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ABSTRACT

In this paper we introduce the Scratchpad Encoder, a novel addition to the se-
quence to sequence (seq2seq) framework and explore its effectiveness in generat-
ing natural language questions from a given logical form. The Scratchpad Encoder
enables the decoder at each time step to modify all the encoder outputs, thus using
the encoder as a “scratchpad” memory to keep track of what has been generated
so far and to guide future generation. Experiments on a knowledge based question
generation dataset show that our approach generates more fluent and expressive
questions according to quantitative metrics and human judgments.

1 INTRODUCTION

Given the data driven nature of today’s question answering (QA) systems, the size and quality of
training data play a major role in a system’s ability to answer questions correctly. In a knowledge-
based question answering system, where the input is a natural language question and the answer
generated is retrieved from the knowledge base (KB), the standard approach is to parse the question
into a logical form that can query the knowledge base. (See Fig. 1 for an example.) This intermediate
logical form could be Lambda-DCS (Liang (2013)), SPARQL (Harris et al. (2013)), or any other
form interpretable by the knowledge base’s query engine.

One of the main challenges in training robust knowledge-based QA models is acquiring a large
amount of diverse labeled data. Currently, the largest publicly available datasets for knowledge-
based QA are on the order of 5-6 thousand queries 1 (tau Yih et al. (2016); Berant et al. (2013); Su
et al. (2016)), which is relatively small when compared with reading comprehension datasets like
SQuAD (Rajpurkar et al. (2016)) that have on the order of 100,000 examples, or machine translation
datasets containing millions to tens of millions of parallel sentences.

Several complications arise when constructing labeled corpora for knowledge-based QA. Namely,
since non-expert crowd workers are not familiar with logical form languages, collecting (query,
logical form) pairs can be a difficult and slow process (Liang et al. (2016); Reddy et al. (2014))
2. One could bypass crowd sourcing logical forms by training a model on (question, answer) pairs,
treating the intermediate logical as a latent variable (Berant et al. (2013); Kwiatkowski et al. (2013);
Yao & Van Durme (2014). Unfortunately, collecting only (query, answer) pairs is also difficult. To
create the WebQuestions dataset Berant et al. (2013), judges were given 100,000 questions and asked
to find the answers in Freebase. However, in only∼6,000 questions of these 100,000 (6%) were two
judges able to arrive at the same answer.

In order to collect arbitrarily large datasets, we need methods requiring less human intervention and
expertise. In this paper we explore the feasibility of generating meaningful questions given a logical
form (i.e. SPARQL). The intuition is that it is easier to have a programmer with domain expertise
generate a large set of programs, rather than train an average human judge to master SPARQL.

1The SimpleQuestions dataset (Bordes et al. (2015)) contains 100,000 examples, but cannot be considered
as a general knowledge-base QA or semantic parsing dataset because all the questions have one logical form
only: “Select Entity.Attribute from KB”. Here the parser’s job is to only fill out the values of Entity and Attribute.
Our goal is to be able to answer more complex questions that require logical forms beyond those that can be
described as only triple selection (See Fig 1).

2WebQuestionsSP tau Yih et al. (2016) dataset used crowdsourcing to collect (query, logical form) pairs,
but the judges were familiar with Freebase, and a special interface was created for them
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SPARQL:

SELECT DISTINCT ? x
WHERE {
FILTER (?x != ns:m.078ffw)
FILTER (!isLiteral(?x) OR lang(?x) = ” OR langMatches(lang(?x), ’en’))
ns:m.078ffw ns:book.literary series.works in this series ?x .
?x ns:book.written work.date of first publication ?sk0 .
}
ORDER BY xsd:datetime(?sk0)
LIMIT 1

Question: What is the name of the first harry potter novel?

Figure 1: A (logical form, question) pair from WebQuestionsSP (tau Yih et al. (2016)).

Recent work has even shown question generation from a logical form leads to improvements in
semantic parsing (Guo et al. (2018)). We adapt the sequence to sequence (seq2seq) framework
(Sutskever et al. (2014)) given its success in tasks such as machine translation (Bahdanau et al.
(2014)) and traditional semantic parsing (Dong & Lapata (2016)). Despite their success, seq2seq
with attention models fail to produce fluent output to the level of specificity and quality necessary
for our task. Furthermore, they often fail to keep track of what has already been generated by the
decoder, or copied from the input tokens in the case of Copynet (He et al. (2017) (see Table 7) often
leading to erroneous repetitions. Our approach is aimed at mitigating these issues.

