, and normalization, SELF-MOD
always outperforms the baseline. For SNDCGAN we observe an improvement in 87.5% of the cases
(all except two on LSUN-BEDROOM).

REDUCTION(%) REDUCTION(%)
MODEL RESNET SNDC MODEL RESNET SNDC

HINGE-GP BEDROOM 18.50 7.30 NS-GP BEDROOM 31.22 9.99
CELEBAHQ 9.94 18.81 CELEBAHQ 20.96 4.89
CIFAR10 4.30 7.33 CIFAR10 6.51 9.21
IMAGENET 9.18 22.01 IMAGENET 12.92 17.39

HINGE-SN BEDROOM 16.25 -25.48 NS-SN BEDROOM 15.43 -14.35
CELEBAHQ 6.31 17.26 CELEBAHQ 13.08 12.20
CIFAR10 7.67 6.35 CIFAR10 13.36 4.83
IMAGENET 12.37 15.72 IMAGENET 33.39 17.76

24 25 26 27

FID (Baseline)

24

25

26

27

F
ID

 (
S
e
lf
-m

o
d
u
la

te
d
)

BEDROOM

CELEBAHQ

CIFAR10

IMAGENET

(a)

BEDROOM CELEBAHQ CIFAR10 IMAGENET
Dataset

0

10

20

30

40

50

60

#
 M

o
d
e
ls

BN

SELF-MOD

(b)

all 0 1 2 3 4 5 6 7 8 9 10
Target Layer

11

12

13

14

15

16

17

18

F
ID

Dataset = bedroom

(c)

Figure 2: In Figure (a) we observe that the proposed method outperforms the baseline in the un-
paired setting. Figure (b) shows the number of models which fall in 80-th percentile in terms of
FID (with reverse ordering). We observe that the majority “good” models utilize self-modulation.
Figure (c) shows that applying self-conditioning is more beneficial on the later layers, but should be
applied to each layer for optimal performance. This effect persists across all considered datasets,
see the appendix.

discriminator. We compare two settings: (1) Generator conditioning is applied via label-conditional
Batch Norm (De Vries et al., 2017; Miyato & Koyama, 2018) with no use of labels in the discrimina-
tor (G-COND). (2) Generator conditioning applied as above, but with projection based conditioning
in the discriminator (intuitively it encourages the discriminator to use label discriminative features to
distinguish true/fake samples), as in Miyato & Koyama (2018) (P-CGAN). The former can be con-
sidered as a special case of the latter where discriminator conditioning is disabled. For P-CGAN, we
use the architectures and hyper-parameter settings of Miyato & Koyama (2018). See the appendix,
Section B.3 for details. In both cases, we compare standard label-conditional batch normalization to
self-modulation with additional labels, as discussed in Section 2, Equation 3.

The results are shown in Table 4. Again, we observe that the simple incorporation of self-modulation
leads to a significant improvement in performance in the considered settings.

Training for longer on IMAGENET. To demonstrate that self-modulation continues to yield im-
provement after training for longer, we train IMAGENET for 500k generator steps. Due to the in-
creased computational demand we use a single setting for the unconditional and conditional settings
models following Miyato et al. (2018) and Miyato & Koyama (2018), but using only two discrim-
inator steps per generator. We expect that the results would continue to improve if training longer.
However, currently results from 500k steps require training for ∼10 days on a P100 GPU.

We compute the median FID across 3 random seeds. After 500k steps the baseline unconditional
model attains FID 60.4, self-modulation attains 53.7 (11% improvement). In the conditional setting

6

Published as a conference paper at ICLR 2019

Table 4: FID and IS scores in label conditional setting.

UNCONDITIONAL G-COND P-CGAN
SCORE BASELINE SELF-MOD BASELINE SELF-MOD BASELINE SELF-MOD

CIFAR10 FID 20.41 18.58 21.08 18.39 16.06 14.19
IMAGENET FID 81.07 69.53 80.43 68.93 70.28 66.09

CIFAR10 IS 7.89 8.31 8.11 8.34 8.53 8.71
IMAGENET IS 11.16 12.52 11.16 12.48 13.62 14.14

self-modulation improves the FID from 50.6 to 43.9 (13% improvement). The improvements in IS
are from 14.1 to 15.1, and 20.1 to 22.2 in unconditional and conditional setting, respectively.

