
Published as a conference paper at ICLR 2020

VARIBAD: A VERY GOOD METHOD FOR
BAYES-ADAPTIVE DEEP RL VIA META-LEARNING

Luisa Zintgraf ∗
University of Oxford

Kyriacos Shiarlis
Latent Logic

Maximilian Igl
University of Oxford

Sebastian Schulze
University of Oxford

Yarin Gal
University of Oxford

Katja Hofmann
Microsoft Research

Shimon Whiteson
University of Oxford

ABSTRACT

Trading off exploration and exploitation in an unknown environment is key to
maximising expected return during learning. A Bayes-optimal policy, which does
so optimally, conditions its actions not only on the environment state but on the
agent’s uncertainty about the environment. Computing a Bayes-optimal policy
is however intractable for all but the smallest tasks. In this paper, we introduce
variational Bayes-Adaptive Deep RL (variBAD), a way to meta-learn to perform
approximate inference in an unknown environment, and incorporate task uncer-
tainty directly during action selection. In a grid-world domain, we illustrate how
variBAD performs structured online exploration as a function of task uncertainty.
We further evaluate variBAD on MuJoCo domains widely used in meta-RL and
show that it achieves higher online return than existing methods.

1 INTRODUCTION

Reinforcement learning (RL) is typically concerned with finding an optimal policy that maximises
expected return for a given Markov decision process (MDP) with an unknown reward and transition
function. If these were known, the optimal policy could in theory be computed without environment
interactions. By contrast, learning in an unknown environment usually requires trading off explo-
ration (learning about the environment) and exploitation (taking promising actions). Balancing this
trade-off is key to maximising expected return during learning, which is desirable in many settings,
particularly in high-stakes real-world applications like healthcare and education (Liu et al., 2014;
Yauney & Shah, 2018). A Bayes-optimal policy, which does this trade-off optimally, conditions
actions not only on the environment state but on the agent’s own uncertainty about the current MDP.

In principle, a Bayes-optimal policy can be computed using the framework of Bayes-adaptive
Markov decision processes (BAMDPs) (Martin, 1967; Duff & Barto, 2002), in which the agent
maintains a belief distribution over possible environments. Augmenting the state space of the under-
lying MDP with this belief yields a BAMDP, a special case of a belief MDP (Kaelbling et al., 1998).
A Bayes-optimal agent maximises expected return in the BAMDP by systematically seeking out the
data needed to quickly reduce uncertainty, but only insofar as doing so helps maximise expected
return. Its performance is bounded from above by the optimal policy for the given MDP, which does
not need to take exploratory actions but requires prior knowledge about the MDP to compute.

Unfortunately, planning in a BAMDP, i.e., computing a Bayes-optimal policy that conditions on
the augmented state, is intractable for all but the smallest tasks. A common shortcut is to rely
instead on posterior sampling (Thompson, 1933; Strens, 2000; Osband et al., 2013). Here, the
agent periodically samples a single hypothesis MDP (e.g., at the beginning of an episode) from its
posterior, and the policy that is optimal for the sampled MDP is followed until the next sample is
drawn. Planning is far more tractable since it is done on a regular MDP, not a BAMDP. However,
posterior sampling’s exploration can be highly inefficient and far from Bayes-optimal.

∗luisa.zintgraf@cs.ox.ac.uk

1

Published as a conference paper at ICLR 2020

(a)
Environment

(b)
Bayes-

Optimal

(c)
Posterior
Sampling

(d)
VariBAD

(e) Performance

Figure 1: Illustration of different exploration strategies. (a) Environment: The agent starts at the
bottom left and has to navigate to an unknown goal, located in the grey area. (b) A Bayes-optimal
exploration strategy that systematically searches possible grid cells to find the goal, shown in solid
(past actions) and dashed (future actions) blue lines. A simplified posterior is shown in the back-
ground in grey (p = 1/(number of possible goal positions left) of containing the goal) and white
(p = 0). (c) Posterior sampling, which repeatedly samples a possible goal position (red squares)
from the current posterior, takes the shortest route there, and updates its posterior. (d) Exploration
strategy learned by variBAD. The grey background represents the approximate posterior the agent
has learned. (e) Average return over all possible environments, over six episodes with 15 steps each
(after which the agent is reset to the starting position). VariBAD results are averaged across 20
random seeds. The performance of any exploration strategy is bounded above by the optimal be-
haviour (of a policy with access to the true goal position). The Bayes-optimal agent matches this
behaviour from the second episode, whereas posterior sampling needs six rollouts. VariBAD closely
approximates Bayes-optimal behaviour in this environment.

Consider the example of a gridworld in Figure 1, where the agent must navigate to an unknown
goal located in the grey area (1a). To maintain a posterior, the agent can uniformly assign non-zero
probability to cells where the goal could be, and zero to all other cells. A Bayes-optimal strategy
strategically searches the set of goal positions that the posterior considers possible, until the goal is
found (1b). Posterior sampling by contrast samples a possible goal position, takes the shortest route
there, and then resamples a different goal position from the updated posterior (1c). Doing so is much
less efficient since the agent’s uncertainty is not reduced optimally (e.g., states are revisited).

As this example illustrates, Bayes-optimal policies can explore much more efficiently than posterior
sampling. A key challenge is to learn approximately Bayes-optimal policies while retaining the
tractability of posterior sampling. In addition, the inference involved in maintaining a posterior
belief, needed even for posterior sampling, may itself be intractable.

In this paper, we combine ideas from Bayesian RL, approximate variational inference, and meta-
learning to tackle these challenges, and equip an agent with the ability to strategically explore unseen
(but related) environments for a given distribution, in order to maximise its expected online return.

More specifically, we propose variational Bayes-Adaptive Deep RL (variBAD), a way to meta-learn
to perform approximate inference on an unknown task,1 and incorporate task uncertainty directly
during action selection. Given a distribution over MDPs p(M), we represent a single MDPM using
a learned, low-dimensional stochastic latent variable m and jointly meta-train:

1. A variational auto-encoder that can infer the posterior distribution over m in a new task,
given the agent’s experience, while interacting with the environment, and

2. A policy that conditions on this posterior belief over MDP embeddings, and thus learns how
to trade off exploration and exploitation when selecting actions under task uncertainty.

Figure 1e shows the performance of our method versus the hard-coded optimal (with privileged goal
information), Bayes-optimal, and posterior sampling exploration strategies. VariBAD’s performance
closely matches the Bayes-optimal one, matching optimal performance from the third rollout.

1We use the terms environment, task, and MDP, interchangeably.

2

Published as a conference paper at ICLR 2020

Previous approaches to BAMDPs are only tractable in environments with small action and state
spaces or rely on privileged information about the task during training. VariBAD offers a tractable
and flexible approach for learning Bayes-adaptive policies tailored to the training task distribution,
with the only assumption that such a distribution is available for meta-training. We evaluate our
approach on the gridworld shown above and on MuJoCo domains that are widely used in meta-RL,
and show that variBAD exhibits superior exploratory behaviour at test time compared to existing
meta-learning methods, achieving higher returns during learning. As such, variBAD opens a path to
tractable approximate Bayes-optimal exploration for deep reinforcement learning.

