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Abstract

Crime hotspot forecasting is an important part of crime prevention and reducing the1

delay between a 911 call and the physical intervention. Current developments in the2

field focus on enriching the historical data and sophisticated point process analysis3

methods with a fixed grid. In the paper we present a simple spatio-temporal point4

process allowing one to perform exhaustive (literal) grid searches. We then show5

that this approach can compete with more complex methods, as evidenced by the6

results on data collected by the Portland Bureau of Police. Finally, we discuss the7

advantages and potential implications of the new method.8

1 Introduction9

Spatio-temporal crime forecasting is a field that grabs the attention of both scientists and practitioners.10

Many academic researchers have published results based on time series analysis ([7]), regression11

methods ([4], [10], [23]), kernel density estimation ([2], [3], [5], [8], [19], [1]) or self-exciting point12

processes ([11], [22], [21], [15], [13], [16], [12]). Moreover, the US Government appreciates the13

impact predictive policing has on society (see [18]).14

In a typical crime prediction task, the forecast area is fixed and divided into small sub-regions, called15

cells. The cells are then scored separately over a given future time window. The ones with the highest16

rate are chosen as the most dangerous areas and called hotspots. In this article we present a point17

of view for hotspot forecasting that differs from those which can be found in the literature. We18

emphasise the simplicity and efficiency of our algorithm for a fixed grid to get an opportunity to check19

as many grids as possible. We place those attributes over sophisticated methods, with state-of-the-art20

results in practice. Our models would have won eight categories of the Real-Time Crime Forecasting21

Challenge conducted by the National Institute of Justice ([17]).22

The rest of the paper is organized as follows. In Section 2 we explain our approach in detail. Section23

3 contains a comprehensive description of case study of our method on data from the Real-Time24

Crime Forecasting Challenge. Further comments and summary are placed in Section 4.25

2 The model26

The choice of grid There is a vast literature available about crime forecasting for a given grid of27

cells based on past crimes committed (see references in the Introduction). In such a setup, more or28

less sophisticated methods are applied to predict which fixed parts of the investigated region will29

experience the highest future rate of crime. Clearly, changing the grid changes the entire task as30

well and may lead to completely different predictions with different levels of effectiveness in the31

real world. The choice of grid is really important. However, as far as we know, whenever the cell32

division is not imposed in advance, searching for a good grid is in practice reduced to grid search,33

random search (see [20]) or another primitive method of walking among parametrizations of possible34

tessellations. The reason there is a lack of ’smarter’ grid choosing techniques may be that spatial35
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distributions of crimes committed in urban areas are ’weird’: they contain atoms with very high crime36

rates (related to, for example, large-area stores or shelters for the homeless). Therefore, using the37

same data-driven algorithm for even very similar grids can cause a huge discrepancy in the qualities38

of the predictions obtained.39

Hence, grid optimization cannot be neglected. However, a good grid parametrization should take40

into account horizontal and vertical shifts, cell height, width, rotations, shape distortions, grids based41

on triangles, hexagons, aperiodic tessellations. . . Taking into consideration the massive number42

of grids worth checking we concluded there was a need for a very fast but still well performing43

supervised model for a fixed grid, one that would simply execute a random search on a rich space of44

grid parameterizations to find the ’optimal’ grid. This would yield a better final result than a more45

sophisticated, but slower algorithm applied to a random set of grids that would be too small to contain46

any decent tessellation.47

Fast algorithm for a given grid The main idea behind our algorithm for a fixed grid is simple:48

count the past crimes in every cell and mark the cells with ’the worst past’ as hotspots. In other49

words, we assume that if many crimes occurred somewhere, more are likely to happen. This principle50

may strike some as naive and outdated, but we believe that it is both accurate enough and fast.51

Up-to-date crime registries are freely available for several US cities. They form the main dataset in52

data-driven crime forecasting algorithms. One can search for any external data which could affect53

future crimes, but have not left a trace on those crimes that have already been committed. We are54

aware that weather, demographics and even social media information (see [23]) are sometimes used55

in similar contexts. Unfortunately, they significantly increase the model’s complexity, often without a56

guarantee of noticeably improved accuracy. Keeping computations as simple as possible, by using57

merely historical crime data, enables us to spend more time on selecting the right grid.58

We refine the raw algorithm by taking care of data aging and seasonality. Namely, we assign weights59

to all the past crimes and then sum up the weights of all the crimes in consecutive cells to find the60

hotspots. The weight of an event decreases exponentially as a function of age (in days) of a crime.61