Where to apply self-modulation? Given the robust improvements of the proposed method, an im-
mediate question is where to apply the modulation. We tested two settings: (1) applying modulation
to every batch normalization layer, and (2) applying it to a single layer. The results of this ablation
are in Figure 2. These results suggest that the benefit of self-modulation is greatest in the last layer,
as may be intuitive, but applying it to each layer is most effective.

4 RELATED WORK

Conditional GANs. Conditioning on side information, such as class labels, has been shown to
improve the performance of GANs. Initial proposals were based on concatenating this additional
feature with the input vector (Mirza & Osindero, 2014; Radford et al., 2016; Odena et al., 2017).
Recent approaches, such as the projection cGAN (Miyato & Koyama, 2018) injects label informa-
tion into the generator architecture using conditional Batch Norm layers (De Vries et al., 2017).
Self-modulation is a simple yet effective complementary addition to this line of work which makes
a significant difference when no side information is available. In addition, when side information is
available it can be readily applied as discussed in Section 2 and leads to further improvements.

Conditional Modulation. Conditional modulation, using side information to modulate the compu-
tation flow in neural networks, is a rich idea which has been applied in various contexts (beyond
GANs). In particular, Dumoulin et al. (2017) apply Conditional Instance Normalization (Ulyanov
et al., 2016) to image style-transfer (Dumoulin et al., 2017). Kim et al. (2017) use Dynamic Layer
Normalization (Ba et al., 2016) for adaptive acoustic modelling. Feature-wise Linear Modula-
tion (Perez et al., 2018) generalizes this family of methods by conditioning the Batch Norm scaling
and bias factors (which correspond to multiplicative and additive interactions) on general external
embedding vectors in supervised learning. The proposed method applies to generators in GAN
(unsupervised learning), and it works with both unconditional (without side information) and con-
ditional (with side information) settings.

Multiplicative and Additive Modulation. Existing conditional modulations mentioned above are
usually instantiated via Batch Normalization, which include both multiplicative and additive mod-
ulation. These two types of modulation also link to other techniques widely used in neural net-
work literature. The multiplicative modulation is closely related to Gating, which is adopted in
LSTM (Hochreiter & Schmidhuber, 1997), gated PixelCNN (van den Oord et al., 2016), Convo-
lutional Sequence-to-sequence networks (Gehring et al., 2017) and Squeeze-and-excitation Net-
works (Hu et al., 2018). The additive modulation is closely related to Residual Networks (He et al.,
2016). The proposed method adopts both types of modulation.

5 DISCUSSION

We present a generator modification that improves the performance of most GANs. This technique
is simple to implement and can be applied to all popular GANs, therefore we believe that self-
modulation is a useful addition to the GAN toolbox.

Our results suggest that self-modulation clearly yields performance gains, however, they do not say
how this technique results in better models. Interpretation of deep networks is a complex topic,

7

Published as a conference paper at ICLR 2019

Condition number Precision/Recall

CIFAR10

0 100 200 300 400
FID

8

10

12

14

16

lo
g
 c

o
n
d
 n

u
m

Baseline: r=0.83

Self-Mod: r=0.67

0.0 0.5 1.0
F8 (recall)

0.0

0.5

1.0

F
1=
8
 (

p
re

ci
si

o
n
)

Baseline

Self-Mod

IMAGENET

100 200 300
FID

5

10

15

20

lo
g
 c

o
n
d
 n

u
m

Baseline: r=0.39

Self-Mod: r=0.24

0.0 0.5 1.0
F8 (recall)

0.0

0.5

1.0

F
1=
8
 (

p
re

ci
si

o
n
)

Baseline

Self-Mod

Figure 3: Each point corresponds to a single model/hyperparameter setting. The left-hand plots
show the log condition number of the generator versus the FID score. The right-hand plots show
the generator precision/recall curves. The r values for the correlation between log condition number
and FID on CIFAR10 are 0.67 and 0.83 for Self-Mod and Base, respectively. For IMAGENET they
are 0.24 and 0.39 for Self-Mod and Base, respectively. LSUN-BEDROOM and CELEBA-HQ are in the
appendix.

especially for GANs, where the training process is less well understood. Rather than purely spec-
ulate, we compute two diagnostic statistics that were proposed recently ignite the discussion of the
method’s effects.

