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Abstract

We introduce the thermodynamic variational objective (TVO) for learning in both
continuous and discrete deep generative models. The TVO arises from a key
connection between variational inference and thermodynamic integration that
results in a tighter lower bound to the log marginal likelihood than the standard
variational evidence lower bound (ELBO) while remaining as broadly applicable.
We provide a computationally efficient gradient estimator for the TVO that applies
to continuous, discrete, and non-reparameterizable distributions and show that the
objective functions used in variational inference, variational autoencoders, wake
sleep, and inference compilation are all special cases of the TVO. We use the
TVO to learn both discrete and continuous deep generative models and empirically
demonstrate state of the art model and inference network learning.

1 Introduction

Unsupervised learning in richly structured deep latent variable models [1, 2] remains challenging.
Fundamental research directions include low-variance gradient estimation for discrete and continuous
latent variable models [3–7], tightening variational bounds in order to obtain better model learning [8–
11], and alleviation of the associated detrimental effects on learning of inference networks [12].

We present the thermodynamic variational objective (TVO), which is based on a key connection we
establish between thermodynamic integration (TI) and amortized variational inference (VI), namely
that by forming a geometric path between the model and inference network, the “instantaneous
ELBO” [13] that appears in VI is equivalent to the first derivative of the potential function that appears
in TI [14, 15]. This allows us to formulate the log evidence as a 1D integration of the instantaneous
ELBO in a unit interval, which we then approximate to form the TVO.

We demonstrate that optimizing the TVO leads to improved learning of both discrete and continuous
latent-variable deep generative models. The gradient estimator we derive for optimizing the TVO has
empirically lower variance than the REINFORCE [16] estimator, and unlike the reparameterization
trick (which is only applicable to a limited family of continuous latent variables), applies to both
continuous and discrete latent variables models.

The TVO is a lower bound to the log evidence which can be made arbitrarily tight. We empirically
show that optimizing the TVO results in better inference networks than optimizing the importance
weighted autoencoder (IWAE) objective [8] for which tightening of the bound is known to make
inference network learning worse [12]. While this problem can be ameliorated by reducing the
variance of the gradient estimator in the case of reparameterizable latent variables [17], resolving it
in the case of non-reparameterizable latent variables currently involves alternating optimization of
model and inference networks [18–20].
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Figure 1: The thermodynamic variational objective (TVO) (center) is a finite sum numerical approxi-
mation to log p✓(x), defined by the thermodynamic variational identity (TVI) (right). The ELBO (left)
is a single partition approximation of the same integral. ⇡� is given in (7)

2 The Thermodynamic Variational Objective

The evidence lower bound (ELBO), used in learning variational autoencoders (VAEs), lower bounds
the log evidence of a generative model p✓(x, z) parameterized by ✓ of a latent variable z and data x.
It can be written as the log evidence minus a Kullback-Leibler (KL) divergence

ELBO(✓,�,x) := log p✓(x)� KL (q�(z|x)||p✓(z|x)) , (1)

where q�(z|x) is an inference network parameterized by �. As illustrated in Figure 1, the TVO
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lower bounds the log evidence by using a Riemann sum approximation to the TVI, a one-dimensional
integral over a scalar � in a unit interval which evaluates to the log model evidence log p✓(x).

The integrand, which is a function of �, is an expectation of the so-called “instantaneous ELBO” [13]
under ⇡�(z), a geometric combination of p✓(x, z) and q�(z|x) which we formally define in §3.
Remarkably, at � = 0, the integrand equals the ELBO. This therefore allows us to view the ELBO
as a single-term left Riemann sum of the TVI. At � = 1, the integrand equals to the evidence upper
bound (EUBO). This sheds a new unifying perspective on the VAE and wake-sleep objectives, which
we explore in detail in §5 and Appendix G.

3 Connecting Thermodynamic Integration and Variational Inference

Suppose there are two unnormalized densities ⇡̃i(z) (i = 0, 1) and corresponding normalizing
constants Zi :=

R
⇡̃i(z)dz, which together define the normalized densities ⇡i(z) := ⇡̃i(z)/Zi. We

can typically evaluate the unnormalized densities but cannot evaluate the normalizing constants.

While calculating the normalizing constants individually is usually intractable, thermodynamic
integration [14, 15] allows us to compute the log of the ratio of the normalizing constants, logZ1/Z0.
To do so, we first form a family of unnormalized densities (or a “path”) parameterized by � 2 [0, 1]
between the two distributions of interest

⇡̃�(z) := ⇡̃1(z)
� ⇡̃0(z)

1�� (3)

with the corresponding normalizing constants and normalized densities

Z� :=

Z
⇡̃�(z)dz, and ⇡�(z) := ⇡̃�(z)/Z� . (4)

Following Neal [15], we will find it useful to define a potential energy function U�(z) := log ⇡̃�(z)

along with its first derivative U 0
�(z) = dU�(z)

d� . We can then estimate the log of the ratio of the
normalizing constants via the identity central to TI, derived in Appendix A,

logZ1 � logZ0 =

Z 1

0
E⇡�

⇥
U 0
�(z)