The intensity of the decrease is a hyperparameter, tuned with the use of available data to obtain the62

best results. Also, we boost the weights of crimes committed on the same days of the year as those in63

the forecasted time span. The power of boosting is a hyperparameter as well.64

Moreover, we introduce a primitive ’spatial radiation’ of past crimes. For each data point, we put65

eight of its copies with reduced weights in the corners and in the center of the sides of the rhombus66

around it. In this way, a ’part’ of an event that has occured close to the cell border could fall into a67

neighboring cell. We chose to use a rhombus because it reflects the Manhattan metric, a reasonable68

match for North-South-oriented axis grid street plans, of which there are many in US cities. In our69

opinion, this ’degenerated spatial decay’ technique is pretty fast and good enough for working with70

aggregations of crimes to regular convex cells. The size of the rhombus and reduction of weights of71

added copies are hyperparameters.72

The strict mathematical description of the presented approach, expressed in the language of spatio-73

temporal point processes (cf., e.g., [15] and references therein), is placed in the supplemental material.74

Validation In classic crime forecasting, the score functions taken from the binary classification –75

ROC/AUC, sensitivity, etc. – are used (see [3]). There are also two newer functions on the market:76

predictive accuracy index (PAI, [3]) and prediction efficiency index (PEI, [9]). Their definitions and77

the proposed validation routine can be found in the supplementary material. They all have their78

disadvantages. Binary classification-based functions are inconvenient if the area of the hot-spots to79

be forecast is a very small fraction of the investigated jurisdiction, which is typical. As for other80

functions, PAI favors smaller single cell areas while PEI likes as great a single cell area as possible.81

For this reason it is impossible to maximize both PAI and PEI with the same grid, which casts doubt82

on the validity of using either of them. Moreover, PEI is bounded by 1 from above whereas the range83

of PAI is a positive half line, so they are not directly comparable. Here the lack of a simple universal84

unbiased score function becomes evident. Nevertheless, our approach is metric-agnostic, therefore85

any reasonable score function can be applied here.86
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3 Case study87

The competition In September 2016, the National Institute of Justice in the US announced the88

Real-Time Crime Forecasting Challenge. The goal was to predict future crimes in Portland, Oregon.89

Contestants were asked to divide the area under Portland police jurisdiction (an area roughly 15 by90

20 miles) into a grid of small cells (i.e., 250 by 250 feet) and indicate the cells that would have the91

highest future crime rate - hotspots. Several restrictions on the cells’ shape and the total volume of92

hotspots were imposed.93

Four different categories of crime were considered separately: all crimes, burglaries, car thefts and94

street crimes (including assaults, robberies, shots fired). Five future time spans (starting in March95

2017) were involved: one week, two weeks, a month, two months and three months. Hence, there96

were 20 type/time categories. In each of them, the predictions were compared against the actual state97

of affairs in Portland using both PAI and PEI. Thus, the competition consisted of 4 ·5 ·2 = 40 separate98

sub-competitions in total. Only the best submission was awarded in each of them. Three independent99

tracks of the challenge were run simultaneously: intended for large businesses, small businesses100

and students, respectively. Each track had the same rules and goals, but separate contestants and101

winners. We decided to benchmark ourselves against the results from the large business track, as it102

was expectedly the most competitive one.103

Data The NIJ delivered historical data on all the crimes registered in Portland between March 2012104

and February 2017. Almost 1,000,000 records were provided in total. Each of them contained the day105

the crime was committed, coordinates (with accuracy to one foot) and the type of crime committed.106

There were no data gaps. A very small portion of data was located outside the competition area.107

The distribution of data between crime categories was highly imbalanced: burglaries, car thefts and108

street crimes were only 0.5%, 1%, and 16.5% of records, respectively. One would anticipate a similar109

distribution reflected in crimes committed between March and May 2017. Thus, we expected a huge110

discrepancy in the numbers of crimes committed between particular type/time categories during that111

period. That was true, two extreme cases were: all the crimes between March and May 2017 - 65,000112

records, and burglaries in the first week of March 2017 - only 20 events.113

Distributions of crimes in all the categories with a big enough number of events had similar character-114

istics: they consisted of the ’dense’ part looking like a sample from a continuous distribution and the115

’discrete’ part made from atoms. It seems that although the accuracy of the coordinates of crimes116

committed was in general one foot, police officers tended to ’discretize’ some areas like stores or117

shelters to a single spatial point next to the entrance to the building/area.118

Computations The first attempts showed that in each of the 20 type/time categories the PAI metric119

was maximized by a lot of small hotspots whereas PEI behaved best for a small number of large120

hotspots. Hence it was clear that we should not attempt to satisfy both metrics simultaneously. Since121

each metric formed an independent sub-competition, it was better to have a good score for one122

metric than mediocre results for both. So, for each of the 20 type/time categories we had to decide123

which metric to focus on in our further work. We did not check the participants’ choices or results124

to properly simulate the competitions’ environment. Moreover, our approach was metric-agnostic.125