First, we compute the condition number of the generators Jacobian. Odena et al. (2018) provide
evidence that better generators have a Jacobian with lower condition number and hence regularize
using this quantity. We estimate the generator condition number in the same was as Odena et al.
(2018). We compute the Jacobian (Jz)i,j = δG(z)i

δzj
at each z in a minibatch, then average the

logarithm of the condition numbers computed from each Jacobian.

Second, we compute a notion of precision and recall for generative models. Sajjadi et al. (2018)
define the quantities, F8 and F1/8, for generators. These quantities relate intuitively to the traditional
precision and recall metrics for classification. Generating points which have low probability under
the true data distribution is interpreted as a loss in precision, and is penalized by the F8 score. Failing
to generate points that have high probability under the true data distributions is interpreted as a loss
in recall, and is penalized by the F1/8 score.

Figure 3 shows both statistics. The left hand plot shows the condition number plotted against FID
score for each model. We observe that poor models tend to have large condition numbers; the
correlation, although noisy, is always positive. This result corroborates the observations in (Odena
et al., 2018). However, we notice an inverse trend in the vicinity of the best models. The cluster of the
best models with self-modulation has lower FID, but higher condition number, than the best models
without self-modulation. Overall the correlation between FID and condition number is smaller
for self-modulated models. This is surprising, it appears that rather than unilaterally reducing the
condition number, self-modulation provides some training stability, yielding models with a small
range of generator condition numbers.

The right-hand plot in Figure 3 shows the F8 and F1/8 scores. Models in the upper-left quadrant
cover true data modes better (higher precision), and models in the lower-right quadrant produce

8

Published as a conference paper at ICLR 2019

more modes (higher recall). Self-modulated models tend to favor higher recall. This effect is most
pronounced on IMAGENET.

Overall these diagnostics indicate that self-modulation stabilizes the generator towards favorable
conditioning values. It also appears to improve mode coverage. However, these metrics are very
new; further development of analysis tools and theoretical study is needed to better disentangle the
symptoms and causes of the self-modulation technique, and indeed of others.

ACKNOWLEDGEMENTS

We would like to thank Ilya Tolstikhin for helpful discussions. We would also like to thank Xiaohua
Zhai, Marcin Michalski, Karol Kurach and Anton Raichuk for their help with infustrature. We also
appreciate general discussions with Olivier Bachem, Alexander Kolesnikov, Thomas Unterthiner,
and Josip Djolonga. Finally, we are grateful for the support of other members of the Google Brain
team.

REFERENCES

Martı́n Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International Conference on Machine Learning (ICML), 2017.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Shane Barratt and Rishi Sharma. A note on the inception score. arXiv preprint arXiv:1801.01973,
2018.

Harm De Vries, Florian Strub, Jérémie Mary, Hugo Larochelle, Olivier Pietquin, and Aaron C
Courville. Modulating early visual processing by language. In Advances in Neural Information
Processing Systems (NIPS), 2017.

Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A learned representation for artistic
style. International Conference on Learning Representations (ICLR), 2017.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann Dauphin. Convolutional
sequence to sequence learning. In International Conference on Machine Learning (ICML), 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Infor-
mation Processing Systems (NIPS), 2014.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Im-
proved training of Wasserstein GANs. Advances in Neural Information Processing Systems
(NIPS), 2017.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Computer
Vision and Pattern Recognition (CVPR), 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Günter Klambauer, and
Sepp Hochreiter. GANs trained by a two time-scale update rule converge to a Nash equilibrium.
In Advances in Neural Information Processing Systems (NIPS), 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 1997.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Computer Vision and Pattern
Recognition (CVPR), 2018.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. arxiv, 2016.

9

Published as a conference paper at ICLR 2019

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. Advances in Neural Information Processing Systems
(NIPS), 2017.