2 BACKGROUND

We define a Markov decision process (MDP) as a tuple M = (S,A, R, T, T0, γ,H) with S a set of
states,A a set of actions,R(rt+1|st, at, st+1) a reward function, T (st+1|st, at) a transition function,
T0(s0) an initial state distribution, γ a discount factor, andH the horizon. In the standard RL setting,
we want to learn a policy π that maximises J (π) = ET0,T,π

[∑H−1
t=0 γtR(rt+1|st, at, st+1)

]
, the

expected return. Here, we consider a multi-task meta-learning setting, which we introduce next.

2.1 TRAINING SETUP

We adopt the standard meta-learning setting where we have a distribution p(M) over MDPs
from which we can sample during meta-training, with an MDP Mi ∼ p(M) defined by a tuple
Mi = (S,A, Ri, Ti, Ti,0, γ,H). Across tasks, the reward and transition functions vary but share
some structure. The index i represents an unknown task description (e.g., a goal position or natural
language instruction) or task ID. Sampling an MDP from p(M) is typically done by sampling a
reward and transition function from a distribution p(R, T). During meta-training, batches of tasks
are repeatedly sampled, and a small training procedure is performed on each of them, with the goal
of learning to learn (for an overview of existing methods see Sec 4). At meta-test time, the agent is
evaluated based on the average return it achieves during learning, for tasks drawn from p. Doing this
well requires at least two things: (1) incorporating prior knowledge obtained in related tasks, and (2)
reasoning about task uncertainty when selecting actions to trade off exploration and exploitation. In
the following, we combine ideas from meta-learning and Bayesian RL to tackle these challenges.

2.2 BAYESIAN REINFORCEMENT LEARNING

When the MDP is unknown, optimal decision making has to trade off exploration and exploitation
when selecting actions. In principle, this can be done by taking a Bayesian approach to reinforce-
ment learning formalised as a Bayes-Adaptive MDP (BAMDP), the solution to which is a Bayes-
optimal policy (Bellman, 1956; Duff & Barto, 2002; Ghavamzadeh et al., 2015).

In the Bayesian formulation of RL, we assume that the transition and reward functions are distributed
according to a prior b0 = p(R, T). Since the agent does not have access to the true reward and
transition function, it can maintain a belief bt(R, T) = p(R, T |τ:t), which is the posterior over the
MDP given the agent’s experience τ:t = {s0, a0, r1, s1, a1, . . . , st} up until the current timestep.
This is often done by maintaining a distribution over the model parameters.

To allow the agent to incorporate the task uncertainty into its decision-making, this belief can be
augmented to the state, resulting in hyper-states s+t ∈ S+ = S × B, where B is the belief space.
These transition according to

T+(s+t+1|s
+
t , at, rt) = T+(st+1, bt+1|st, at, rt, bt)

= T+(st+1|st, at, bt) T+(bt+1|st, at, rt, bt, st+1)

= Ebt [T (st+1|st, at)] δ(bt+1 = p(R, T |τ:t+1)) (1)

i.e., the new environment state st is the expected new state w.r.t. the current posterior distribution
of the transition function, and the belief is updated deterministically according to Bayes rule. The
reward function on hyper-states is defined as the expected reward under the current posterior (after
the state transition) over reward functions,

R+(s+t , at, s
+
t+1) = R+(st, bt, at, st+1, bt+1) = Ebt+1 [R(st, at, st+1)] . (2)

3

Published as a conference paper at ICLR 2020

This results in a BAMDP M+ = (S+,A, R+, T+, T+
0 , γ,H

+) (Duff & Barto, 2002), which is a
special case of a belief MDP, i.e, the MDP formed by taking the posterior beliefs maintained by
an agent in a partially observable MDP and reinterpreting them as Markov states (Cassandra et al.,
1994). In an arbitrary belief MDP, the belief is over a hidden state that can change over time. In a
BAMDP, the belief is over the transition and reward functions, which are constant for a given task.
The agent’s objective is now to maximise the expected return in the BAMDP,

J +(π) = Eb0,T+
0 ,T

+,π

H+−1∑
t=0

γtR+(rt+1|s+t , at, s+t+1)

 , (3)

i.e., maximise the expected return in an initially unknown environment, while learning, within the
horizonH+. Note the distinction between the MDP horizonH and BAMDP horizonH+. Although
they often coincide, we might instead want the agent to act Bayes-optimal within the first N MDP
episodes, so H+=N × H . Trading off exploration and exploitation optimally depends heavily on
how much time the agent has left (e.g., to decide whether information-seeking actions are worth it).

The objective in (3) is maximised by the Bayes-optimal policy, which automatically trades off ex-
ploration and exploitation: it takes exploratory actions to reduce its task uncertainty only insofar as
it helps to maximise the expected return within the horizon. The BAMDP framework is powerful
because it provides a principled way of formulating Bayes-optimal behaviour. However, solving the
BAMDP is hopelessly intractable for most interesting problems.

The main challenges are as follows.

• We typically do not know the parameterisation of the true reward and/or transition model,
• The belief update (computing the posterior p(R, T |τ:t)) is often intractable, and
• Even with the correct posterior, planning in belief space is typically intractable.

In the following, we propose a method that simultaneously meta-learns the reward and transition
functions, how to perform inference in an unknown MDP, and how to use the belief to maximise
expected online return. Since the Bayes-adaptive policy is learned end-to-end with the inference
framework, no planning is necessary at test time. We make minimal assumptions (no privileged
task information is required during training), resulting in a highly flexible and scalable approach to
Bayes-adaptive Deep RL.

3 BAYES-ADAPTIVE DEEP RL VIA META-LEARNING

In this section, we present variBAD, and describe how we tackle the challenges outlined above. We
start by describing how to represent reward and transition functions, and (posterior) distributions
over these. We then consider how to meta-learn to perform approximate variational inference in a
given task, and finally put all the pieces together to form our training objective.

In the typical meta-learning setting, the reward and transition functions that are unique to each MDP
are unknown, but also share some structure across the MDPs Mi in p(M). We know that there
exists a true i which represents either a task description or task ID, but we do not have access to this
information. We therefore represent this value using a learned stochastic latent variable mi. For a
given MDP Mi we can then write

Ri(rt+1|st, at, st+1) ≈ R(rt+1|st, at, st+1;mi), (4)
Ti(st+1|st, at) ≈ T (st+1|st, at;mi), (5)

where R and T are shared across tasks. Since we do not have access to the true task description or
ID, we need to infer mi given the agent’s experience up to time step t collected in Mi,

τ
(i)
:t = (s0, a0, r1, s1, a1, r2, . . . , st−1, at−1, rt, st), (6)

i.e., we want to infer the posterior distribution p(mi|τ (i):t) over mi given τ (i):t (from now on, we drop
the sub- and superscript i for ease of notation).

Recall that our goal is to learn a distribution over the MDPs, and given a posteriori knowledge of
the environment compute the optimal action. Given the above reformulation, it is now sufficient to

4

Published as a conference paper at ICLR 2020

Figure 2: VariBAD architecture: A trajectory of states, actions and rewards is processed online using
an RNN to produce the posterior over task embeddings, qφ(m|τ:t). The posterior is trained using a
decoder which attempts to predict past and future states and rewards from current states and actions.
The policy conditions on the posterior in order to act in the environment and is trained using RL.

reason about the embedding m, instead of the transition and reward dynamics. This is particularly
useful when deploying deep learning strategies, where the reward and transition function can consist
of millions of parameters, but the embedding m can be a small vector.