We introduce a novel write mechanism to the seq2seq framework that significantly outperforms
several baselines termed the Scratchpad Encoder. Put simply, we allow the decoder to keep notes
as it decodes; we keep the standard seq2seq encoder (Sutskever et al. (2014)), but at each time step
allow the decoder to attentively write to the encoder outputs. In this way, we use the encoder as a
“scratchpad” to direct future generation. In both quantitative evaluations of the generated questions
and human judgments of their fluency and adequacy, our model attains significant improvement
over standard seq2seq, Copynet (Gu et al. (2016)), and a coverage-enhanced approaches Tu et al.
(2016); See et al. (2017). Furthermore, human judges strongly prefer questions generated using the
Scratchpad Encoder over those produced using Copynet and a coverage-enhanced approaches —
89.44% and 61.36% of the time, respectively.

The contributions of this work are two-fold:

1. We introduce Scratchpad Encoder, a novel enhancement to the seq2seq framework allowing
the decoder to see what has been generated thus far, and outperforming multiple baselines
on quantitative and qualitative metrics.

2. We use Scratchpad Encoder to automatically generate questions given a corresponding
SPARQL query, making it possible to generate a large high quality dataset of knowledge
base (query, logical form) pairs.

2 MODEL BASICS/BACKGROUND

We build off of a standard seq2seq setup with (a) an encoder operating off the logical form, (b) a
decoder outputting the generated question, and (c) a task-specific attention mechanism so that the
decoder may focus on different parts of the logical form as it decodes. We describe these components
below before detailing the copy mechanism and Scratchpad Encoder.

Encoder Let the input sequence (tokens of the logical form) of length T be indexed by the sub-
script t, so that the sequence of word vectors input into the model is x0...xT = x0..T. We encode the
input via a bidirectional 2 layer GRU (Cho et al. (2014)), resulting in encoder outputs h0..T.

Decoder Let the decoding sequence (tokens of the question) be indexed by the superscript i such
that si is the state of the decoder at decoding timestep i. The decoder’s initial state s0 is set to
the final output of the encoder in both directions. The decoder uses a recurrence new state =
f(2)(current state, input), where we use f(l) to refer to an l-layer GRU from now on.
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Attention At every decoding step i, the decoder computes an attentive read (attniread) over the
encoder states (h0..T) (as in Bahdanau et al. (2014)). This is computed by first computing a score for
each encoder output (ht) via an MLP as follows. (We denote the concatenation of vectors z0, ..., zn
as [z0; ...; zn].)

scoreit = W1(W2[si; ht]
T) (1)

where W1 and W2 are learned parameters. These scores (scorei0..T) are then normalized into a
probability distribution and used as the weights to compute a weighted average of encoder outputs
(termed the attentive read), allowing the decoder to focus on different parts of the input at different
timesteps i:

ai0..T = softmax(scorei0..T) (2)

attniread =

T∑
t=0

(ait ∗ ht) (3)

Update The decoder then computes its new state using the word vector ŷi−1 for the previous
output yi−1 along with the attentive read (attniread) to obtain the post-read state (sipost read):

si+1 = sipost read = f(2)(si, [ŷi−1; attniread]) (4)

Generation At every step, the decoder computes a distribution over output tokens from the post-
read state (sipost read):

yi = softmax(Woutsipost read) (5)

where Wout is a learned parameter.

Cross-Vocabulary Copying We noticed that many tokens that appear in the logical form are also
present in the natural language form for each example. In fact, nearly half of the tokens in the
question appear in the corresponding SPARQL of the WebQuestionSP dataset (tau Yih et al. (2016))
Hence, we give the network the ability to copy (Gu et al. (2016)) from its input by redefining the
output distribution yi as a mixture between the generation distribution described previously (Eq. 5)
and a copy distribution (Eq. 7).

yi = pigen ∗ softmax(Woutsipost read) + (1− pigen) ∗ copy(sipost read,h0..T, x0..T) (6)

where copy is a distribution over the vocabulary V. We only consider “copyable” tokens (Vc)
that appear in both the logical form input vocabulary (Vi) and question output vocabulary (Vo)
(Vc = Vi ∩Vo). We define copy as:

copy(sipost read,h0..T, x0..T)v =

T∑
t=0

(cit ∗ 1xt==v) (7)

The copy-attention distribution ci0..T is computed in a similar fashion to the attentive-read distribu-
tion (ai0..T) computed earlier (Eq. 3), except we use the post-read decoder state (sipost read) so the
network can take into account the attentive read (attniread) as well as the previously generated token
(ŷi−1) when computing copy scoreit.

copy scoreit = W1(W2[sipost read; ht]
T)) (8)

ci0..T = softmax(copy scorei0..T) (9)

attnicopy =

T∑
t=0

(cit ∗ ht) (10)

where W1 and W2 are learned parameters with the same dimensionalities as in the previous case.