Hence, to choose a metric, we just tossed a coin for each of 20 type/time categories.126

We were examining four types of regular grids: parallelogram grids, triangular grids with 3 vertices127

at a point, triangular grids with 6 vertices at a point, and hexagonal grids. They were parameterized128

by cell height, width, translations, rotations and bending. No shape proved noticeably better than129

other ones. Hence, we ultimately decided to only use unrotated rectangular grids, parameterized by130

cell height, width, horizontal and vertical shift. Finally, the number of predicted hotspots was also a131

hyperparameter.132

The model was implemented as Python scripts with NumPy and PyTorch packages used. The133

computations were performed on the Intel R© AI DevCloud infrastructure with Intel R© Xeon Scalable134

Processors, together with optimized distributions of Python and PyTorch.135

We optimized the grid and our model hyperparameters for each of 20 type/time categories separately.136

The learned values of hyperparameters and their interpretations can be found in the supplementary137

material.138
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Results In the contest track for large businesses, our predictions would have proved the most139

accurate in seven categories with the largest numbers of crimes committed during the test periods.140

We optimized the model for PAI in three of them and for PEI in another four. Moreover, all of141

those predictions would have remained on the top after comparing results from the competition’s142

three tracks (for large business, small businesses and students). This would have been the best result143

among all the competitors, while the runner-up would have achieved four across-track wins. The144

table gathering the results of the competition can be seen in the supplementary materials.145

The results allowed us to conclude that for both the PAI and PEI metrics we were able to find grids and146

hotspots with quality competing with predictions obtained by authors of more complicated methods147

described in the literature (cf. [14], [6]). Our approach proved especially effective in categories with148

the biggest number of crimes committed.149

Since different competitors submitted different grids, we are unable to compare algorithms for a fixed150

grid created by particular contestants. Therefore, we cannot judge whether the good performance151

of our models was an effect of thoroughly scouring potential grids or the power of simplicity of our152

algorithm for a fixed grid, or perhaps both. At this point we can only claim that our pipeline fulfilled153

its task.154

4 Discussion155

The comparative case study on crime data from Portland, OR, shows that our computation time-156

oriented approach can compete with more sophisticated crime forecasting methods existing in the157

literature. This result is somewhat surprising. One may conclude that the spatio-temporal distribution158

of crimes committed is too complicated to be estimated well enough with the use of parametric159

methods. Or maybe the choice of the proper grid matters much more than it seems. Moreover, we160

have no reason to claim that the good performance of our algorithm is a one-shot success valid only161

for Portland since our model contains no part priorly adapted to any particular city. Unfortunately,162

we did not have the opportunity to compare the quality of crime forecasts done with use of different163

methods (including our own) for the same fixed grid. Such research would shed more light on this164

field.165

The advantage of our algorithm for cases with thousands or more crimes to forecast is an interesting166

phenomenon. It can be attributed to two possible factors: a specific spatial distribution of crimes167

or computational simplicity. As the number of events increases, the crimes tend to be spatially168

distributed more regularly, but with the growing importance of single-point peaks. As stated above,169

for most statistical parametric methods it may be intractable to cover a distribution containing both170

a continuous and a discrete part. Comparing the performance of different models for a fixed grid171

would bear this out. On the other hand, sophisticated algorithms can paradoxically struggle to find172

the optimal grid and hotspots when presented with large volumes of training data. A time-consuming173

training procedure for a fixed grid does not allow one to check a sufficient number of potential grids.174

This problem may be addressed by more efficient algorithms’ implementations and significantly175

increasing computing resources. Also, adding more constraints on the admissible grid shapes clearly176

solves the problem, though it also makes it less universal.177

Finally, we note that in the perspective of maintaining and updating the crime forecasting system,178

using only the historical crime data seems to be a good solution. It is hard to find any non-constant179

external factor which can both influence future crimes and be easier to predict than crimes themselves.180

Besides, the impact of any hidden important feature is ultimately reflected in the historical data.181

Moreover, changes in the spatial crime distribution caused by system-driven preventive police182

activities may be not easy to manage when external data sources are used for forecasting. At the183

same time, a forecasting system based on merely historical data is able to simply retune to the current184

crime distribution.185
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