3.1 APPROXIMATE INFERENCE

Computing the exact posterior is typically not possible: we do not have access to the MDP (and
hence the transition and reward function), and marginalising over tasks is computationally infeasible.
Consequently, we need to learn a model of the environment pθ(τ:H+ |a:H+−1), parameterised by θ,
together with an amortised inference network qφ(m|τ:t), parameterised by φ, which allows fast
inference at runtime at each timestep t. The action-selection policy is not part of the MDP, so an
environmental model can only give rise to a distribution of trajectories when conditioned on actions,
which we typically draw from our current policy, a ∼ π. At any given time step t, our model
learning objective is thus to maximise

Eρ(M,τ:H+) [log pθ(τ:H+ |a:H+−1)] , (7)

where ρ(M, τ:H+) is the trajectory distribution induced by our policy and we slightly abuse notation
by denoting by τ the state-reward trajectories, excluding the actions. In the following, we drop the
conditioning on a:H+−1 to simplify notation.

Instead of optimising (7), which is intractable, we can optimise a tractable lower bound, defined
with a learned approximate posterior qφ(m|τ:t) which can be estimated by Monte Carlo sampling
(for the full derivation see AppendixA):

Eρ(M,τ:H+) [log pθ(τ:H+)] ≥ Eρ
[
Eqφ(m|τ:t) [log pθ(τ:H+ |m)]−KL(qφ(m|τ:t)||pθ(m))

]
(8)

= ELBOt.

The term Eq[log p(τ:H+ |m)] is often referred to as the reconstruction loss, and p(τ:t|m) as the
decoder. The term KL(q(m|τ:t)||pθ(m)) is the KL-divergence between our variational posterior qφ
and the prior over the embeddings pθ(m). We set the prior to our previous posterior, qφ(m|τ:t−1),
with initial prior qφ(m) = N (0, I).

As can be seen in Equation (8) and Figure 2, when the agent is at timestep t, we encode the past
trajectory τ:t to get the current posterior q(m|τ:t) since this is all the information available to perform
inference about the current task. We then decode the entire trajectory τ:H+ including the future, i.e.,
model Eq[p(τ:H+ |m)]. This is different than the conventional VAE setup (and possible since we
have access to this information during training). Decoding not only the past but also the future is
important because this way, variBAD learns to perform inference about unseen states given the past.

5

Published as a conference paper at ICLR 2020

The reconstruction term log p(τ:H+ |m) factorises as

log p(τ:H+ |m, a:H+−1) = log p((s0, r0, . . . , st−1, rt−1, st)|m, a:H+−1) (9)

= log p(s0|m) +

H+−1∑
i=0

[log p(si+1|si, ai,m) + log p(ri+1|si, ai, si+1,m)] .

Here, p(s0|m) is the initial state distribution T ′0, p(si+1|si, ai;m) the transition function T ′, and
p(ri+1|st, at, si+1;m) the reward function R′. From now, we include T ′0 in T ′ for ease of notation.

3.2 TRAINING OBJECTIVE

We can now formulate a training objective for learning the approximate posterior distribution over
task embeddings, the policy, and the generalised reward and transition functions R′ and T ′. We use
deep neural networks to represent the individual components. These are:

1. The encoder qφ(m|τ:t), parameterised by φ;

2. An approximate transition function T ′ = pTθ (si+1|si, ai;m) and an approximate reward
function R′ = pRθ (ri+1|st, at, si+1;m) which are jointly parameterised by θ; and

3. A policy πψ(at|st, qφ(m|τ:t)) parameterised by ψ and dependent on φ.

The policy is conditioned on both the environment state and the posterior overm, π(at|st, q(m|τ:t)).
This is similar to the formulation of BAMDPs introduced in 2.2, with the difference that we learn
a unifying distribution over MDP embeddings, instead of the transition/reward function directly.
This makes learning easier since there are fewer parameters to perform inference over, and we can
use data from all tasks to learn the shared reward and transition function. The posterior can be
represented by the distribution’s parameters (e.g., mean and standard deviation if q is Gaussian).

Our overall objective is to maximise

L(φ, θ, ψ) = Ep(M)

J (ψ, φ) + λ

H+∑
t=0

ELBOt(φ, θ)

 . (10)

Expectations are approximated by Monte Carlo samples, and the ELBO can be optimised using the
reparameterisation trick (Kingma & Welling, 2014). For t = 0, we use the prior qφ(m) = N (0, I).
We encode past trajectories using a recurrent network as in Duan et al. (2016); Wang et al. (2016),
but other types of encoders could be considered like the ones used in Zaheer et al. (2017); Garnelo
et al. (2018); Rakelly et al. (2019). The network architecture is shown in Figure 2.

In Equation (10), we see that the ELBO appears for all possible context lengths t. This way,
variBAD can learn how to perform inference online (while the agent is interacting with an envi-
ronment), and decrease its uncertainty over time given more data. In practice, we may subsample a
fixed number of ELBO terms (for random time steps t) for computational efficiency if H+ is large.

Equation (10) is trained end-to-end, and λ weights the supervised model learning objective against
the RL loss. This is necessary since parameters φ are shared between the model and the policy.
However, we found that backpropagating the RL loss through the encoder is typically unnecessary
in practice. Not doing so also speeds up training considerably, avoids the need to trade off these
losses, and prevents interference between gradients of opposing losses. In our experiments, we
therefore optimise the policy and the VAE using different optimisers and learning rates. We train the
RL agent and the VAE using different data buffers: the policy is only trained with the most recent
data since we use on-policy algorithms in our experiments; and for the VAE we maintain a separate,
larger buffer of observed trajectories.

At meta-test time, we roll out the policy in randomly sampled test tasks (via forward passes through
the encoder and policy) to evaluate performance. The decoder is not used at test time, and no gradient
adaptation is done: the policy has learned to act approximately Bayes-optimal during meta-training.

6

Published as a conference paper at ICLR 2020

4 RELATED WORK

Meta Reinforcement Learning. A prominent model-free meta-RL approach is to utilise the dy-
namics of recurrent networks for fast adaptation (RL2, Wang et al. (2016); Duan et al. (2016)). At
every time step, the network gets an auxiliary comprised of the preceding action and reward. This
allows learning within a task to happen online, entirely in the dynamics of the recurrent network. If
we remove the decoder (Fig 2) and the VAE objective (Eq (7)), variBAD reduces to this setting, i.e.,
the main differences are that we use a stochastic latent variable (an inductive bias for representing
uncertainty) together with a decoder to reconstruct previous and future transitions / rewards (which
acts as an auxiliary loss (Jaderberg et al., 2017) to encode the task in latent space and deduce infor-
mation about unseen states). Ortega et al. (2019) provide an in-depth discussion of meta-learning
sequential strategies and how to recast memory-based meta-learning within a Bayesian framework.

Another popular approach to meta RL is to learn an initialisation of the model, such that at test time,
only a few gradient steps are necessary to achieve good performance (Finn et al., 2017; Nichol &
Schulman, 2018). These methods do not directly account for the fact that the initial policy needs
to explore, a problem addressed, a.o., by Stadie et al. (2018) (E-MAML) and Rothfuss et al. (2019)
(ProMP). In terms of model complexity, MAML and ProMP are relatively lightweight, since they
typically consist of a feedforward policy. RL2 and variBAD use recurrent modules, which increases
model complexity but allows online adaptation. Other methods that perform gradient adaptation at
test time are, e.g., Houthooft et al. (2018) who meta-learn a loss function conditioned on the agent’s
experience that is used at test time so learn a policy (from scratch); and Sung et al. (2017) who
learn a meta-critic that can criticise any actor for any task, and is used at test time to train a policy.
Compared to variBAD, these methods usually separate exploration (before gradient adaptation) and
exploitation (after gradient adaptation) at test time by design, making them less sample efficient.

