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Abstract

Deep neural networks have achieved state-of-the-art perfor-
mance in various fields, but they have to be scaled down to
be used for real-world applications. As a means to reduce the
size of a neural network while preserving its performance,
knowledge transfer has brought a lot of attention. One pop-
ular method of knowledge transfer is knowledge distillation
(KD), where softened outputs of a pre-trained teacher net-
work help train student networks. Since KD, other transfer
methods have been proposed, and they mainly focus on loss
functions, activations of hidden layers, or additional modules
to transfer knowledge well from teacher networks to student
networks. In this work, we focus on the structure of a teacher
network to get the effect of multiple teacher networks with-
out additional resources. We propose changing the structure
of a teacher network to have stochastic blocks and skip con-
nections. In doing so, a teacher network becomes the aggre-
gate of a huge number of paths. In the training phase, each
sub-network is generated by dropping stochastic blocks ran-
domly and used as a teacher network. This allows training
the student network with multiple teacher networks and fur-
ther enhances the student network on the same resources in a
single teacher network. We verify that the proposed structure
brings further improvement to student networks on bench-
mark datasets.

Introduction
Deep neural networks (DNNs) have achieved state-of-the-
art performances on complex tasks like computer vision (He
et al. 2016), language modeling (Jozefowicz et al. 2016),
and machine translation (Wu et al. 2016). Moreover, they
surpass human ability in several fields including image clas-
sification (He et al. 2016), the go game (Silver et al. 2016),
voice generation (Oord et al. 2016), and so on. Despite their
superior performance, it is difficult to use DNN-based mod-
els because of limited memory and computational resources
in the embedded systems. To deal with this problem, many
studies have been done to make DNNs smaller but efficient
to be applicable in resource limited cases. One of them is
knowledge transfer (KT), which train a smaller network with
the information of large model’s information. Knowledge
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distillation (KD) (Hinton, Vinyals, and Dean 2015), which
is an initial work of KT, has brought much attention. The
basic idea of KD is to train a small network (called stu-
dent network) with the help of softened outputs of a pre-
trained large network (called teacher network). The teacher
network is usually more suitable for extracting the struc-
ture of the data than the student network. Thus, if the stu-
dent network mimics the structure taught by the teacher net-
work, the student network can be further optimized to the
dataset. This is achieved by minimizing cross-entropy loss
not only with labels but also with the outputs of the teacher
network. Over the years, various studies on KT have been
done. Some works propose to get additional knowledge from
intermediate layers of teacher networks (Romero et al. 2014;
Zagoruyko and Komodakis 2016a; Yim et al. 2017). In an-
other work, a peer-teaching paradigm where networks ex-
change knowledge each other is used instead of a teacher-
student paradigm (Zhang et al. 2018).

The primary goal of this paper is to make a single teacher
network to behave as multiple teacher networks. Since mul-
tiple teacher networks provide various outputs on a given
input, they can provide more extensive knowledge than a
single teacher network does. It has been shown that stu-
dent networks improve further with multiple teacher net-
works which are used as an ensemble or separately (Hin-
ton, Vinyals, and Dean 2015; You et al. 2017; Zhang et al.
2018). However, using multiple teacher networks is a re-
source burden and delays the training process. In this work,
we propose to add stochastic blocks and skip connections to
a teacher network. In doing so, we can get the effect of mul-
tiple teacher networks in the same resource of single teacher
network. A stochastic block is a block that falls with a fixed
probability in the training phase and weighted by its sur-
vival probability in the inference phase (Huang et al. 2016).
Skip connections make huge number of paths in the net-
work and function as memory which link the information
of previous parts and later parts even if stochastic blocks
drop. In the training phase, different sub-networks are gen-
erated resulting from stochastic drop in the teacher network
for each batch. The sub-networks still have reliable perfor-
mances since there still exist valid paths. Each sub-network
becomes a teacher network for each batch, so the student
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Figure 1: (a), (b), (c) Residual network with stochastic blocks when one block is dropped.

network is trained with multiple teacher networks in the en-
tire training phase. Figure 1 is example of sub-networks gen-
erated by dropping one block each from a network with the
proposed structure. The networks consists of 3 blocks and
fi, Id represents the ith block of the network (i ∈ 1, 2, 3)
and an identity block generated by a skip connection respec-
tively. Red arrows in the figure mean that the outputs of the
blocks are 0. In Figure 1, even if one block drops, each sub-
network still has 4 valid paths of 8 total paths. We observe
that : (i) multiple teacher networks are generated from a sin-
gle teacher network with no more resources; (ii) generated
networks provide different knowledge to a student network;
(iii) the performances of student networks improve with the
help of a teacher network of the proposed structure. We suc-
ceeded in training the student network to perform better than
the ones with the same architecture trained by the knowl-
edge transfer methods (KD) (Hinton, Vinyals, and Dean
2015), attention transfer (AT) (Zagoruyko and Komodakis
2016a), and mutual learning (ML) (Zhang et al. 2018)) over
CIFAR-100 (Krizhevsky, Hinton, and others 2009) and tiny-
imageNet (Russakovsky et al. 2015) datasets.