Taesup Kim, Inchul Song, and Yoshua Bengio. Dynamic layer normalization for adaptive neural
acoustic modeling in speech recognition. In INTERSPEECH, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Karol Kurach, Mario Lucic, Xiaohua Zhai, Marcin Michalski, and Sylvain Gelly. The
GAN Landscape: Losses, Architectures, Regularization, and Normalization. arXiv preprint
arXiv:1807.04720, 2018.

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro
Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single
image super-resolution using a generative adversarial network. In Computer Vision and Pattern
Recognition (CVPR), 2017.

Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet. Are GANs
Created Equal? A Large-scale Study. In Advances in Neural Information Processing Systems
(NIPS), 2018.

Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley.
Least squares generative adversarial networks. International Conference on Computer Vision
(ICCV), 2016.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

Takeru Miyato and Masanori Koyama. cgans with projection discriminator. International Confer-
ence on Learning Representations (ICLR), 2018.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. International Conference on Learning Representations (ICLR),
2018.

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxil-
iary classifier GANs. In International Conference on Machine Learning (ICML), 2017.

Augustus Odena, Jacob Buckman, Catherine Olsson, Tom B Brown, Christopher Olah, Colin Raffel,
and Ian Goodfellow. Is generator conditioning causally related to gan performance? arXiv
preprint arXiv:1802.08768, 2018.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In Computer Vision and Pattern Recognition (CVPR),
2016.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film: Visual
reasoning with a general conditioning layer. AAAI, 2018.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. International Conference on Learning Represen-
tations (ICLR), 2016.

Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. Assessing
generative models via precision and recall. In Advances in Neural Information Processing Systems
(NIPS), 2018.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in Neural Information Processing Systems
(NIPS), 2016.

10

Published as a conference paper at ICLR 2019

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Computer Vision and Pattern Recognition (CVPR), 2015.

Michael Tschannen, Eirikur Agustsson, and Mario Lucic. Deep generative models for distribution-
preserving lossy compression. In Advances in Neural Information Processing Systems (NIPS),
2018.

D Ulyanov, A Vedaldi, and VS Lempitsky. Instance normalization: The missing ingredient for fast
stylization. arXiv preprint arXiv:1607.08022, 2016.

Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Condi-
tional image generation with pixelcnn decoders. In Advances in Neural Information Processing
Systems (NIPS), 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems (NIPS), 2017.

Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun: Construction of
a large-scale image dataset using deep learning with humans in the loop. arXiv preprint
arXiv:1506.03365, 2015.

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaolei Huang, Xiaogang Wang, and Dimitris
Metaxas. Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial
networks. International Conference on Computer Vision (ICCV), 2017.

Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention generative
adversarial networks. arXiv preprint arXiv:1805.08318, 2018.

Zhiming Zhou, Yuxuan Song, Lantao Yu, and Yong Yu. Understanding the effectiveness of lipschitz
constraint in training of gans via gradient analysis. arXiv preprint arXiv:1807.00751, 2018.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. arXiv preprint, 2017.

11

Published as a conference paper at ICLR 2019

A ADDITIONAL RESULTS

A.1 INCEPTION SCORES

Table 5: In the unpaired setting (as defined in Section 3.2), we compute the median score (across
random seeds) and report the best attainable score across considered optimization hyperparameters.
SELF-MOD is the method introduced in Section 2 and BASELINE refers to batch normalization.