Skill / Task Embeddings. Learning (variational) task or skill embeddings for meta / transfer rein-
forcement learning is used in a variety of approaches. Hausman et al. (2018) use approximate vari-
ational inference learn an embedding space of skills (with a different lower bound than variBAD).
At test time the policy is fixed, and a new embedder is learned that interpolates between already
learned skills. Arnekvist et al. (2019) learn a stochastic embedding of optimal Q-functions for dif-
ferent skills, and condition the policy on (samples of) this embedding. Adaptation at test time is done
in latent space. Co-Reyes et al. (2018) learn a latent space of low-level skills that can be controlled
by a higher-level policy, framed within the setting of hierarchical RL. This embedding is learned
using a VAE to encode state trajectories and decode states and actions. Zintgraf et al. (2019) learn
a deterministic task embedding trained similarly to MAML (Finn et al., 2017). Similar to variBAD,
Zhang et al. (2018) use learned dynamics and reward modules to learn a latent representation which
the policy conditions on and show that transferring the (fixed) encoder to new environments helps
learning. Perez et al. (2018) learn dynamic models with auxiliary latent variables, and use them for
model-predictive control. Lan et al. (2019) learn a task embedding with an optimisation procedure
similar to MAML, where the encoder is updated at test time, and the policy is fixed. Sæmundsson
et al. (2018) explicitly learn an embedding of the environment model, which is subsequently used for
model predictive control (and not, like in variBAD, for exploration). In the field of imitation learn-
ing, some approaches embed expert demonstrations to represent the task; e.g., Wang et al. (2017)
use variational methods and Duan et al. (2017) learn deterministic embeddings.

VariBAD differs from the above methods mainly in what the embedding represents (i.e., task uncer-
tainty) and how it is used: the policy conditions on the posterior distribution over MDPs, allowing
it to reason about task uncertainty and trade off exploration and exploitation online. Our objective
(8) explicitly optimises for Bayes-optimal behaviour. Unlike some of the above methods, we do not
use the model at test time, but model-based planning is a natural extension for future work.

Bayesian Reinforcement Learning. Bayesian methods for RL can be used to quantify uncertainty
to support action-selection, and provide a way to incorporate prior knowledge into the algorithms
(see Ghavamzadeh et al. (2015) for a review). A Bayes-optimal policy is one that optimally trades
off exploration and exploitation, and thus maximises expected return during learning. While such a
policy can in principle be computed using the BAMDP framework, it is hopelessly intractable for all
but the smallest tasks. Existing methods are therefore restricted to small and discrete state / action
spaces (Asmuth & Littman, 2011; Guez et al., 2012; 2013), or a discrete set of tasks (Brunskill, 2012;
Poupart et al., 2006). VariBAD opens a path to tractable approximate Bayes-optimal exploration for

7

Published as a conference paper at ICLR 2020

deep RL by leveraging ideas from meta-learning and approximate variational inference, with the
only assumption that we can meta-train on a set of related tasks. Existing approximate Bayesian RL
methods often require us to define a prior / belief update on the reward / transition function, and rely
on (possibly expensive) sample-based planning procedures. Due to the use of deep neural networks
however, variBAD lacks the formal guarantees enjoyed by some of the methods mentioned above.

Closely related to our approach is the recent work of Humplik et al. (2019). Like variBAD, they
condition the policy on a posterior distribution over the MDP, which is meta-trained using privileged
information such as a task description. In comparison, variBAD meta-learns to represent the belief
in an unsupervised way, and does not rely on privileged task information during training.

Posterior sampling (Strens, 2000; Osband et al., 2013), which extends Thompson sampling (Thomp-
son, 1933) from bandits to MDPs, estimates a posterior distribution over MDPs (i.e., model and re-
ward functions), in the same spirit as variBAD. This posterior is used to periodically sample a single
hypothesis MDP (e.g., at the beginning of an episode), and the policy that is optimal for the sampled
MDP is followed subsequently. This approach is less efficient than Bayes-optimal behaviour and
therefore typically has lower expected return during learning.

A related approach for inter-task transfer of abstract knowledge is to pose policy search with pri-
ors as Markov Chain Monte Carlo inference (Wingate et al., 2011). Similarly Guez et al. (2013)
propose a Monte Carlo Tree Search based method for Bayesian planning to get a tractable, sample-
based method for obtaining approximate Bayes-optimal behaviour. Osband et al. (2018) note that
non-Bayesian treatment for decision making can be arbitrarily suboptimal and propose a simple
randomised prior based approach for structured exploration. Some recent deep RL methods use
stochastic latent variables for structured exploration (Gupta et al., 2018; Rakelly et al., 2019), which
gives rise to behaviour similar to posterior sampling. Other ways to use the posterior for explo-
ration are, e.g., certain reward bonuses Kolter & Ng (2009); Sorg et al. (2012) and methods based on
optimism in the face of uncertainty (Kearns & Singh, 2002; Brafman & Tennenholtz, 2002). Non-
Bayesian methods for exploration are often used in practice, such as other exploration bonuses (e.g.,
via state-visitation counts) or using uninformed sampling of actions (e.g., ε-greedy action selection).
Such methods are prone to wasteful exploration that does not help maximise expected reward.

Related to BAMDPs are contextual MDPs, where the task description is referred to as a context, on
which the environment dynamics and rewards depend (Hallak et al., 2015; Jiang et al., 2017; Dann
et al., 2018; Modi & Tewari, 2019). Research in this area is often concerned with developing tight
bounds by putting assumptions on the context, such as having a small known number of contexts,
or that there is a linear relationship between the contexts and dynamics/rewards. Similarly, the
framework of hidden parameter (HiP-) MDPs assumes that there is a set of low-dimensional latent
factors which define a family of related dynamical systems (with shared reward structure), similar to
the assumption we make in Equation (5) (Doshi-Velez & Konidaris, 2016; Killian et al., 2017; Yao
et al., 2018). These methods however don’t directly learn Bayes-optimal behaviour but allow for a
longer training period in new environments to infer the latents and train the policy.

Variational Inference and Meta-Learning. A main difference of variBAD to many existing
Bayesian RL methods is that we meta-learn the inference procedure, i.e., how to do a posterior
update. Apart from (RL) methods mentioned above, related work in this direction can be found,
a.o., in Garnelo et al. (2018); Gordon et al. (2019); Choi et al. (2019). By comparison, variBAD has
an inference procedure tailored to the setting of Bayes-optimal RL.