The rest of this paper is organized as follows. First, we
review recent studies related to our work. Then, we demon-
strate the proposed scheme with details. After this, we
present experiments and discuss the results. Finally, sum-
mary and concluding remarks are given in the conclusion.

Related Works
Knowledge Transfer
Knowledge transfer of neural networks has been proposed
over a decade ago (Buciluǎ, Caruana, and Niculescu-Mizil
2006) but has recently received much attention with some
intuitions and a generalized approach (Hinton, Vinyals, and
Dean 2015). There, softened outputs of a teacher network
are used to transfer knowledge to a student network. They

demonstrate that the softened outputs of a teacher network
provide a student network with additional supervision and
prevent the student network from overfitting. Later, distilla-
tion has been applied in transferring knowledge from power-
ful and easy-to-train networks to small but hard-to-train net-
works (Romero et al. 2014). Romero et al. suggest interme-
diate outputs of teacher networks to be used as hints for stu-
dent networks. An attention-based distillation method makes
use of attention maps of teacher networks which are made
from feature maps (Zagoruyko and Komodakis 2016a). To
transfer knowledge while avoiding direct mimicry, (Yim et
al. 2017) exploits flows calculated by Gram matrix of feature
maps from two layers of a teacher network, then a student
network is trained to mimic the flows of the teacher network.
Recently, mutual learning (Zhang et al. 2018) suggests a new
paradigm of bidirectional knowledge transfer. All networks
in mutual learning are not fixed and exchange knowledge
unlike conventional teacher-student paradigm where teacher
networks are fixed and student networks only get knowl-
edge.

Multiple Teacher Networks
Student networks can be improved further with the help of
multiple teacher networks (You et al. 2017). The dissimilar-
ity between teacher networks provide extensive knowledge
to a student network and help to further enhance the student
network. Similarly, (Zhang et al. 2018) shows that a neural
network can be further improved with the help of multiple
neural networks for vision tasks such as image classifica-
tion and person re-identification. Also, (Chebotar and Wa-
ters 2016) shows that multiple teacher networks are more
helpful than a single teacher in speech recognition. Most
of the distillation methods improve the performance of stu-
dent networks with multiple teacher networks, but deploying
them is demanding due to additional resources. Instead of



directly using multiple teacher networks, (Sau and Balasub-
ramanian 2016) suggest perturbing the outputs of a teacher
network to get the effect of multiple teacher networks. How-
ever, perturbing outputs with noise can be problematic as it
changes the values of the outputs so that corrupted knowl-
edge of the teacher network is transferred. In our proposed
structure, multiple networks of valid paths are generated (see
Figure 1) so that reliable and various outputs are transferred
to the student network and provide flexible knowledge.

Regularizing Output
In reinforcement learning, encouraging the policy to have
an output distribution with high entropy has been used to
improve exploration. This prevents the policy from converg-
ing early and leads to improved performance (Williams and
Peng 1991; Mnih et al. 2016). Also, penalizing confident
outputs (Pereyra et al. 2017) and smoothing label (Szegedy
et al. 2016) are proved to help the training of a deep neu-
ral network. Regularizing the high confident outputs helps
training the deep neural network since it prevents over-fitting
of the network and a big difference between values of out-
puts so that the adaptivity of the network increases.

In the same vein, high confident outputs of a teacher
network are challenging for student networks to learn. In
ML (Zhang et al. 2018), it has been shown that the ensemble
of multiple networks is a worse teacher than the individual
networks. Individual networks provide higher entropy out-
puts than the ensemble, so that the salient secondary values
in the outputs can be more helpful generalizing student net-
works.

Proposed Structure
To get the effect of multiple teacher networks from a sin-
gle teacher network, we propose to add stochastic blocks
and skip connections to the teacher network. In this section,
first, we explain in detail how to change the structure of the
teacher network to make multiple sub-networks. Then, we
demonstrate that multiple sub-networks can be used as mul-
tiple teacher networks.