⇤
d�. (5)
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Our key insight connecting TI and VI is the following. If we set

⇡̃0(z) := q�(z |x) Z0 =

Z
q�(z |x)dz = 1

⇡̃1(z) := p✓(x, z) Z1 =

Z
p✓(x, z)dz = p✓(x)

(6)

this results in a geometric path between the variational distribution q�(z|x) and the model p✓(x, z)

⇡̃�(z) := p✓(x, z)
�q�(z|x)1�� and ⇡�(z) :=

⇡̃�(z)

Z�
, (7)

where the first derivative of the potential log ⇡̃�(z) is equal to the “instantaneous ELBO” [13]

U 0
�(z) = log

p✓(x, z)

q�(z|x)
. (8)

Substituting (8) and Z0 = 1 and Z1 = p✓(x) into (5) results in the thermodynamic variational

identity

log p✓(x) =

Z 1

0
E⇡�


log
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q�(z |x)

�
d�. (9)

This means that log p✓(x) can be expressed as a one-dimensional integral of an expectation of the
instantaneous ELBO under ⇡� from � = 0 to � = 1 (see Figure 1 (right)).

To obtain the thermodynamic variational objective (TVO) defined in (2), we lower bound the integral
in (9) using a left Riemann sum. That this is in fact a lower bound follows from observation that the
integrand is monotonically increasing, as shown in Appendix B. This is a result of our choice of path
in (7), which allows us to show the derivative of the integrand is equal to the variance of U 0

�(z) under
⇡�(z) and is therefore non-negative. For equal spacing of the partitions, where �k = k/K, we arrive
at the TVO in (2), illustrated in Figure 1 (middle). We present a generalized variant with non-equal
spacing in Appendix C.

Maximizing the ELBO(✓,�,x) can be seen as a special case of the TVO, since for � = 0, ⇡�(z) =

q�(z|x), and so the integrand in (9) becomes Eq�(z|x)

h
log p✓(x,z)

q�(z |x)

i
, which is equivalent to the

definition of ELBO in (1). Because the integrand is increasing, we have

ELBO(✓,�,x)  TVO(✓,�,x)  log p✓(x), (10)

which means that the TVO is an alternative to IWAE for tightening the variational bounds. In
Appendix D we show maximizing the TVO is equivalent to minimizing a divergence between the
variational distribution and the true posterior p✓(z |x).
The integrand in (9) is typically estimated by long running Markov chain Monte Carlo chains
computed at different values of ⇡�(z) [21, 22]. Instead, we propose a simple importance sampling
mechanism that allows us to reuse samples across an arbitrary number of discretizations and which is
compatible with gradient-based learning.

4 Optimizing the TVO

We now provide a novel score-function based gradient estimator for the TVO which does not require
the reparameterization trick.

Gradients To use the TVO as a variational objective we must be able to differentiate through terms
of the form r� E⇡�,� [f�(z)], where both ⇡�,�(z) and f�(z) are parameterized by �, and ⇡�,�(z)
contains an intractable normalizing constant. In the TVO, f�(z) is the instantaneous ELBO and
� := {✓,�}, but our method is applicable for generic f�(z) : RM 7! R.

We can compute such terms using the covariance gradient estimator (derived in Appendix E)

r� E⇡�,� [f�(z)] = E⇡�,� [r�f�(z)] + Cov⇡�,� [r� log ⇡̃�,�(z), f�(z)] (11)
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We emphasize that, like REINFORCE, our estimator relies on the log-derivative trick, but crucially un-

like REINFORCE, doesn’t require differentiating through the normalizing constant Z� =
R
⇡̃�,�(z)dz.

We clarify the relationship between our estimator and REINFORCE in Appendix F.

The covariance in (11) has the same dimensionality as � 2 RD because it is between
r� log ⇡̃�,�(z) 2 RD and f�(z) 2 R and is defined as

Cov⇡�,� (a, b) := E⇡�,�

⇥
(a� E⇡�,� [a])(b� E⇡�,� [b])

⇤
. (12)

To estimate this, we first estimate the inner expectations which are then used in estimating the outer
expectation. Thus, estimating the gradient in (11) requires estimating expectations under ⇡� .

Expectations By using q�(z|x) as the proposal distribution in S-sample importance sampling,
we can estimate an expectation of a general function f(z) under any ⇡�(z) by simply raising each
unnormalized importance weight to the power � and normalizing:

E⇡� [f(z)] ⇡
SX

s=1

w�
s f(zs), (13)

where zs ⇠ q�(z|x), w�
s := w�

s /
PS

s0=1 w
�
s0 and ws := p✓(x,zs)

q�(zs|x) . This follows because each
unnormalized importance weight can be expressed as

⇡̃�(x, zs)

q�(zs|x)
=

p✓(x, zs)�q�(zs|x)1��

q�(zs|x)
=

p✓(x, zs)�

q�(zs|x)�
=

✓
p✓(x, zs)

q�(zs|x)

◆�

= w�
s . (14)

Instead of sampling SK times, we can reuse S samples zs ⇠ q�(z|x) across an arbitrary number
of terms, since evaluating the normalized weight w�k

s only requires raising each weight to different
powers of �k before normalizing. Reusing samples in this way is a use of the method known as
“common random numbers” and we include experimental results showing it reduces the variance of
the covariance estimator in Appendix F [23].