POMDPs. Several deep learning approaches to model-free reinforcement learning (Igl et al., 2019)
and model learning for planning (Tschiatschek et al., 2018) in partially observable Markov deci-
sion processes have recently been proposed and utilise approximate variational inference methods.
VariBAD by contrast focuses on BAMDPs (Martin, 1967; Duff & Barto, 2002; Ghavamzadeh et al.,
2015), a special case of POMDPs where the transition and reward functions constitute the hidden
state and the agent must maintain a belief over them. While in general the hidden state in a POMDP
can change at each time-step, in a BAMDP the underlying task, and therefore the hidden state, is
fixed per task. We exploit this property by learning an embedding that is fixed over time, unlike
approaches like Igl et al. (2019) which use filtering to track the changing hidden state. While we
utilise the power of deep approximate variational inference, other approaches for BAMDPs often
use more accurate but less scalable methods, e.g., Lee et al. (2019) discretise the latent distribution
and use Bayesian filtering for the posterior update.

8

Published as a conference paper at ICLR 2020

(a) Example Rollout (b) Reward Predictions (c) Latent Space

Figure 3: Behaviour of variBAD in the gridworld environment. (a) Hand-picked but representative
example test rollout. The blue background indicates the posterior probability of receiving a reward
at that cell. (b) Probability of receiving a reward for each cell, as predicted by the decoder, over the
course of interacting with the environment (average in black, goal state in green). (c) Visualisation
of the latent space; each line is one latent dimension, the black line is the average.

5 EXPERIMENTS

In this section we first investigate the properties of variBAD on a didactic gridworld domain. We
show that variBAD performs structured and online exploration as it infers the task at hand. Then we
consider more complex meta-learning settings by employing on four MuJoCo continuous control
tasks commonly used in the meta-RL literature. We show that variBAD learns to adapt to the task
during the first rollout, unlike many existing meta-learning methods. Details and hyperparameters
can be found in the appendix, and at https://github.com/lmzintgraf/varibad.

5.1 GRIDWORLD

To gain insight into variBAD’s properties, we start with a didactic gridworld environment. The task
is to reach a goal (selected uniformly at random) in a 5 × 5 gridworld. The goal is unobserved by
the agent, inducing task uncertainty and necessitating exploration. The goal can be anywhere except
around the starting cell, which is at the bottom left. Actions are: up, right, down, left, stay (executed
deterministically), and after 15 steps the agent is reset. The horizon within the MDP is H = 15, but
we choose a horizon of H+ = 4 × H = 45 for the BAMDP. I.e., we train our agent to maximise
performance for 4 MDP episodes. The agent gets a sparse reward signal: −0.1 on non-goal cells,
and +1 on the goal cell. The best strategy is to explore until the goal is found, and stay at the goal
or return to it when reset to the initial position. We use a latent dimensionality of 5.

Figure 3 illustrates how variBAD behaves at test time with deterministic actions (i.e., all exploration
is done by the policy). In 3a we see how the agent interacts with the environment, with the blue
background visualising the posterior belief by using the learned reward function. VariBAD learns
the correct prior and adjusts its belief correctly over time. It predicts no reward for cells it has
visited, and explores the remaining cells until it finds the goal.

A nice property of variBAD is that we can gain insight into the agent’s belief about the environment
by analysing what the decoder predicts, and how the latent space changes while the agent interacts
with the environment. Figure 3b show the reward predictions: each line represents a grid cell and
its value the probability of receiving a reward at that cell. As the agent gathers more data, more and
more cells are excluded (p(rew = 1) = 0), until eventually the agent finds the goal. In Figure 3c
we visualise the 5-dimensional latent space. We see that once the agent finds the goal, the posterior
concentrates: the variance drops close to zero, and the mean settles on a value.

As we showed in Figure 1e, the behaviour of variBAD closely matches that of the Bayes-optimal
policy. Recall that the Bayes-optimal policy is the one which optimally trades off exploration and
exploitation in an unknown environment, and outperforms posterior sampling. Our results on this
gridworld indicate that variBAD is an effective way to approximate Bayes-optimal control, and has
the additional benefit of giving insight into the task belief of the policy.

9

https://github.com/lmzintgraf/varibad

Published as a conference paper at ICLR 2020

Figure 4: Average test performance for the first 5 rollouts of MuJoCo environments (using 5 seeds).

5.2 MUJOCO CONTINUOUS CONTROL META-LEARNING TASKS

We show that variBAD can scale to more complex meta learning settings by employing it on MuJoCo
(Todorov et al., 2012) locomotion tasks commonly used in the meta-RL literature.2 We consider the
AntDir and HalfCheetahDir environment where the agent has to run either forwards or backwards
(i.e., there are only two tasks), the HalfCheetahVel environment where the agent has to run at differ-
ent velocities, and the Walker environment where the system parameters are randomised.

Figure 4 shows the performance at test time compared to existing methods. While we show per-
formance for multiple rollouts for the sake of completeness, anything beyond the first rollout is not
directly relevant to our goal, which is to maximise performance on a new task, while learning, within
a single episode. Only variBAD and RL2 are able to adapt to the task at hand within a single episode.
RL2 underperforms variBAD on the HalfCheetahDir environment, and learning is slower and less
stable (see learning curves and runtime comparisons in Appendix C). Even though the first rollout
includes exploratory steps, this matches the optimal oracle policy (which is conditioned on the true
task description) up to a small margin. The other methods (PEARL Rakelly et al. (2019), E-MAML
Stadie et al. (2018) and ProMP Rothfuss et al. (2019)) are not designed to maximise reward during
a single rollout, and perform poorly in this case. They all require substantially more environment
interactions in each new task to achieve good performance. PEARL, which is akin to posterior sam-
pling, only starts performing well starting from the third episode (Note: PEARL outperforms our
oracle slightly, likely since our oracle is based on PPO, and PEARL is based on SAC).

Overall, our empirical results confirm that variBAD can scale up to current benchmarks and max-
imise expected reward within a single episode.

6 CONCLUSION & FUTURE WORK

We presented variBAD, a novel deep RL method to approximate Bayes-optimal behaviour, which
uses meta-learning to utilise knowledge obtained in related tasks and perform approximate inference
in unknown environments. In a didactic gridworld environment, our agent closely matches Bayes-
optimal behaviour, and in more challenging MuJoCo tasks, variBAD outperforms existing methods
in terms of achieved reward during a single episode. In summary, we believe variBAD opens a path
to tractable approximate Bayes-optimal exploration for deep reinforcement learning.

There are several interesting directions of future work based on variBAD. For example, we currently
do not use the decoder at test time. One could instead use the decoder for model-predictive planning,
or to get a sense for how wrong the predictions are (which might indicate we are out of distribution,
and further training is necessary). Another exciting direction for future research is considering
settings where the training and test distribution of environments are not the same. Generalising to
out-of-distribution tasks poses additional challenges and in particular for variBAD two problems are
likely to arise: the inference procedure will be wrong (the prior and/or posterior update) and the
policy will not be able to interpret a changed posterior. In this case, further training of both the
encoder/decoder might be necessary, together with updates to the policy and/or explicit planning.

2Environments taken from https://github.com/katerakelly/oyster.

10

https://github.com/katerakelly/oyster

Published as a conference paper at ICLR 2020

ACKNOWLEDGMENTS

We thank Anuj Mahajan who contributed to early work on this topic. We thank Joost van Amers-
foort, Andrei Rusu and Dushyant Rao for useful discussions and feedback. Luisa Zintgraf is sup-
ported by the Microsoft Research PhD Scholarship Program. Maximilian Igl is supported by the UK
EPSRC CDT in Autonomous Intelligent Machines and Systems. Sebastian Schulze is supported
by Dyson. This work was supported by a generous equipment grant and a donated DGX-1 from
NVIDIA. This project has received funding from the European Research Council under the Euro-
pean Union’s Horizon 2020 research and innovation programme (grant agreement number 637713).