Finally, we need to compute “how much” we are generating vs. copying (pigen), again using the post-
read decoder state (sipost read) and the copy read (attnicopy) so the network can take the attentive read
(attniread) and previously generated token (ŷi−1) into account.

pigen = σ(W1ReLU(W2[sipost read; attn
i
copy]

T)) (11)
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3 KEEPING NOTES WITH A SCRATCHPAD ENCODER

Although modern seq2seq models (including common extensions like Copynet tend to do well on
multiple tasks and have led to promising improvements across the board (Bahdanau et al. (2014);
Sutskever et al. (2014); Dong & Lapata (2016)), they often have issues with over and under-
generation, particularly with regards to repetition or copying (See et al. (2017); Tu et al. (2016),
as well as integrating new information (See Eric & Manning (2017)). We propose a method that
allows the network to update its encoding of the input at every step of decoding. Intuitively, we add
one simple step to the decoder: treat the encoder states as a scratchpad, writing to it as if it were an
external memory.

Up until now, the decoder’s workflow at every step i is as follows:

1. Reads attentively from the encoder outputs (attniread) (See Eq. 3)

2. Updates its state (sipost read) (See Eq. 4)

3. Outputs a distribution (yi) over the output vocabulary (See Eq. 6)

With the Scratchpad Encoder we add a fourth step:

4. Write an update (ui) to the encoder states (h0..T) in an attentive fashion (αi
0..T) using the

post-read decoder state (sipost read), treating the encoder states (h0..T) as if they were cells
in an external memory:

hi+1
t = αi

th
i
t + (1− αi

t)u
i (12)

αi
t = σ(W1(W2[sipost read; attn

i
copy; h

i
t]
T)) (13)

ui = Tanh(W3ReLU(W4[sipost read; attn
i
copy]

T)) (14)

Tanh is used to ensure that hi+1
t remains in the range [−1, 1], since hit ∈ [−1, 1] as h0t is the output

of a GRU. αi
t can be understood as an update gate for the representation of the input sequence h0..T,

signifying how much to overwrite a cell versus keeping past information.

While decoding, it is advantageous for the network to keep track of which tokens have been gener-
ated and which locations have been attended. By allowing the decoder to write to the encoder we
can easily track this information. By keeping the information outside of the decoder GRU we also
preserve capacity in the decoder for other subtasks like smoothing.

The Scratchpad Encoder is independent of the copy mechanism that we present here, meaning it can
be an addition to any seq2seq with attention framework. To use the Scratchpad Encoder without the
copy mechanism replace attnicopy with attniread in the equations above.

4 PREPROCESSING AND TRAINING

Preprocessing We split on special characters and camelCasing (see Fig. 2). Since many of these
strings are compositional, tokenizing in this fashion allows the network to take advantage of this fact.
This results in a large variance in sequence lengths (min 20, max 338), with an average sequence
length of 80.84 tokens.

Training All models were trained for 75 epochs with a batch size of 32, a hidden size of 512,
and a word vector size of 300. Dropout is used on every layer of all GRUs except the output layer,
with a drop probability of 0.5. Where Glove vectors (Pennington et al. (2014)) are used to initialize
word vectors, we use 300-dimensional vectors trained on Wikipedia and Gigaword (6B.300D).
The Adam optimizer (Kingma & Ba (2014)) was used, with a learning rate of 1e−4 and a teacher
forcing (Williams & Zipser (1989) probability of 0.5. These hyperparameters were tuned for our
Seq2Seq baselines and held constant for the rest of the models (Copynet, Coverage, Scratchpad).
The vocabulary consists of all tokens appearing at least once in the training set.
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SELECT DISTINCT ?x
WHERE {
FILTER (?x != ns:m.01bkb)
FILTER (!isLiteral(?x) OR lang(?x) = ” OR langMatches(lang(?x), ’en’))
ns:m.01bkb ns:travel.travel destination.how to get here ?y .
?y ns:travel.transportation.transport terminus ?x .
?y ns:travel.transportation.mode of transportation ns:m.03qb78c .
}

