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ABSTRACT

The classification of images taken in special imaging environments except air is
the first challenge in extending the applications of deep learning. We report on
an UW-Net (Underwater Network), a new convolutional neural network (CNN)
based network for underwater image classification. In this model, we simulate the
visual correlation of background attention with image understanding for special
environments, such as fog and underwater by constructing an inception-attention
(I-A) module. The experimental results demonstrate that the proposed UW-Net
achieves an accuracy of 99.3% on underwater image classification, which is sig-
nificantly better than other image classification networks, such as AlexNet, In-
ceptionV3, ResNet and Se-ResNet. Moreover, we demonstrate the proposed I-
A module can be used to boost the performance of the existing object recogni-
tion networks. By substituting the inception module with the I-A module, the
Inception-ResnetV2 network achieves a 10.7% top1 error rate and a 0% top5 er-
ror rate on the subset of ILSVRC-2012, which further illustrates the function of
the background attention in the image classifications.

1 INTRODUCTION

Underwater images and videos contain a lot of valuable information for many underwater scientific
researches (Klausner & Azimi-Sadjadi, 2019; Peng et al., 2018). However, the image analysis sys-
tems and classification algorithms designed for natural images (Redmon & Farhadi, 2018; He et al.,
2017) cannot be directly applied to the underwater images due to the complex distortions existed in
underwater images (e.g., low contrast, blurring, non-uniform brightness, non-uniform color casting
and noises) and there is, to the best of our knowledge, no model for underwater image classification.
Except for the inevitable distortions exhibited in underwater images, there are other three key prob-
lems for the classification of underwater images: (1) the background in underwater images taken in
different environments are various; (2) the salient objects such as ruins, fish, diver exist not only in
underwater environment, but also in air. The features extracted from the salient objects cannot be
relied on primarily in the classification of underwater images; and (3) since the classification of un-
derwater images is only a dualistic classification task, the structure of the designed network should
be simple to avoid the over-fitting.

Increasing the depth and width of a CNN can usually improve the performance of the model, but is
more prone to cause over-fitting when the training dataset is limited, and needs more computational
resource (LeCun et al., 2015; Srivastava et al., 2014). To remit this issue, (Szegedy et al., 2015)
proposed the inception module, which simultaneously performs the multi-scale convolution and
pooling on a level of CNN to output multi-scale features. In addition, the attention mechanism
(Chikkerur et al., 2010; Borji & Itti, 2012) is proposed and applied in the recent deep models which
takes the advantage that human vision pays attention to different parts of the image depending on
the recognition tasks (Mnih et al., 2014; Zhu et al., 2018; Ba et al., 2014). Although these strategies
play an important role in advancing the field of image classifications, we find that the large-scale
features such as the background area play a more important role in the visual attention mechanism
when people understanding of underwater images, which is unlike the attention mechanism applied
in natural scene image classification (Xiao et al., 2015; Fu et al., 2017).

In this paper, we propose an underwater image classification network, called UW-Net. The overview
network structure is shown in Fig. 1. Unlike other models, the UW-Net pays more attention to the
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Figure 1: The structure of the UW-Net. The bottom part is the output of the eighth layer in the
I-A module. The red area represents a higher response of features for the underwater image clas-
sification. As shown, our I-A module concerns more about the background regions of underwater
images.

background features of images by construct the inception-attention (I-A) modules and thus achieves
better performance. The contributions of this paper are as follows: (i) to the best of our knowledge, it
is the first CNN-based model for underwater image classification; (ii) an inception-attention module
is proposed, which joints the multi-dimensional inception module with the attention module to real-
ize the multiple weighting of the output of various scales of features; (iii) this work is a first attempt
to simulate the visual correlation between understanding images and background areas through I-A
modules.

The rest of the paper is organized as follows: Section 2 introduces the related work. The proposed
UW-Net is described in Section 3. Section 4 illustrates the experimental results and analysis, and
we summarize this paper in Section 5.

2 RELATED WORK

As mentioned before, there is less work focusing on underwater image classification. Thus, we
mainly introduce the classification models designed for natural scenes and the recent attention mech-
anism which is incorporated in our network in this section.