REFERENCES

Isac Arnekvist, Danica Kragic, and Johannes A Stork. Vpe: Variational policy embedding for
transfer reinforcement learning. In International Conference on Robotics and Automation, 2019.

John Asmuth and Michael L Littman. Learning is planning: near bayes-optimal reinforcement
learning via monte-carlo tree search. In Conf on Uncertainty in Artificial Intelligence, 2011.

Richard Bellman. A problem in the sequential design of experiments. Sankhyā: The Indian Journal
of Statistics (1933-1960), 16(3/4):221–229, 1956.

Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for near-
optimal reinforcement learning. Journal of Machine Learning Research, pp. 3:213–231, 2002.

Emma Brunskill. Bayes-optimal reinforcement learning for discrete uncertainty domains. In Inter-
national Conference on Autonomous Agents and Multiagent Systems, 2012.

Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman. Acting optimally in partially
observable stochastic domains. In Twelfth National Conference on Artificial Intelligence, 1994.
AAAI Classic Paper Award, 2013.

Kristy Choi, Mike Wu, Noah Goodman, and Stefano Ermon. Meta-amortized variational inference
and learning. In International Conference on Learning Representation, 2019.

John D Co-Reyes, YuXuan Liu, Abhishek Gupta, Benjamin Eysenbach, Pieter Abbeel, and Sergey
Levine. Self-consistent trajectory autoencoder: Hierarchical reinforcement learning with trajec-
tory embeddings. In International Conference on Machine Learning, 2018.

Christoph Dann, Lihong Li, Wei Wei, and Emma Brunskill. Policy certificates: Towards accountable
reinforcement learning. arXiv preprint arXiv:1811.03056, 2018.

Finale Doshi-Velez and George Konidaris. Hidden parameter markov decision processes: A semi-
parametric regression approach for discovering latent task parametrizations. In International Joint
Conference on Artificial Intelligence, 2016.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RL2: Fast
reinforcement learning via slow reinforcement learning. arXiv:1611.02779, 2016.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas Schneider, Ilya
Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. In Advances
in Neural Information Processing Systems, 2017.

Michael O’Gordon Duff and Andrew Barto. Optimal Learning: Computational procedures for
Bayes-adaptive Markov decision processes. PhD thesis, Univ of Massachusetts at Amherst, 2002.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, 2017.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami,
and Yee Whye Teh. Neural processes. In ICML 2018 Workshop on Theoretical Foundations and
Applications of Deep Generative Models, 2018.

Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, Aviv Tamar, et al. Bayesian reinforcement
learning: A survey. Foundations and Trends R© in Machine Learning, 8(5-6):359–483, 2015.

11

Published as a conference paper at ICLR 2020

Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, and Richard E Turner. Meta-
learning probabilistic inference for prediction. In International Conference on Learning Repre-
sentation, 2019.

Arthur Guez, David Silver, and Peter Dayan. Efficient bayes-adaptive reinforcement learning using
sample-based search. In Advances in Neural Processing Systems, 2012.

Arthur Guez, David Silver, and Peter Dayan. Scalable and efficient bayes-adaptive reinforcement
learning based on monte-carlo tree search. Journal of Artificial Intelligence Research, 48:841–
883, 2013.

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-
reinforcement learning of structured exploration strategies. In Advances in Neural Processing
Systems, 2018.

Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual markov decision processes. arXiv
preprint arXiv:1502.02259, 2015.

Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
Learning an embedding space for transferable robot skills. In International Conference on Learn-
ing Representation, 2018.

Rein Houthooft, Yuhua Chen, Phillip Isola, Bradly Stadie, Filip Wolski, OpenAI Jonathan Ho, and
Pieter Abbeel. Evolved policy gradients. In Advances in Neural Information Processing Systems,
2018.

Jan Humplik, Alexandre Galashov, Leonard Hasenclever, Pedro A Ortega, Yee Whye Teh, and
Nicolas Heess. Meta reinforcement learning as task inference. arXiv:1905.06424, 2019.

Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson. Deep variational
reinforcement learning for pomdps. In International Conference on Machine Learning, 2019.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
International Conference on Learning Representation, 2017.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire. Con-
textual decision processes with low bellman rank are pac-learnable. In International Conference
on Machine Learning-Volume, 2017.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time. Ma-
chine learning, 49(2-3):209–232, 2002.

Taylor W Killian, Samuel Daulton, George Konidaris, and Finale Doshi-Velez. Robust and effi-
cient transfer learning with hidden parameter markov decision processes. In Advances in neural
information processing systems, 2017.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representation, 2014.

J Zico Kolter and Andrew Y Ng. Near-bayesian exploration in polynomial time. In International
Conference on Machine Learning, 2009.

Lin Lan, Zhenguo Li, Xiaohong Guan, and Pinghui Wang. Meta reinforcement learning with task
embedding and shared policy. In INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL IN-
TELLIGENCE, 2019.

Gilwoo Lee, Brian Hou, Aditya Mandalika, Jeongseok Lee, and Siddhartha S Srinivasa. Bayesian
policy optimization for model uncertainty. In International Conference on Learning Representa-
tion, 2019.

12

Published as a conference paper at ICLR 2020

Yun-En Liu, Travis Mandel, Emma Brunskill, and Zoran Popovic. Trading off scientific knowledge
and user learning with multi-armed bandits. In EDM, pp. 161–168, 2014.

James John Martin. Bayesian decision problems and Markov chains. Wiley, 1967.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. arXiv:1707.03141, 2017.

Aditya Modi and Ambuj Tewari. Contextual markov decision processes using generalized linear
models. In Reinforcement Learning for Real Life (RL4RealLife) Workshop at the International
Conference on Machine Learning, 2019.

Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm. arXiv:1803.02999,
2018.

Pedro A Ortega, Jane X Wang, Mark Rowland, Tim Genewein, Zeb Kurth-Nelson, Razvan Pascanu,
Nicolas Heess, Joel Veness, Alex Pritzel, Pablo Sprechmann, et al. Meta-learning of sequential
strategies. arXiv:1905.03030, 2019.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via
posterior sampling. In Advances in Neural Information Processing Systems, 2013.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. In Advances in Neural Information Processing Systems, 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Christian F Perez, Felipe Petroski Such, and Theofanis Karaletsos. Efficient transfer learning and
online adaptation with latent variable models for continuous control. In Continual Learning Work-
shop, NeurIPS 2018, 2018.

Pascal Poupart, Nikos Vlassis, Jesse Hoey, and Kevin Regan. An analytic solution to discrete
bayesian reinforcement learning. In International Conference on Machine Learning, 2006.

Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, and Sergey Levine. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International Conference on
Machine Learning, 2019.

Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. Promp: Proximal
meta-policy search. In International Conference on Learning Representation, 2019.

Steindór Sæmundsson, Katja Hofmann, and Marc Peter Deisenroth. Meta reinforcement learning
with latent variable gaussian processes. In Conference on Uncertainty in Artificial Intelligence,
2018.

Jonathan Sorg, Satinder Singh, and Richard L Lewis. Variance-based rewards for approximate
bayesian reinforcement learning. In Conference on Uncertainty in Artificial Intelligence, 2012.