(Raw)

select distinct ? x
where {
filter ( ? x ! = ent: bali )
filter ( ! is literal ( ? x ) or lang ( ? x ) = ’ ’ or lang matches ( lang ( ? x ) , ’ en ’ ) )
ent: bali ns travel . travel destination . how to get here ? y .
? y ns travel . transportation . transport terminus ? x . ? y ns travel . transportation . mode of transportation ent: air transportation .
}

(Preprocessed)

Figure 2: To preprocess SPARQL, we split on: special characters (? ! = : . ( ) { } ′), ’:’ not
followed by ’/’, and camelCasing. Entity IDs are replaced with the ’ent:’ token followed by the
entity’s full name. We then lowercase all strings.

5 EXPERIMENTAL RESULTS

5.1 DATA

We use a standard dataset for semantic parsing, WebQuestionsSP (tau Yih et al. (2016)), which
consists of (question, logical form) pairs where the logical form is in SPARQL. The dataset contains
3098 training examples, with additional 1639 for testing. All the following results are reported for
the test fold.

In addition to knowledge base question generation, we evaluate our approach on the task of generat-
ing questions from SQL statements. For this we use the WikiSQL dataset (Zhong et al. (2017)), and
report the results in Appendix A.

5.2 BASELINES

We compare our Scratchpad Encoder against 4 baselines: (1) Seq2Seq, (2) Seq2Seq with Priors,
(3) Copynet, and (4) Coverage which is a method from machine translation that aims to solve
attention-based coverage problems (Tu et al. (2016)). Seq2Seq is the standard approach introduced
in (Sutskever et al. (2014)), whereas “Seq2Seq + Priors” has word vectors initialized from glove
embeddings, uses beam search, and uses smarter preprocessing (replace entity IDs with full entity
names). Copynet (He et al. (2017)) baseline gives the Seq2Seq model the ability to copy vocabulary
from the source to the target, as detailed in equation 7. Table 1 provides a comparison of all the
baselines.

Coverage Baseline Our final baseline is a copy-enhanced seq2seq model with attention with a
neural “coverage” mechanism added as in Tu et al. (2016). It was originally introduced for the task
of machine translation to address the problems of over and under translation. To do so, they add a
“coverage vector” (covit) for each position (ht) in the encoder outputs, to keep track of the history
of (copy) attentions (c0t ..c

i−1
t ) so far.:

covit = f(1)(covi−1t , [sipost read; ht; c
i
t]) (15)

This requires adding an additional RNN to the model (f(1)). Each coverage vector (covit) is now
taken into account when calculating the distribution for copying (cit, Eq. 9), which also affects
the calculation of the copy-read (attnicopy, Eq. 10). This is done by modifying the calculation of
copy scoreit from Eq. 8 to:

copy scoreit = W1(W2[sipost read; ht; cov
i−1
t ]T) (16)
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For a fair comparison, we compare against a coverage vector of size 10, the largest used in Tu et al.
(2016).

Name Replace
Entity ID

Glove Word
Embeddings Beam Search Ability to Copy Coverage

RNN
Scratchpad

Encoder

Seq2Seq 7 7 7 7 7 7

+ Priors 3 3 Beam Size 2 7 7 7

Copynet 3 3 7 3 7 7

+ Coverage 3 3 7 3 3 7

+ Scratchpad 3 3 7 3 7 3

Table 1: To validate the method, we compare against a pure seq2seq with attention baseline, along
with a tuned (“+ Priors”) version and a Copynet with the same improvements except for beam search.
We then enhance a copynet with a coverage mechanism and a scratchpad encoder.

5.3 QUANTITATIVE EVALUATIONS

In order to quantitatively evaluate the performance of methods, we compute BLEU (for a precision-
based metric), ROUGE-LCS (for a recall-based metric), and METEOR (to deal with stemming and
synonyms). We run these metrics at both a corpus level (i.e. how natural are output questions), and
at a per-sentence level (i.e. how well do output questions exactly match the gold question). We
evaluate on examples in the test set that do not contain out of vocabulary tokens. Table 2 shows
the performance of each baseline on all three metrics. From the table it is clear that our approach,
Scratchpad Encoder, outperforms all baselines on all the metrics.