TYPE ARCH LOSS METHOD BEDROOM CELEBAHQ CIFAR10 IMAGENET

GRADIENT
PENALTY

RESNET

HINGE
SELF-MOD 5.28± 0.18 2.92± 0.13 7.71± 0.59 11.52± 0.07
BASELINE 4.72± 0.11 2.80± 0.08 7.35± 0.02 10.26± 0.09

NS
SELF-MOD 4.96± 0.17 2.61± 0.05 7.70± 0.05 10.74± 1.20
BASELINE 4.54± 0.11 2.60± 0.25 7.26± 0.03 9.49± 0.12

SNDCGAN

HINGE
SELF-MOD 6.34± 0.07 3.05± 0.12 7.37± 0.04 10.99± 0.06
BASELINE 5.02± 0.05 3.08± 0.09 6.88± 0.05 8.11± 0.06

NS
SELF-MOD 6.31± 0.05 3.07± 0.05 7.28± 0.06 10.06± 0.10
BASELINE 4.71± 0.05 3.21± 0.20 6.86± 0.06 7.24± 0.16

SPECTRAL
NORM

RESNET

HINGE
SELF-MOD 3.94± 0.22 3.65± 0.16 8.29± 0.03 12.67± 0.07
BASELINE 4.32± 0.17 3.26± 0.16 8.00± 0.03 11.29± 0.12

NS
SELF-MOD 4.61± 0.18 3.32± 0.09 8.23± 0.04 11.52± 0.28
BASELINE 4.07± 0.21 2.58± 0.08 7.93± 0.04 7.40± 0.60

SNDCGAN

HINGE
SELF-MOD 5.85± 0.07 2.74± 0.02 7.90± 0.04 12.50± 0.12
BASELINE 4.82± 0.12 2.40± 0.02 7.48± 0.04 9.62± 0.10

NS
SELF-MOD 5.73± 0.07 2.55± 0.02 7.84± 0.02 11.95± 0.09
BASELINE 4.39± 0.14 2.33± 0.01 7.37± 0.04 9.28± 0.13

A.2 FIDS

Table 6: Table 2 with the standard error of the median.

TYPE ARCH LOSS METHOD BEDROOM CELEBAHQ CIFAR10 IMAGENET

GRADIENT
PENALTY

RES

HINGE
SELF-MOD 22.62± 64.79 27.03± 0.29 26.93± 13.52 78.31± 0.96
BASE 27.75± 1.01 30.02± 0.69 28.14± 0.52 86.23± 1.34

NS
SELF-MOD 25.30± 1.21 26.65± 13.16 26.74± 0.42 85.67± 11.94
BASE 36.79± 0.25 33.72± 0.78 28.61± 0.27 98.38± 1.48

SNDC

HINGE
SELF-MOD 110.86± 1.72 55.63± 0.53 33.58± 0.47 90.67± 0.49
BASE 119.59± 1.71 68.51± 1.66 36.24± 0.69 116.25± 0.48

NS
SELF-MOD 120.73± 2.10 125.44± 11.27 33.70± 0.47 101.40± 1.17
BASE 134.13± 2.40 131.89± 42.16 37.12± 0.62 122.74± 0.58

SPECTRAL
NORM

RES

HINGE
SELF-MOD 14.32± 0.40 24.50± 0.46 18.54± 0.15 68.90± 0.67
BASE 17.10± 1.44 26.15± 0.70 20.08± 0.31 78.62± 0.97

NS
SELF-MOD 14.80± 0.40 26.27± 0.48 20.63± 0.20 80.48± 2.43
BASE 17.50± 0.64 30.22± 0.48 23.81± 0.17 120.82± 6.82

SNDC

HINGE
SELF-MOD 48.07± 1.77 22.51± 0.38 24.66± 0.40 75.87± 0.37
BASE 38.31± 1.42 27.20± 0.80 26.33± 0.54 90.01± 1.06

NS
SELF-MOD 46.65± 2.72 24.73± 0.25 26.09± 0.19 76.69± 0.89
BASE 40.80± 1.75 28.16± 0.17 27.41± 0.43 93.25± 0.35

BEST OF ABOVE
SELF-MOD 14.32 22.51 18.54 68.90
BASELINE 17.10 26.15 20.08 78.62

12

Published as a conference paper at ICLR 2019

A.3 WHICH LAYER TO MODULATE?

Figure 4 presents the performance when modulating different layers of the generator for each dataset.

all 0 1 2 3 4 5 6 7 8 9 10
Target Layer

11

12

13

14

15

16

17

18

F
ID

Dataset = bedroom

all 0 1 2 3 4 5 6 7 8 9 10
Target Layer

22

23

24

25

26

27

28

29 Dataset = celebahq

all 0 1 2 3 4 5 6 7 8 9 10
Target Layer

17.5

18.0

18.5

19.0

19.5

20.0

20.5

21.0

21.5 Dataset = cifar10

all 0 1 2 3 4 5 6 7 8 9 10
gc_transform_layers

65

70

75

80

85 Dataset = imagenet

Figure 4: FID distributions resulting from Self-Modulation on different layers.