Bradly C Stadie, Ge Yang, Rein Houthooft, Xi Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel, and
Ilya Sutskever. Some considerations on learning to explore via meta-reinforcement learning. In
Advances in Neural Processing Systems, 2018.

Malcolm Strens. A bayesian framework for reinforcement learning. In International Conference on
Machine Learning, 2000.

Flood Sung, Li Zhang, Tao Xiang, Timothy Hospedales, and Yongxin Yang. Learning to learn:
Meta-critic networks for sample efficient learning. arXiv:1706.09529, 2017.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IROS, pp. 5026–5033. IEEE, 2012. ISBN 978-1-4673-1737-5.

13

Published as a conference paper at ICLR 2020

Sebastian Tschiatschek, Kai Arulkumaran, Jan Stühmer, and Katja Hofmann. Variational inference
for data-efficient model learning in pomdps. arXiv:1805.09281, 2018.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. In
Annual Meeting of the Cognitive Science Community (CogSci), 2016.

Ziyu Wang, Josh S Merel, Scott E Reed, Nando de Freitas, Gregory Wayne, and Nicolas Heess.
Robust imitation of diverse behaviors. In Advances in Neural Information Processing Systems,
2017.

David Wingate, Noah D Goodman, Daniel M Roy, Leslie P Kaelbling, and Joshua B Tenenbaum.
Bayesian policy search with policy priors. In International Joint Conference on Artificial Intelli-
gence, 2011.

Jiayu Yao, Taylor Killian, George Konidaris, and Finale Doshi-Velez. Direct policy transfer via
hidden parameter markov decision processes. In LLARLA Workshop, FAIM, 2018.

Gregory Yauney and Pratik Shah. Reinforcement learning with action-derived rewards for
chemotherapy and clinical trial dosing regimen selection. In Machine Learning for Healthcare
Conference, pp. 161–226, 2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov,
and Alexander J Smola. Deep sets. In Advances in Neural Processing Systems, 2017.

Amy Zhang, Harsh Satija, and Joelle Pineau. Decoupling dynamics and reward for transfer learning.
In ICLR workshop track, 2018.

Luisa M Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast
context adaptation via meta-learning. In International Conference on Machine Learning, 2019.

14

Published as a conference paper at ICLR 2020

Bayes-Adaptive Deep Reinforcement Learning via Meta-Learning

Supplementary Material

A FULL ELBO DERIVATION

Equation (8) can be derived as follows.

Eρ(M,τ:H) [log pθ(τ:H)] = Eρ
[
log

∫
pθ(τ:H ,m)

qφ(m|τ:t)
qφ(m|τ:t)

dm

]
= Eρ

[
logEqφ(m|τ:t)

[
pθ(τ:H ,m)

qφ(m|τ:t)

]]
≥ Eρ, qφ(m|τ:t)

[
log

pθ(τ:H ,m)

qφ(m|τ:t)

]
= Eρ, qφ(m|τ:t) [log pθ(τ:H |m) + log pθ(m)− log qφ(m|τ:t)]
= Eρ

[
Eqφ(m|τ:t) [log pθ(τ:H |m)]−KL(qφ(m|τ:t)||pθ(m))

]
(11)

= ELBOt.

B EXPERIMENTS: GRIDWORLD

B.1 ADDITIONAL REMARKS

Figure 3c visualises how the latent space changes as the agent interacts with the environment. As we
can see, the value of the latent dimensions starts around mean 1 and variance 0, which is the prior
we chose for the beginning of an episode. Given that the variance increases for a little bit before the
agent finds the goal, this prior might not be optimal. A natural extension of variBAD is therefore to
also learn the prior to match the task at hand.

B.2 HYPERPARAMETERS

We used the PyTorch framework for our experiments. Hyperparameters are listed below, and the
source code can be found at https://github.com/lmzintgraf/varibad.

Hyperparameters for variBAD are:

RL Algorithm A2C
Number of policy steps 60
Number of parallel processes 16
Epsilon 1e-5
Discount factor γ 0.95
Max grad norm 0.5
Value loss coefficient 0.5
Entropy coefficient 0.01
GAE parameter tau 0.95
ELBO loss coefficient 1.0
Policy LR 0.001
Policy VAE 0.001
Task embedding size 5
Policy architecture 2 hidden layers, 32 nodes each, TanH activations
Encoder architecture FC layer with 40 nodes, GRU with hidden size 64,

output layer with 10 outputs (µ and σ), ReLu activations
Reward decoder architecture 2 hidden layers, 32 nodes each,

25 outputs heads, ReLu activations
Decoder loss function Binary cross entropy

15

https://github.com/lmzintgraf/varibad

Published as a conference paper at ICLR 2020

(a) Learning curves. (b) Average return per episode.

Figure 5: Results for the gridworld toy environment. Results are averages over 20 seeds (with 95%
confidence intervals for the learning curve).

Hyperparameters for RL2 the same as above, with the following changes:

Policy architecture States are embedded using a fc linear layer, output size 32.
Rewards are embedding using a fc layer, output size 8.
Results are concatenate and passed to a GRU, hidden size 128,
output size 32. After an additional fc layer with hidden size 32,
the network outputs the actions.
We used TanH activations throughout.

B.3 COMPARISON TO RL2

Figure 5a shows the learning curves for variBAD and RL2, in comparison to an oracle policy (which
has access to the goal position). We trained these policies on a horizon of H+ = 4×H = 60, i.e.,
on a BAMDP in which the agent has to maximise online return within four episodes. We indicate
the values of a hard-coded Bayes-optimal policy, and a hard-coded posterior sampling policy using
dashed lines.

Figure 5b shows the end-performance of variBAD and RL2, compared to the hard-coded optimal
policy (which has access to the goal position), Bayes-optimal policy, and posterior sampling policy.
VariBAD and RL2 both closely approximate the Bayes-optimal solution. By inspecting the individ-
ual runs, we found that VariBAD learned the Bayes-optimal solution for 4 out of 20 seeds, RL2 zero
times. Both otherwise find solutions that are very close to Bayes-optimal, with the difference that
during the second rollout, the cells left to search are not all on the shortest path from the starting
point.

Note that both variBAD and RL2 were trained on only four episodes, but we evaluate them on six
episodes here. After the fourth rollout, we do not fix the latent / hidden state, but continue rolling out
the policy as before. As we can see, the performance of RL2 drops again after the fourth episode: this
is likely due to instabilities in the 128-dimensional hidden state. VariBAD’s latent representation,
the approximate task posterior, is concentrated and does not change with more data.

C EXPERIMENTS: MUJOCO

C.1 LEARNING CURVES

Figure 6 shows the learning curves for the MuJoCo environments for all approaches. The ora-
cle policy was trained using PPO. PEARL (Rakelly et al., 2019) was trained using the reference
implementation provided by the authors. The environments we used are also taken from this imple-
mentation. E-MAML (Stadie et al., 2018) and ProMP (Rothfuss et al., 2019) were trained using the
reference implementation provided by Rothfuss et al. (2019).

16

Published as a conference paper at ICLR 2020

Figure 6: Learning curves for the MuJoCo results presented in Section 5.2. The top row shows
performance evaluated at the first rollout, and the second row shows the performance at the N -th
rollout. For variBAD and RL2, N = 2. For ProMP and E-MAML, N = 20. For PEARL, N = 10.