Model
Per-Sentence Corpus-Level

Bleu Meteor Rouge-L Bleu Meteor Rouge-L

Baseline 6.1 21.5 42.5 15.11 20.79 42.48
+ Priors 7.51 23.9 47.1 17.96 22.9 47.13

Copynet 6.89 27.1 52.5 17.42 26.03 52.56
+ Coverage 14.55 33.7 58.9 26.78 30.86 58.91
+ Scratchpad 15.29 34.7 59.5 27.64 31.49 59.44

Table 2: Methods allowing the model to keep track of past attention (Coverage, Scratchpad) sig-
nificantly improve performance when combined with a copy mechanism. The Scratchpad Encoder
achieves the best performance.

5.4 HUMAN EVALUATION

Although quantitative metrics such as BLEU tend to correlate with human judgments for machine
translation tasks (Bojar et al. (2017)), they do not always correlate with the human assessed quality
of generated text for all tasks (Stent et al. (2005); Liu et al. (2016)). We use two standard human
evaluation metrics from the machine translation community: (1) Adequacy, and (2) Fluency (Bojar
et al. (2017)). In computing the adequacy metric, human judges are presented with a reference
translation and the system proposed translation, and are asked to rate the adequacy of the proposed
translation in conveying the meaning of the reference translation on a scale from 0-10. For fluency,
the judges are asked to rate, on a scale from 0-10, whether the proposed translation is a fluent
English sentence. Table 4 summarizes the human evaluation results for our Scratchpad Encoder and
two more baselines. As the table shows, the judges assigned higher fluency and adequacy scores to
our approach than the coverage based decoder and the copynet one. In the table we also report the
fluency score of the gold questions as a way to measure the gap between the generate questions and
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Expected Copynet Coverage Scratchpad

what was thomas
jefferson role in the

declaration of
independence?

what is jefferson
jefferson famous

for?

what was thomas
jefferson famous for?

what jobs did thomas
jefferson have?

who does chris
hemsworth have a

baby with?

what does chris chris
chris with?

who is chris chris
hemsworth?

who is chris
hemsworth married

to?

what type of music
did vivaldi compose?

what type of music
did vivaldi vivaldi

sing?

what music did
antonio vivaldi

compose?

what music did
antonio vivaldi

compose?

what else did ben
franklin invent?

what is the inventions
inventions of

franklin franklin?

what was the
inventions benjamin
benjamin franklin’s

children?

what are some
inventions benjamin

franklin made?

Table 3: Example instances from the test set of the copy-mechanism of copynet over-firing where
the scratchpad model copies correctly.

Model Fluency Adequacy

Gold 9.13 7

Copynet 5.18 5.23
+ Coverage 6.64 6.16
+ Scratchpad 7.38 6.59

Table 4: Human evaluations show that the
Scratchpad Encoder delivers a large im-
provement in both fluency and adequacy over
Copynet and Coverage.

Scratchpad vs. Copynet Scratchpad vs. Coverage

Both Good 9.26% Both Good 15.11%
Scratchpad 37.78% Scratchpad 23.80%
Copynet 6.46% Coverage 14.99%
Both Bad 46.5% Both Bad 43.07%

Win Rate 89.44% Win Rate 61.36%

Table 5: The percentage of times judges preferred
one result over the other. In a Head-to-Head eval-
uation the output of Scratchpad Encoder is 9 and
2 times as likely to be chosen vs. Copynet and
Coverage, respectively. Win rate is the percentage
of times Scratchpad was picked when the judges
chose a single winner (not a tie).

the expected ones. Our approach is nearly 2 full points behind the gold when it comes to generation
fluency.

In addition to adequacy and fluency, we design a side-by-side experiment to find out which approach
generates better questions in pairwise comparison fashion. In the study, judges are presented with
2 generated questions from 2 different systems, along with the reference question and are asked
which of the two systems presents a better paraphrase to the reference question. The judges took
into consideration the grammatical correctness of the question and its ability to capture the meaning
of the reference question fluently. Table 5 shows the result of running the head-to-head evaluation
between scratchpad output and both copynet and coverage baselines. As the table shows, human
judges are four times as likely to prefer scratchpad generated questions over copynet, and nearly two
times over coverage. Table 7 shows examples of generated questions by the different approaches.