Generating Multiple Networks
For ResNet (He et al. 2016) and Wide ResNet (Zagoruyko
and Komodakis 2016b), they consist of blocks and contain
skip connections. For MobileNet (Howard et al. 2017), we
grouped a depth-wise convolution and a point-wise convolu-
tion as one block and add skip connections from each input
of the block to the corresponding output.

Skip connections in residual networks prevent vanishing
gradient problem, so that deeper networks can be trained
well. In other respect, skip connections let a residual net-
work to be viewed as an ensemble of multiple paths of dif-
ferent lengths (Veit, Wilber, and Belongie 2016). When we
set ith block of a residual network as fi, then the output
(oi+1) of the (i+ 1) th block is expressed as follows.

oi+1 = fi+1(oi) + oi (1)

Since there are two paths from a previous output to the next
output, if there are n blocks in the network, 2n paths exist
from the input layer to the output layer.

It has been shown that, to some extent, changing the struc-
ture of a residual network do not harm the performance
much (Veit, Wilber, and Belongie 2016). Especially, delet-
ing blocks of residual networks does not harm the perfor-
mance much. This is because there still exist valid paths even
if some blocks of a residual network drop (if k blocks are
dropped from n blocks, valid 2n−k paths still exist). There-
fore, when a neural network consists of blocks and contains
skip connections, multiple neural networks with adequate
performances are generated by dropping blocks randomly.
To implement this idea in training phase, we set blocks of
neural networks to be stochastic as in (Huang et al. 2016).
Since initial blocks extract low-level features that will be
used by later blocks, we choose linear decay mode to set the
survival probability of each block. Pend denotes the survival
probability of the last block and pisurvival denotes that of the
ith block expressed as

pisurvival = 1− (1− pend)×
i

N − 1
, (2)

where N is the number of total blocks and i = 0 ∈
{0, 1, ..., N − 1}.
Pend implies a trade-off between quantity and quality of

sub-networks. If pend is high, each generated sub-network
will have longer length, so the performance will be better
than sub-networks with shorter lengths. However, high pend
generates less sub-networks. In the opposite case, more sub-
networks are generated but each performance can be a bit
lower. Optimal pend seems different for teacher and student
pairs. We tried pend ranging [0.5, 0.9] with interval 0.1 and
choose pend that improves student networks most for each
teacher and student pair.

Attributes of the Proposed Structure
One might wonder if sub-networks can play the role of
teacher networks and provide independent knowledge so
that student networks get sufficient knowledge. For a resid-
ual network of 110 layers, it has been shown that sub-
networks generated by dropping some blocks show com-
petent performance and are independent each other (Veit,
Wilber, and Belongie 2016).

Convolutional neural networks (CNNs) based on residual
networks will probably have the same characteristic, how-
ever, other networks like mobile network are not guaranteed
to generate reliable sub-networks with the proposed struc-
ture. To verify the efficacy, we show the accuracy when each
block is dropped from pre-trained networks for three kinds
of networks. Figure 2 is the accuracy result when each block
drops from residual network of 32 layers, mobile network,
and wide residual network 28-10. In Figure 2, sto and basic
represents networks with the proposed structure and origi-
nal networks respectively. Sto networks are stronger against
dropping blocks than basic networks, so we pre-train teacher
networks with the proposed structure. It seems that drop-
ping initial blocks of mobile network and 4th block of wide
resnet 28-10 degrades the performance significantly. To ob-
serve the impact of such blocks that are fatal to drop, we
compare cases where the blocks drop or does not drop like
other blocks in ablation study.
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Figure 2: Entropy when each block is dropped from (a) residual network 32, (b) mobilenet, and (c) wide residual network 28-10.
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Figure 3: Accuracy when each block is dropped from (a) residual network 32, (b) mobilenet, and (c) wide residual network
28-10.

The performances of sub-networks lag behind the original
network. However, they sometimes predict correctly while
the original network does not. Also, they generate outputs
with high entropy which are easier for student networks to
learn (see Figure 3). It is known that regularizing a neural
network to be less confident improves performance (Pereyra
et al. 2017). Similar results are also observed in deep mutual
learning. In (Zhang et al. 2018), they show that using an en-
semble of n networks as a teacher is less helpful than using
n individual networks as n teachers. This is because the en-
semble makes the outputs have low entropy, which means
that the secondary values of outputs becomes small. The
secondary values are salient cues in transferring knowledge
as it provides important information like relations between
classes. Dropping blocks of the teacher network is analo-
gous to using individual networks instead of the ensemble
of them. Thus, sub-networks can provide student networks
with rich knowledge. Also, knowledge of the original net-
work is fully utilized as all the blocks of the network are
used in generating sub-networks in the end.