As we can see, PEARL is much more sample efficient in terms of number of frames than the other
methods (Fig 6), which is because it is an off-policy method. On-policy vs off-policy training
is an orthogonal issue to our contribution, but an extension of variBAD to off-policy methods is
an interesting direction for future work. Doing posterior sampling using off-policy methods also
requires PEARL to use a different encoder (to maintain order invariance of the sampled trajectories)
which is non-recurrent (and hence faster to train, see next section) but restrictive since it assumes
independence between individual transitions.

Note than in Figure 4, for the Walker environment evaluation, we used the models obtained after
half the training time (5e+7 frames) for variBAD and the Oracle, since performance declined again
after that.

For all MuJoCo environments, we trained variBAD with a reward decoder only (even for Walker,
where the dynamics change, we found that this has superior performance).

C.2 TRAINING DETAILS AND COMPARISON TO RL2

We are interested in maximising performance within a single rollout (H = 200). However in
order to compare better to existing methods, we trained variBAD and the RL2 baseline to maximise
performance within two rollouts (H+ = 400) . We implemented task resets by adding a ‘done’
flag to the states, so that the agent knows when it gets reset in-between episodes. This allows us to
evaluate on multiple rollouts (without re-setting the hidden states of the RNN) because the agents
have learned to handle re-sets to the starting position.

We observe that RL2 is sometimes unstable when it comes to maintaining its performance over
multiple rollouts, e.g., in the CheetahVel task (Figure 6). We hypothesise that the drop of RL2’s
performance in CheetahVel occurs because it has not properly learned to deal with environment re-
sets. The sudden change in state space (with includes joint positions and velocities) could lead to a
dramatic shift in the hidden state, which then might not represent the task at hand properly. In addi-
tion, once the Cheetah is running at the correct velocity, it can infer which task it is in from its own
velocity (which is part of the environment state) and stop doing inference, which might be another
reason we observe this drop when the environment resets and the state suddenly has a different (very
low) velocity. For variBAD this is less of a problem, since we train the latent embedding to represent
the task, and only the task. Therefore, the agent does not have to do the inference procedure again
when reset to the starting position, but can rely on the latent task description that is given by the
approximate posterior. It might also just be due to implementation details, and, e.g., Mishra et al.
(2017) do not observe this problem (see their Fig 4).

17

Published as a conference paper at ICLR 2020

Figure 7: Behaviour at test time for the for the task “walk left” in HalfCheetahDir. The x-axis
reflects the position of the agent; the y-axis the steps in the environment (to be read from bottom to
top). Rows are separate examples, columns the number of rollouts.

C.3 CHEETAHDIR TEST TIME BEHAVIOUR

To get a sense for where these differences between the different approaches might stem from, con-
sider Figure 7 which shows example behaviour of the policies during the first three rollouts in the
HalfCheetahDir environment, when the task is “go left”. Both variBAD and RL2 adapt to the task
online, whereas PEARL acts according to the current sample, which in the first two rollouts can
mean walking in the wrong direction. For a visualisation of the variBAD latent space at test time for
this environment see Appendix C.5. While we outperform at meta-test time, PEARL is more sample
efficient during meta-training (see Fig 6), since it is an off-policy method. Extending variBAD to
off-policy methods is an interesting but orthogonal direction for future work.

C.4 RUNTIME COMPARISON

The following are rough estimates of average run-times for the HalfCheetah-Dir environment (from
what we have experienced; we often ran multiple experiments per machine, so some of these might
be overestimated and should be mostly understood as giving a relative sense of ordering).

• ProMP, E-MAML: 5-8 hours
• variBAD: 48 hours
• RL2: 60 hours
• PEARL: 24 hours

E-MAML and ProMP have the advantage that they do not have a recurrent part such as variBAD or
RL2. Forward and backward passes through recurrent networks can be slow, especially with large
horizons.

Even though both variBAD and RL2 use recurrent modules, we observed that variBAD is faster
when training the policy with PPO. This is because we do not backpropagate the RL-loss through the
recurrent part, which allows us to make the PPO mini-batch updates without having to re-compute
the embeddings (so it saves us a lot of forward/backward passes through the recurrent model). This
difference is less pronounced with other RL methods that do not rely on this many forward/backward
passes per policy update.

18

Published as a conference paper at ICLR 2020

Figure 8: Visualisation of the latent space at meta-test time, for the HalfCheetahDir environment
and the tasks ”go right” (top) and the task ”go left” (bottom). Left: value of the posterior mean
during a single rollout (200 environment steps). The black line is the average value. Middle: value
of the posterior log-variance during a single rollout. Right: Behaviour of the policy during a single
rollout. The x-axis show the position of the Cheetah, and the y-axis the step (should be read from
bottom to top).

C.5 LATENT SPACE VISUALISATION

A nice feature of variBAD is that it can give us insight into the uncertainty of the agent about what
task it is in. Figure 8 shows the latent space for the HalfCheetahDir tasks ”go right” (top row) and
”go left” (bottom row). We observe that the latent mean and log-variance adapt rapidly, within just a
few environment steps (left and middle figures). This is also how fast the agent adapts to the current
task (right figures). As expected, the variance decreases over time as the agent gets more certain. It
is interesting to note that the values of the latent dimensions swap signs between the two tasks.

Visualising the belief in the reward/state space directly, as we have done in the gridworld example, is
more difficult for MuJoCo tasks, since we now have continuous states and actions. What we could
do instead, is to additionally train a model that predicts a ground-truth task description (separate
from the main objective and just for further analysis, since we do not want to use this privileged
information for meta-training). This would give us a more direct sense of what task it thinks it is in.

19

Published as a conference paper at ICLR 2020

C.6 HYPERPARAMETERS

We used the PyTorch framework (Paszke et al., 2017) for our experiments. The default arguments
for our MuJoCo experiments can be found below, for details see our reference implementation at
https://github.com/lmzintgraf/varibad.

RL Algorithm PPO
Batch size 3200
Epochs 2
Minibatches 4
Max grad norm 0.5
Clip parameter 0.1
Value loss coefficient 0.5
Entropy coefficient 0.01
Notes We use a Huber loss in the RL loss
Weight of KL term in ELBO 0.1
Policy LR 0.0007
Policy VAE 0.001
Task embedding size 5
Policy architecture 2 hidden layers, 128 nodes each, TanH activations
Encoder architecture States, actions, rewards encoder: FC layer (32/16/16-dim),

GRU with hidden size 128,
output layer with 5 outputs, ReLu activations

Reward decoder architecture 2 hidden layers, 64 and 32 nodes,
ReLu activations

Reward decoder loss function Mean squared error

20

https://github.com/lmzintgraf/varibad

	Introduction
	Background
	Training Setup
	Bayesian Reinforcement Learning

	Bayes-Adaptive Deep RL via Meta-Learning
	Approximate Inference
	Training Objective

	Related Work
	Experiments
	Gridworld
	Mujoco Continuous Control Meta-Learning Tasks

	Conclusion & Future Work
	Full ELBO derivation
	Experiments: Gridworld
	Additional Remarks
	Hyperparameters
	Comparison to RL2

	Experiments: MuJoCo
	Learning Curves
	Training Details and Comparison to RL2
	CheetahDir Test Time Behaviour
	Runtime Comparison
	Latent Space Visualisation
	Hyperparameters