2.1 IMAGE CLASSIFICATION MODELS

Since Krizhevsky et al. (2012) won the ImageNet Large Scale Visual Recognition Competition
(ILSVRC) (Deng et al., 2009), CNNs become more and more popular in the application of image
recognition tasks. Many CNNs pursue better performance by means of superimposing more convo-
lution layers, but the number of the parameters is concomitantly increased. As the depth increases
(Simonyan & Zisserman, 2014), the gradient of the network will disappear or explode in the training
process. Particularly, Szegedy et al. (2015) proposed the ”GoogleNet” model, in which the incep-
tion architecture is first proposed. The 1 × 1 convolution is also applied as a dimension reduction
technique (Lin et al., 2013) and to extract more nonlinear characteristics of the features. By fusing
the features extracted from multi-scale convolutions, better image representation is obtained in the
deep layers of the network. Based on the initial inception structure, multiple network structures such
as Inception V3 (Szegedy et al., 2016) and Inception V4 (Szegedy et al., 2017) are further proposed.
He et al. (2016) proposed the Resnet, in which the residual modules are proved to be effective in
solving the gradient disappearance problem of deep convolution networks.

An important feature of human vision is that people usually focus more on a certain area of the whole
scene while ignoring other areas (Mnih et al., 2014; Treisman & Gelade, 1980), which is called
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the attention mechanism (AM). Hu et al. (2018) proposed the SeNet by constructing the attention
mechanism of feature channels, and won the championship of ILSVRC2017. Wang et al. (2017)
proposed the residual attention network (RAN), which also combined the attention mechanism with
the residual modules, and achieves 4.8% top-5 error rate on ILSVRC 2012 dataset. These works are
all evidences of the effectiveness of the attention mechanism in deep learning models on one hand,
and on the other, none of these studies on attention mechanism focus on background features.

2.2 UNDERWATER IMAGING

Although the performance of the existing image classification models has exceeded that of human
beings in some classification tasks (Huang et al., 2017; He et al., 2016), most of the existing classi-
fication models assume that images have legible texture and uniform features. However, when light
propagating through the water, the absorption and scattering determined by the internal optical prop-
erty (IOP) of the water affect the process of underwater imaging. Not only the water body, but also
the dissolved organic matter and small floating particles (called sea snow), whose concentration and
species vary greatly, also affect the underwater image quality (Kjerstad, 2014; Johnsen et al., 2009).
With the depth increases in water, the color of light disappears according to their wavelengths. Ar-
tificial lighting often results in uneven lighting, creates bright spots in the image, and makes the
scattering of suspended matter worse (Yang & Sowmya, 2015). These challenges make the design
of an effective underwater image classification algorithm difficult.

Moreover, human recognition of underwater images is often based on the background features of
the images. In the next section, we use the inception module with multiple sizes of receptive fields
to extract features and simulate the human attention mechanism by combining an attention module
emphasizing the background features of underwater images.

3 PROPOSED APPROACH

The network structure of UW-Net is constructed based on multiple I-A modules, as shown in Fig. 2.
The network can be extended with more I-A modules for other complex visual classification tasks.
An underwater image is first forwarded to a convolutional layer with 7× 7 size of kernels to obtain
large reception fields. An auxiliary classification branch is added after two I-A modules, and the
output of the auxiliary branch will be used to optimize the network as part of the loss function. As
follows, we will introduce the key components in the UW-Net, i.e., I-A module including inception
module and attention module, and classification branch in details.

3.1 INCEPTION-ATTENTION MODULE

The classical inception models (Szegedy et al., 2015; 2016; 2017) are constructed by multiple sizes
of convolutional kernels. The feature maps are processed by different convolution kernels in one
inception module, and then merged and forwarded to the next inception module directly. However,
not all the extracted features of every convolution kernel are positively related to the current image
classification task. For example, the features extracted by a convolution kernel with large size tend
to describe the global information, which has little effect on a fine-grained image classification task
even though they can be transferred to the deeper layers, and will result in a certain degree of waste
of computational resource.

3.1.1 INCEPTION MODULE

Underwater images exhibit the characteristics of large intra-class differences. Furthermore, the po-
sitions and proportions of the background areas vary in underwater images, and the recognition of
underwater image is based more on the global features of the image. In addition, the quality of most
underwater images is poor due to the effects of lighting absorption and scattering. In view of these
characteristics of the underwater images, we adopt convolution kernels with larger size and the av-
erage pooling to reduce the impact of local features of the image on the final classification (Boureau
et al., 2010). In the experiment, we find that the best classification results can be obtained by using
convolution kernel sizes of 1× 1, 5× 5 and 7× 7 in the inception module.
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Figure 2: The structure of the UW-Net. After two I-A modules, one branch serves as an auxiliary
classification branch and one branch serves as the backbone of the network. The final model has
two outputs, in which the output of the auxiliary branch is used to compute the loss function.