Generated sub-networks share considerable parts of the
original network but provide different knowledge to a stu-
dent network. The degree of the difference is similar to that
of individual neural networks. We confirm the similarity
with resnet 32 and attach the related table in the appendix.

Application to Other Distillation Techniques
We apply the proposed method to other distillation tech-
niques, KD, AT, and ML. To apply to KD and AT, the teacher
network is changed to have skip connections and stochastic
blocks and other settings are not changed. In mutual learn-
ing, the notions of teacher and student vanish since both net-
works give and take knowledge each other. But for conve-
nience, we denote a network with large capacity as a teacher
network and the other as a student network. The teacher net-
work is changed into proposed structure as in KD and AT.
To apply the proposed structure to mutual learning, both
networks should be pre-trained since teacher networks are
not fixed. If the networks are not pre-trained, they cannot be
improved because of the stochastic property of the teacher
network. Let’s assume a situation when both networks are
not pre-trained. At the beginning of training process, sub-
networks of a teacher network are randomized. In mutual
training, each sub-network and a student network exchange
knowledge. However, since a different sub-network is used
each time, for many epochs, the student gets random knowl-
edge from randomized sub-networks so that it does not im-
prove. Also, sub-networks are not optimized due to the dis-
turbing knowledge from the student network.

In our simulation, multiple sub-networks are not used at
the same time but one sub-network generated by stochastic
drop is used as a teacher network for each batch.



Table 1: Improvement of knowledge distillation (KD) with the proposed structure on CIFAR 100

Net 1 Net 2 independent KD ours pend

ResNet 32 VGG 13 74.08 67.74 68.83 71.12 0.8

ResNet 110 ResNet 20 71.69 69.86 70.12 73.36 0.6

WRN 28-10 ResNet 32 78.98 69.86 69.85 74.87 0.5

MobileNet ResNet 32 74.08 69.89 69.88 71.77 0.7

ResNet 110 ResNet 32 71.69 69.86 70.12 73.36 0.7

MobileNet VGG 13 74.08 67.74 68.83 71.12 0.7

Table 2: Improvement of attention transfer (AT) with the proposed method on CIFAR 100

Net 1 Net 2 independent AT ours pend

ResNet 110 ResNet 20 71.69 68.32 68.34 68.67 0.6

WRN 28-10 ResNet 32 78.98 69.86 69.87 70.64 0.7

ResNet 110 ResNet 32 71.69 69.86 70.22 71.23 0.7

WRN 40-4 ResNet 32 75.67 69.86 70.03 70.59 0.7

WRN 28-10 WRN 40-4 78.98 75.67 75.36 76.09 0.7

Table 3: Improvement of mutual learning (ML) with the proposed structure on CIFAR 100

Net 1 Net 2 independent ML ours pend

ResNet 32 ResNet 32 69.86 69.86 71.14 71.21 73.68 73.58 0.9

MobileNet ResNet 32 74.08 69.86 75.62 71.1 76.2 72.76 0.8

WRN 28-10 ResNet 32 78.98 69.86 78.53 72.18 80.65 73.08 0.5

MobileNet MobileNet 74.08 74.08 75 75.16 75.5 76.1 0.9

WRN 28-10 MobileNet 78.98 74.08 78.83 76.41 81.03 76.82 0.5

WRN 28-10 WRN 28-10 78.98 78.98 78.83 78.95 81 80.66 0.5

Table 4: Improvement of knowledge distillation (KD) with the proposed structure on tiny imagenet

Net 1 Net 2 independent KD ours pend

ResNet 32 VGG 13 49.01 44.61 55.76 57.56 0.9

ResNet 32 ResNet 20 49.01 46.85 49.57 50.6 0.9

MobileNet ResNet 20 55.38 46.85 51.8 52.15 0.7

MobileNet ResNet 32 55.38 49.01 54.48 54.85 0.8

MobileNet ResNet 110 55.38 52.32 58.15 58.2 0.9

WRN 28-10 ResNet 32 58.91 49.01 55.7 55.34 0.6

Experiment
Dataset and Simulation Setting
We evaluate the proposed method with two datasets -
CIFAR-100 (Krizhevsky, Hinton, and others 2009) and tiny

imagenet (Russakovsky et al. 2015). CIFAR-100 dataset



Table 5: Improvement of attention transfer (AT) with the proposed method on tiny imagenet