6 RELATED WORK

In the question generation domain, there has been a recent surge in research on generating questions
for a given paragraph of text (Song et al. (2017); Du et al. (2017); Tang et al. (2017); Duan et al.
(2017); Wang et al. (2018); Yao et al. (2018)). This work focuses on applications for machine
reading comprehension where a paragraph coupled with a snippet containing the answer are used to
generate questions. This approach arguably contains more contextual information to help guide the

7



Under review as a conference paper at ICLR 2019

model than using only a logical form, sometimes syntactic manipulation of the answer paragraph
alone is sufficient to generate a question. In general, most of the work in this area has been a
variant of the seq2seq approach. In Song et al. (2017), a seq2seq model with copynet and a coverage
mechanism (Tu et al. (2016)) is used to achieve state-of-the-art results. We have demonstrated that
our Scratchpad Encoder outperforms this approach in both quantitative and qualitative evaluations.

In the knowledge based question generation domain, early work on translating SPARQL queries into
natural language focused on generating a human readable description of SPARQL queries to guide
query writers (Ngonga Ngomo et al. (2013a;b))). However, that approach relied on hand-crafted
rules to translate certain words appearing in the SPARQL query. Later work on automatically gen-
erating questions from SPARQL queries have also relied on manually crafted templates to map
selected categories of SPARQL queries to questions (Trivedi et al. (2017); Seyler et al. (2017)). In
Serban et al. (2016) knowledge base triplets are used to generate questions using encoder-decoder
framework that operates on entity and predicate embeddings trained using TransE (Bordes et al.
(2011)). Later, Elsahar et al. (2018) extended this approach to support unseen predicates. Both ap-
proaches operate on triplets, meaning they have limited capability beyond generating simple ques-
tions. Since our approach operates on the more expressive SPARQL query (logical form) we can
produce far more complex questions.

Summarizing source code is another area where we draw inspiration (Iyer et al. (2016)). Approaches
in this area are largely based on attentive seq2seq models, although an Abstract Syntax Tree aware
encoder was introduced recently (Alon et al. (2018)). Code summaries tend to be more descriptive
than our factoidal question generation. In the dataset provided by (Iyer et al. (2016)) the examples
were collected from StackOverFlow, where the questions are generally about how to fix a piece of
code. SQL queries bear a striking resemblance to SPARQL, so we test approach on the Zhong et al.
(2017) dataset, where we to generate questions from SQL statements. The experiments presented
in Appendix A, demonstrate the same performance gains obtained on the WebQuestionsSP dataset,
outperforming all baselines.

Closest to our work, in the general paradigm of seq2seq learning, is the coverage mechanism intro-
duced in Tu et. al Tu et al. (2016) and later adapted for summarization in See et al. (2017). Both
works try to minimize erroneous repetitions generated by a copy mechanism by introducing a new
vector to keep track of what has been used from the encoder thus far. In Tu et al. (2016), for ex-
ample, use an extra GRU to keep track of this information, whereas See et al. (2017) keeps track
of the sum of attention weights and adds a penalty to the loss function based on it to discourage
repetition. Our approach is much simpler than either solution since it does not require any extra
vectors or an additional loss term; rather, the encoder vector itself is being used as scratch memory.
Our experiments also show that for the question generation task, the Scratchpad Encoder performs
better than coverage based approaches.

Our idea was inspired by the dialogue generation work of Eric & Manning (2017) in which the
entire sequence of interactions is re-encoded every time a response is generated by the decoder. This
has also been explored in Elbayad et al. (2018) to great effect. Unfortunately, all of these methods
have an O(n2) runtime, which scales poorly with long sequences and large input examples. In
addition, vast amounts of memory are required during training to implement Eric & Manning (2017)
or Elbayad et al. (2018)). Whereas our module isO(n) in runtime, and does not add memory beyond
a constant factor. Finally, our work is very similar to the research done on using external memories
for generation (e.g., Bordes et al. (2016); Eric et al. (2017)) and could be viewed as more efficient
way to initialize such an external memory.