A.4 CONDITIONING AND PRECISION/RECALL

Figure 5 presents the generator Jacobian condition number and precision/recall plot for each dataset.

B MODEL ARCHITECTURES

We describe the model structures that are used in our experiments in this section.

B.1 SNDCGAN ARCHITECTURES

The SNDCGAN architecture we follows the ones used in Miyato et al. (2018). Since the resolution
of images in CIFAR10is 32×32×3, while resolutions of images in other datasets are 128×128×3.
There are slightly differences in terms of spatial dimensions for both architectures. The proposed
self-modulation is applied to replace existing BN layer, we term it sBN (self-modulated BN) for
short in Table 7, 8, 9, 10.

B.2 RESNET ARCHITECTURES

The ResNet architecture we also follows the ones used in Miyato et al. (2018). Again, due to the
resolution differences, two ResNet architectures are used in this work. The proposed self-modulation
is applied to replace existing BN layer, we term it sBN (self-modulated BN) for short in Table 11,
12, 13, 14.

B.3 CONDITIONAL GAN ARCHITECTURE

For the conditional setting with label information available, we adopt the Projection Based Condi-
tional GAN (P-cGAN) (Miyato & Koyama, 2018). There are both conditioning in generators as
well ad discriminators. For generator, conditional batch norm is applied via conditioning on label
information, more specifically, this can be expressed as follows,

h′` = γy �
h` − µ
σ

+ βy

Where each label y is associated with a scaling and shifting parameters independently.

For discriminator label conditioning, the dot product between final layer feature φ(x) and label
embedding E(y) is added back to the discriminator output logits, i.e. D(x, y) = ψ(φ(x)) +
φ(x)TE(y) where φ(x) represents the final feature representation layer of input x, and ψ(·) is the
linear transformation maps the feature vector into a real number. Intuitively, this type of conditional
discriminator encourages discriminator to use label discriminative features to distinguish true/fake
samples. Both the above conditioning strategies do not dependent on the specific architectures, and
can be applied to above architectures with small modifications.

13

Published as a conference paper at ICLR 2019

CIFAR10:

0 100 200 300 400
FID

8

10

12

14

16

lo
g
 c

o
n
d
 n

u
m

Baseline: r=0.83

Self-Mod: r=0.67

0.0 0.5 1.0
F8 (recall)

0.0

0.5

1.0

F
1=
8
 (

p
re

ci
si

o
n
)

Baseline

Self-Mod

IMAGENET:

100 200 300
FID

5

10

15

20

lo
g
 c

o
n
d
 n

u
m

Baseline: r=0.39

Self-Mod: r=0.24

0.0 0.5 1.0
F8 (recall)

0.0

0.5

1.0

F
1=
8
 (

p
re

ci
si

o
n
)

Baseline

Self-Mod

LSUN-
BEDROOM:

0 100 200 300 400
FID

5

10

15

20

lo
g
 c

o
n
d
 n

u
m

Baseline: r=0.21

Self-Mod: r=-0.26

0.0 0.5 1.0
F8 (recall)

0.0

0.5

1.0

F
1=
8
 (

p
re

ci
si

o
n
)

Baseline

Self-Mod

CELEBA-HQ:

0 100 200 300 400
FID

5

10

15

20

lo
g
 c

o
n
d
 n

u
m

Baseline: r=0.33

Self-Mod: r=0.24

0.0 0.5 1.0
F8 (recall)

0.0

0.5

1.0

F
1=
8
 (

p
re

ci
si

o
n
)

Baseline

Self-Mod

Figure 5: Each point in each plot corresponds to a single model for all parameter configurations.
The model with mean FID score across the five random seeds was chosen. The left-hand plots show
the log condition number of the generator versus the FID score for each model. The right-hand
generator precision/recall metrics.

We use the same architectures and hyper-parameter settings4 as in Miyato & Koyama (2018). More
specifically, the architecture is the same as ResNet above, and we compare in two settings: (1) only

4With one exception: to make it consistent with previous unconditional settings (and also due to the compu-
tation time), instead of running five discriminator steps per generator step, we only use two discriminator steps
per generator step.