3.1.2 ATTENTION MODULE

We construct the attention module based on soft attention (Xu et al., 2015), as shown in Fig. 3,
which consists of a trunk branch and a mask branch to simulate the recognition of underwater im-
age by humans beings (Wang et al., 2017; Hu et al., 2018). Inspired by the residual network (He
et al., 2016), the trunk branch takes the output of the previous layer as input directly so that the
basic features of the image can be transmitted to the deep layers of the network, and the gradient
disappearance and the gradient explosion can be remitted. On the other hand, the down-sampling
operation is firstly performed in the mask branch, and then up-sampling by bilinear interpolation is
used at the last step to keep the same size of the feature map with the input. The activation function
of the first and second convolutional layers are Relu (Nair & Hinton, 2010) and Sigmoid (Han &
Moraga, 1995), respectively. The adaptive weight N(x) for a point x of the original features map
P (x), in the range of [0,1], can be learned after the mask branch. The output of the attention module
F (x) can be expressed as:

F (x) = (1 +N (x))× p (x) . (1)

For a N(x) approximating 1, F (x) will be near twice the value of the original feature P (x), which
means that for the features that are valid for the current classification, more attention will be given.
On the contrary, for a N(x) approximating 0, the output of the attention module will approximate
the original feature P (x).

3.2 AUXILIARY CLASSIFICATION BRANCH AND LOSS FUNCTION

In the proposed UW-Net, an auxiliary classification branch is introduced to the output of the second
I-A module to reduce the risk of over-fitting. The convergence curve of the UW-Net is shown in
Fig. 4. It is obvious that adding auxiliary classifier can not only accelerate the convergence, but also
improve the accuracy on the test set.

The loss function J of the UW-Net can be expressed as follows:

J = J0 + J1 + α× L, (2)

where J0 is the cross entropy of the final output of the model and the real label of the image, J1 is
the cross entropy of the output of the model’s auxiliary classification branch and the actual label, α
is the weight attenuation coefficient of the network, and L is the L2 regularization term.

4



Under review as a conference paper at ICLR 2020

Figure 3: The architecture of the attention module.

Figure 4: The accuracy curves of models on the test set.

3.3 THE UW-NET NETWORK

The UW-Net is constructed by two I-A modules proposed above, and the detailed blocks and param-
eter settings are reported in Table 1. Before the first I-A module, the size of the image is reduced to
36× 36, and the channel of the input image is increased to 32 by two convolutional layers and one
pooling operation. After the I-A module, the size of the feature map is reduced and the channel of
the feature map is increased. The final prediction of the model is obtained after an average pooling
(Avgpool) and a fully connected (FC) layer.

4 EXPERIMENTS

In this section, a series of experiments are conducted to demonstrate the performance of the UW-Net
in underwater image classification. Additionally, the effectiveness of the proposed I-A module in
improving the performance of existing inception based networks is investigated. We compare the
UW-Net with several typical image classification models and inception model based networks. The
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Table 1: The network structure of UW-Net.
Type Patch size/stride or remarks Input size

Conv 7× 7/2 299× 299× 3
Conv 3× 3/1 147× 147× 16
Pool 3× 3/2 73× 73× 32
1×I-A module As in figure 2 36× 36× 32
1×I-A module As in figure 2 36× 36× 128
1×Inception As in Section 3.1.1 17× 17× 512
Avgpool 8× 8/1 8× 8× 1024
Dropout 0.5 1× 1× 1024
FC logits 1× 1× 512
Softmaxl classifier 1× 1× 2

models for comparison are re-trained in the same dataset without changing the structure, only the
parameters are optimized.

4.1 BENCHMARK DATASET

To ensure the diversity of underwater images, we collect more than 4,000 underwater images from
ImageNet dataset 1, JAMSTEC dataset 2, underwater rock image dataset 3 and online underwater im-
ages. These images are labeled as underwater images. In addition, more than 5,000 non-underwater
images from the ImageNet including birds, cars, food, airplanes, cats, etc. are selected and labeled
as non-underwater images.