7 CONCLUSION

In this paper, we addressed the task of generating factoidal questions from a knowledge base using
SPARQL queries as input. We introduced a novel write operator to the seq2seq framework, which we
call a Scratchpad Encoder. The Scratchpad Encoder helps the decoder to keep track of what tokens
have been generated so far, and guide future generation. It outperforms multiple baselines including
Seq2Seq, Copynet, and Coverage, in both quantitative evaluations and in human judgments Our
module is conceptually simple and easy to add to any seq2seq model with attention.
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APPENDIX A GENERATING QUESTIONS FROM SQL

To demonstrate the generalizable nature of this approach we also evaluate the Scratchpad Encoder
on the WikiSQL dataset Zhong et al. (2017), where our task becomes generating natural language
questions from SQL statements. We perform the same preprocessing applied to the WebQuestion-
sSP dataset, and train along with the same baselines from before (Seq2Seq with priors, Copynet,
and Coverage). The quantitative results are given in Table 6. From the table it is clear that our ap-
proach outperforms all baselines on all metrics. Furthermore, the improvement is consistent with the
performance gains obtained on the WebQuestionsSP, indicating the efficacy of this approach across
logical form formats.

Model
Per-Sentence Corpus-Level

Bleu Meteor Rouge-L Bleu Meteor Rouge-L

Baseline 9.94 26.71 47.96 17.34 25.34 47.96

Copynet 8.04 24.66 46.82 15.11 23.53 46.82
+ Coverage 15.76 34.04 54.94 25.01 32.38 54.94
+ Scratchpad 16.89 34.47 55.69 26.10 32.76 55.69

Table 6: Methods allowing the model to keep track of past attention (Coverage, Scratchpad) sig-
nificantly improve performance when combined with a copy mechanism. The Scratchpad Encoder
achieves the best performance.

Expected Copynet Coverage Scratchpad

what is the total
number of attendance
( s ) , when away is

real juventud ?

what was the
attendance for

juventud juventud ?

what was the
attendance against

real juventud ?

what was the total
attendance against

real juventud

name the pictorials
when the interview
subject is steve jobs

in the issue in which
the steve were were
steve steve , what
were the steve ?

in the issue in in in
the issue where jobs

jobs was the
interview subject

which were the
pictorials in which

the interview subject
was steve jobs ?

name the % of
popular vote for
election for 1926

what is the
percentage of the

vote 1926 in 1926 ?

what is the
percentage of the

vote in the candidate
of 1926 ?

what was the
percentage of popular

vote for the 1926
election ?

what is the lowest
rank ?

what is the smallest
rank ? a rank ?

what is the smallest
rank for a rank ?

what ’s the minimal
rank of a athlete

shown in the chart ?

Table 7: Example instances from the test set of the copy-mechanism of copynet over-firing where
the scratchpad model copies correctly.

APPENDIX B ANALYSIS OF OVERCOPYING

As our approach was introduced to help the decoder keep track of what has been generated (and
copied) so far, we introduce a metric for over copying which is defined as the difference between the
number of times a word type (w) is present in reference text (r) compared to the generated text (g)

OverCopy(corpus) =

∑
ExampleOverCopy(r, g)

Size(corpus)
(17)

ExampleOverCopy(r, g) =
∑
w

max(delta[w], 0) (18)
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delta[w] = Countp[w]− Countg[w] (19)

On the WebQuestionsSP dataset, our approach achieves an average corpus wide over copying score
of 0.23, whereas coverage and copynet achieve 0.32 and 0.66, respectively. Our approach reduces
over copying by 28% over the next best approach.

Recall that copying was found very useful for question generation since a question typically shares
the same vocabulary with the logical form. Table 8 shows examples highlighting the shared tokens
between questions and logical forms.

what are the official languages in spain ?
what is the first book sherlock holmes appeared in ?
when did the new york knicks win a championship ?
who portrayed indiana jones in raiders of the lost ark ?
from what university did president obama receive his bachelor ’s degree

Table 8: Example questions from the training set of WebQuestionsSP dataset, with tokens
that also appear in the sparql in bold. Nearly half (47.36%) of tokens in questions appear
in the corresponding sparql, suggesting that the ability to copy can improve performance
on this task.

APPENDIX C MODEL DIAGRAM

The following diagram outlines the interactions between the different components of the system.
Boxes are annotated with the corresponding equation where applicable.

Figure 3: Model diagram demonstrating a copynet enhanced with a scratchpad encoder. The atten-
tive read attniread and copy read attnicopy are denoted AR and CR, respectively. h00..T is the output
of the encoder, and h10..T the new values of those states after the scratchpad update.
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