Net 1 Net 2 independent AT ours pend

ResNet 110 ResNet 20 52.32 46.85 51.49 51.9 0.6

WRN 28-10 ResNet 32 58.91 49.01 53.56 54.15 0.7

ResNet 110 ResNet 32 52.32 49.01 54.52 54.91 0.8

WRN 40-4 ResNet 32 55.19 49.01 54.33 54 0.7

WRN 28-10 WRN 40-4 58.91 55.19 60.98 61.36 0.8

Table 6: Comparison

Net 1 Net 2 independent partial full pend

WRN 28-10 ResNet 32 78.98 69.86 74.81 74.87 0.5 0.5

mob ResNet 32 74.08 69.86 70.3 71.77 0.9 0.7

consists of 32 × 32 RGB color images drawn from 100
classes, which are split into 50, 000 train and 10, 000 test
images. Tiny imagenet dataset is a down-sampled version of
ImageNet dataset. It consists of 64 × 64 RGB color images
drawn from 200 classes, which are split into 100, 000 train
and 10, 000 test images.

For CIFAR-100, we normalize each image and augment
the train images. The data augmentation includes horizontal
flips and random crops from image padded by 4 pixels on
each side, filling missing pixels with reflections of original
image. Each network is trained for 200 epochs with batch
size of 128 and learning rate which is decreased at every
60 epochs. For tiny imagenet, we simulate with the pure
dataset without augmentation. Each network is trained for
100 epochs with batch size of 128 and learning rate which
is decreased at every 40 epochs. Stochastic gradient descent
optimizer with momentum of 0.9 is used for the whole sim-
ulation. The initial learning rate is 0.01 for ML case and
0.1 for the other cases. 4 CNNs are used - wrn, resnet, mo-
bilenet, and vgg net (Simonyan and Zisserman 2014). CNNs
are modified to the proposed structure when they are used as
teacher networks. All the results in the simulation are aver-
aged over 3 times.

CIFAR-100
Here, we present simulation results of knowledge transfer
methods on CIFAR-100. Table 1 is the simulation results of
KD and KD with the proposed structure. As you can see
in Table 1, we confirm that the proposed structure further
improves performances of student networks on KD. In case
of ( WRN 28-10, ResNet 32) pair, the accuracy of ResNet
32 trained with the proposed structure improves more than
5% compared to when ResNet 32 is trained the pure WRN
28-10.

Table 2 is the simulation results of AT and AT with the
proposed structure. In AT, attention maps of teacher and

student networks should have same spatial size. So, we
used residual networks and wide residual networks to fit
the spatial size conveniently. Attention maps are made by
square sum via channel axis and l2 normalization. The pro-
posed structure show further improvement over the pure AT
method. We confirm that the proposed structure improve stu-
dent networks further with AT method in all the pairs.

Table 3 is the simulation results of ML and ML with the
proposed structure. Only teacher networks are change to the
proposed structure, as mentioned in the previous section.
And a teacher networks and a student network exchange
knowledge each other. The network pairs in Table 3 are same
with those of the paper (Zhang et al. 2018). The proposed
structure still show further improvement in peer learning
paradigm, so both networks are improved further.

Tiny Imagenet
Here, we present simulation results of knowledge transfer
methods on tiny imagenet. Table 4, 5 are the simulation re-
sults of KD, AT, and proposed structure. As the simulation
results on CIFAR-100, the proposed structure improves stu-
dent networks generally, but there exist one pair each for
KD, AT that the student network is not improved.

Ablation Study
In Figure 2, when some blocks drop, then, performances of
neural networks drop significantly. The blocks are the 4th
block of wrn 28-10 and 1st to 6th blocks of mobilenet. We
name these blocks significant blocks. Sub-networks gener-
ated by dropping significant blocks have low performance
so that the networks might not be adequate teacher net-
works. Hence, we observe if student networks improve fur-
ther, when sub-networks generated by dropping the other
blocks except the significant blocks are used as teacher net-
works. We use KD and CIFAR-100 dataset for (wrn 28-10,
resnet 32) and (mobilenet, resnet 32) pairs.



In Table 6, partial means that significant blocks do not
drop and full means that all the blocks drop stochastically
in training phase. The results show that using more teacher
networks is more helpful improving a student network even
if some of them do not perform well. This is in line with the
result of ML (Zhang et al. 2018) where larger network still
benefits from being trained together with a smaller network.

Conclusion
In this work, we propose to change the structure of a teacher
network to get the effect of multiple teacher networks in
the same resource of one teacher network. In our proposed
structure, we obtain multiple teacher networks without ad-
ditional resource so that compact networks improve further
than those trained from conventional transfer methods. The
proposed structure can be easily applied to other transfer
methods and tasks, e.g. segmentation or object detection.
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