14

Published as a conference paper at ICLR 2019

generator label conditioning is applied, and there is no projection based conditioning in the discrim-
inator, and (2) both generator and discriminator conditioning are applied, which is the standard full
P-cGAN.

Table 7: SNDCGAN Generator with 32× 32× 3 resolution. sBN denotes BN with self-modulation
as proposed.

Layer Details Output size
Latent noise z ∼ N (0, I) 128
Fully Connected Linear 2 · 2 · 512

Reshape 2× 2× 512
Deconv sBN, ReLU 2× 2× 512

Deconv4x4,stride=2 4× 4× 256
Deconv sBN, ReLU 4× 4× 256

Deconv4x4,stride=2 8× 8× 128
Deconv sBN, ReLU 8× 8× 128

Deconv4x4,stride=2 16× 16× 64
Deconv sBN, ReLU 16× 16× 64

Deconv4x4,stride=2 32× 32× 3
Tanh 32× 32× 3

15

Published as a conference paper at ICLR 2019

Table 8: SNDCGAN Discriminator with 32× 32× 3 resolution.

Layer Details Output size
Input image - 32× 32× 3
Conv Conv3x3,stride=1 32× 32× 64

LeakyReLU 32× 32× 64
Conv Conv4x4,stride=2 16× 16× 128

LeakyReLU 16× 16× 128
Conv Conv3x3,stride=1 16× 16× 128

LeakyReLU 16× 16× 128
Conv Conv4x4,stride=2 8× 8× 256

LeakyReLU 8× 8× 256
Conv Conv3x3,stride=1 8× 8× 256

LeakyReLU 8× 8× 256
Conv Conv4x4,stride=2 4× 4× 512

LeakyReLU 4× 4× 512
Conv Conv3x3,stride=1 4× 4× 512

LeakyReLU 4× 4× 512
Fully connected Reshape 4 · 4 · 512

Linear 1

Table 9: SNDCGAN Gnerator with 128×128×3 resolution. sBN denotes BN with self-modulation
as proposed.

Layer Details Output size
Latent noise z ∼ N (0, I) 128
Fully Connected Linear 8 · 8 · 512

Reshape 8× 8× 512
Deconv sBN, ReLU 8× 8× 512

Deconv4x4,stride=2 16× 16× 256
Deconv sBN, ReLU 16× 16× 256

Deconv4x4,stride=2 32× 32× 128
Deconv sBN, ReLU 32× 32× 128

Deconv4x4,stride=2 64× 64× 64
Deconv sBN, ReLU 64× 64× 64

Deconv4x4,stride=2 128× 128× 3
Tanh 128× 128× 3

Table 10: SNDCGAN Discriminator with 128× 128× 3 resolution.

Layer Details Output size
Input image - 128× 128× 3
Conv Conv3x3,stride=1 128× 128× 64

LeakyReLU 128× 128× 64
Conv Conv4x4,stride=2 64× 64× 128

LeakyReLU 64× 64× 128
Conv Conv3x3,stride=1 64× 64× 128

LeakyReLU 64× 64× 128
Conv Conv4x4,stride=2 32× 32× 256

LeakyReLU 32× 32× 256
Conv Conv3x3,stride=1 32× 32× 256

LeakyReLU 32× 32× 256
Conv Conv4x4,stride=2 16× 16× 512

LeakyReLU 16× 16× 512
Conv Conv3x3,stride=1 16× 16× 512

LeakyReLU 16× 16× 512
Fully connected Reshape 16 · 16 · 512

Linear 1

16

Published as a conference paper at ICLR 2019

Table 11: ResNet Generator with 32× 32× 3 resolution. Each ResNet block has a skip-connection
that uses upsampling of its input and a 1x1 convolution. sBN denotes BN with self-modulation as
proposed.