4.2 TRAINING AND ANALYSIS

The proportion of the samples used in training and testing is 70% and 30%, respectively. To reduce
the risk of over-fitting, we augment the data by random clipping and flipping. We use the initializa-
tion method proposed by He et al. (2015) to initialize weights and train the UW-Net by using the
SGD (Stochastic Gradient Descent) (Ketkar, 2014) with a mini-batch size of 32. The weight decay,
momentum and initial learning rate are set to 0.001, 0.9 and 0.001, respectively. The learning rate
is decreased ten times of its original value at 1k and 2k iterations. The training end at 3k iterations.
The loss curve is shown in Fig. 5.

Figure 5: The curve of the classification training loss of the UW-Net.

1[Online]. Available: http://www.image-net.org/.
2[Online]. Available: http://www.fishdb.co.uk/.
3[Online]. Available: https://github.com/kskin/WaterGAN/.
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Table 2: The comparisons with the competing models on underwater image classification.

Network Mult-Adds(Million) Parameters(Million) Test Accuracy
AlexNet 720 60 96.5%
VGG16 15300 138 97.0%
Googlenet 1550 6.8 98.1%
ResNet-50 3860 25.6 97.8%
SE-ResNet-50 3870 28 98.0%
Our model 750 6.6 99.3%

Figure 6: Visualized examples of regional contributions to the final classification. From up to down
are: the output of the fifth layer in Alexnet, the output of the thirteenth layer in VGG16, the output
of the twelfth layer in Googlenet, the output of the seventeenth layer in Resnet-50, the output of the
seventeenth layer in SE-Resnet-50 and the output of the eighth layer in the UW-Net.

4.3 EXPERIMENTAL RESULTS

The UW-Net achieves 100% and 99.3% accuracy on the training and testing datasets, respectively.
We also report the comparisons with the AlexNet, VGG16, InceptionV3, Resnet-50 and SE-Resnet-
50 on the testing dataset in Table 2, and class activation maps (CAMs) (Selvaraju et al., 2017)
produced by these models for underwater image classification are shown in Fig. 6. The darker red
color in the CAMs represent more importance of the regions to the final classification. As shown
in Fig. 6, the interesting areas of the UW-Net locate more in the background areas compared to
the competing models. The data in Table 2 shows that the UW-Net is superior to the competing
models for the task of underwater image classification by fewer computation units and parameters,
and higher accuracy. By adopting the I-A model in the UW-Net, we achieve higher accuracy with a
smaller depth of network. At the same time, the UW-Net requires lower computation than the other
inception based models.
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Table 3: The performance of the I-A modules in other networks.

Network Top-1 err. Top-5 err.
Inception I-A Inception I-A

GoogleNet 18.3% 17.8% 1.2% 1.0%
InceptionV3 13.1% 12.6% 0.0% 0.0%
InceptionV4 11.2% 11.0% 0.0% 0.0%
Inception-ResnetV2 11.0% 10.7% 0.0% 0.0%

4.4 THE PERFORMANCE OF THE I-A MODULE

The I-A module designed in this work can not only be applied in the UW-Net, but also to other
common image classification networks. To further verify the generalization ability of the I-A mod-
ule in boosting the performance of related models, we embed the proposed I-A module with the
max-pooling in the down-sampling of the mask branch into several image classification models in-
cluding GoogleNet, InceptionV3, InceptionV4 and Inception-ResnetV2. One hundred categories
of images are selected from the ILSVRC-2012 dataset, including ships, sharks, dogs, cocks, etc.
Each category contains about 1300 images, and a total number of 130,000 images is included. The
training and testing sets consist of 125,000, and 5000 images respectively. The size of the images is
299× 299. All the networks are tested and tuned on this dataset in the same way. The experimental
results are shown in Table 3. It can be seen that the error rates of Top-1 obtained by substituting the
inception module with the I-A module are significantly decreased. Such a result indicates the gen-
eralization and effectiveness of the proposed I-A module, also gives another evidence that attention
weighted large-scale image features simulate better the visual understanding mechanism in image
classifications.

5 CONCLUSION

A new underwater image classification network UW-Net is proposed in this work, wherein an
inception-attention module is constructed. In this model, we simulate the visual correlation be-
tween understanding images and background areas through I-A modules, which joint the multi-
dimensional inception module with the attention module to realize the multiple weighting of the
output of various scales of features. The 100% accuracy on the training set and 99.3% accuracy on
the testing set of the UW-Net is achieved benefiting from the refinement of the usefulness of multi-
scale features by the I-A module. In the future, we will try to improve the performance of other
underwater image visual analysis models by introducing the proposed I-A module.
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