Layer Details Output size
Latent noise z ∼ N (0, I) 128
Fully connected Linear 4 · 4 · 256

Reshape 4× 4× 256
ResNet block sBN, ReLU 4× 4× 256

Upsample 8× 8× 256
Conv3x3, sBN, ReLU 8× 8× 256

Conv3x3 8× 8× 256
ResNet block sBN, ReLU 8× 8× 256

Upsample 16× 16× 256
Conv3x3, sBN, ReLU 16× 16× 256

Conv3x3 16× 16× 256
ResNet block sBN, ReLU 16× 16× 256

Upsample 32× 32× 256
Conv3x3, sBN, ReLU 32× 32× 256

Conv3x3 32× 32× 256
Conv sBN, ReLU 128× 128× 3

Conv3x3, Tanh 128× 128× 3

Table 12: ResNet Discriminator with 32 × 32 × 3 resolution. Each ResNet block has a skip-
connection that applies a 1x1 convolution with possible downsampling according to spatial dimen-
sion.

Layer Details Output size
Input image 32× 32× 3
ResNet block Conv3x3 32× 32× 128

ReLU,Conv3x3 32× 32× 128
Downsample 16× 16× 128

ResNet block ReLU,Conv3x3 16× 16× 128
ReLU,Conv3x3 16× 16× 128

Downsample 8× 8× 128
ResNet block ReLU,Conv3x3 8× 8× 128

ReLU,Conv3x3 8× 8× 128
ResNet block ReLU,Conv3x3 8× 8× 128

ReLU,Conv3x3 8× 8× 128
Fully connected ReLU,GlobalSum pooling 128

Linear 1

17

Published as a conference paper at ICLR 2019

Table 13: ResNet Generator with 128×128×3 resolution. Each ResNet block has a skip-connection
that uses upsampling of its input and a 1x1 convolution. sBN denotes BN with self-modulation as
proposed.

Layer Details Output size
Latent noise z ∼ N (0, I) 128
Fully connected Linear 4 · 4 · 1024

Reshape 4× 4× 1024
ResNet block sBN, ReLU 4× 4× 1024

Upsample 8× 8× 1024
Conv3x3, sBN, ReLU 8× 8× 1024

Conv3x3 8× 8× 1024
ResNet block sBN, ReLU 8× 8× 1024

Upsample 16× 16× 1024
Conv3x3, sBN, ReLU 16× 16× 1024

Conv3x3 16× 16× 512
ResNet block sBN, ReLU 16× 16× 512

Upsample 32× 32× 512
Conv3x3, sBN, ReLU 32× 32× 512

Conv3x3 32× 32× 256
ResNet block sBN, ReLU 32× 32× 256

Upsample 64× 64× 256
Conv3x3, sBN, ReLU 64× 64× 256

Conv3x3 64× 64× 128
ResNet block sBN, ReLU 64× 64× 128

Upsample 128× 128× 128
Conv3x3, sBN, ReLU 128× 128× 128

Conv3x3 128× 128× 64
Conv sBN, ReLU 128× 128× 3

Conv3x3, Tanh 128× 128× 3

Table 14: ResNet Discriminator with 128 × 128 × 3 resolution. Each ResNet block has a skip-
connection that applies a 1x1 convolution with possible downsampling according to spatial dimen-
sion.

Layer Details Output size
Input image 128× 128× 3
ResNet block Conv3x3 128× 128× 64

ReLU,Conv3x3 128× 128× 64
Downsample 64× 64× 64

ResNet block ReLU,Conv3x3 64× 64× 64
ReLU,Conv3x3 64× 64× 128

Downsample 32× 32× 128
ResNet block ReLU,Conv3x3 32× 32× 128

ReLU,Conv3x3 32× 32× 256
Downsample 16× 16× 256

ResNet block ReLU,Conv3x3 16× 16× 256
ReLU,Conv3x3 16× 16× 512

Downsample 8× 8× 512
ResNet block ReLU,Conv3x3 8× 8× 512

ReLU,Conv3x3 8× 8× 1024
Downsample 4× 4× 1024

ResNet block ReLU,Conv3x3 4× 4× 1024
ReLU,Conv3x3 4× 4× 1024

Fully connected ReLU,GlobalSum pooling 1024
Linear 1

18

	Introduction
	Self-Modulation for Generative Adversarial Networks
	Experiments
	Experimental Settings
	Robustness experiments for unconditional generation

	Related Work
	Discussion
	Additional results
	Inception Scores
	FIDs
	Which layer to modulate?
	Conditioning and Precision/Recall

	Model Architectures
	SNDCGAN Architectures
	ResNet Architectures
	Conditional GAN Architecture