The covariance estimator does not require z to be reparameterizable, which means it can be used
in the cases of both non-reparameterizable continuous latent variables and discrete latent variables
(without modifying the model using continuous relaxations [24, 25]).

5 Generalizing Variational Objectives

As previously observed, the left single Riemann approximation of the TVI equals the ELBO, while the
right endpoint (� = 1) is equal to the EUBO. The EUBO is analogous to the ELBO but under the true
posterior and is defined

EUBO(✓,�,x) := Ep✓(z |x)


log

p✓(x, z)

q�(z |x)

�
. (15)

We also have the following identity
EUBO(x, ✓,�) = log p✓(x) + KL (p✓(z|x)||q�(z|x)) (16)

which should be contrasted against (1). We define an upper-bound variant of the TVO using the right
(rather than left) Riemann sum. Setting �k = k/K

TVOU
K(✓,�,x) :=

1

K

"
EUBO(✓,�,x) +

K�1X

k=1

E⇡�k


log

p✓(x, z)

q�(z |x)

�#
� log p(x). (17)

The wake-sleep (WS) [18] and reweighted wake-sleep (RWS) [19] algorithms have traditionally
been viewed as using different objectives during the wake and sleep phase. The endpoints of the
TVI, which the TVO approximates, correspond to the two objectives used in wake-sleep. We can
therefore view WS as alternating between between TVOL

1 and TVOU
1 , i.e. a left and right single term

Riemann approximation to the TVI. We show this algebraically in Appendix G and additionally, show
how the objectives used in variational inference [26], variational autoencoders [1, 2], and inference
compilation [27] are all special cases of TVOL

1 and TVOU
1 . We refer the reader to [20] for a further

discussion of the wake-sleep algorithm.
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Figure 2: Investigation of how number of particles S, number of partitions K, and �1 affect learning
of the generative model. In the first three plots (a-c), we vary S and K for different values of �1 and
observe that while S should be as high as possible, there is an optimal value for K, beyond which
performance begins to degrade. Assuming �1 is well-chosen, we see that as few as K = 2 partitions
can result in good model learning, as seen in the last plot (d).

6 Related Work

Thermodynamic integration was originally developed in physics to calculate the difference in
free energy of two molecular systems [28]. Neal [15] and Gelman and Meng [14] then intro-
duced TI into the statistics community to calculate the ratios of normalizing constants of gen-
eral probability models. TI is now commonly used in phylogenetics to calculate the Bayes
factor B = p(x|M1)/p(x|M0), where M0,M1 are two models specifying (for instance) tree
topologies and branch lengths [22, 29, 30]. We took inspiration from Fan et al. [31] who re-
placed the “power posterior” p(✓|x,M,�) = p(x|✓,M)�p(✓,M)/Z� of Xie et al. [29] with
p(✓|x,M,�) = [p(x |✓,M)p(✓|M)]� [p0(✓|M)]1��/Z� , where p0(✓|M) is a tractable reference
distribution chosen to facilitate sampling. That the integrand in (9) is strictly increasing was observed
by Lartillot and Philippe [22].

We refer the reader to Titsias and Ruiz [32] for a summary of the numerous advances in variational
methods over recent years. The method most similar to our own was proposed by Bornschein et al.
[33], who introduced another way of improving deep generative modeling through geometrically
interpolating between distributions and using importance sampling to estimate gradients. Unlike
the TVO, they define a lower bound on the marginal likelihood of a modified model defined as
(p✓(x, z)q�(z|x)q(x))1/2/Z where q(x) is an auxiliary distribution.

Grosse et al. [34] studied annealed importance sampling (AIS), a related technique that estimates
partition functions using a sequence of intermediate distributions to form a product of ratios of
importance weights. They observe the geometric path taken in AIS is equivalent to minimizing a
weighted sum of KL divergences, and use this insight to motivate an alternative path. To the best of
our knowledge, our work is the first to explicitly connect TI and VI.

7 Experiments

7.1 Discrete Deep Generative Models

We use the TVO to learn the parameters of a deep generative model with discrete latent variables.1
We use the binarized MNIST dataset with the standard train/validation/test split of 50k/10k/10k [35].
We train a sigmoid belief network, described in detail in Appendix I, using the TVO with the Adam
optimizer. In the first set of experiments we investigate the effect of the discretization �0:K , number
of partitions K and number of particles S. We then compare against variational inference for Monte
Carlo objectives (VIMCO) and RWS (with the wake-� objective) state-of-the-art IWAE-based methods
for learning discrete latent variable models [20]. All figures have been smoothed for clarity.

The effect of S, K, and � locations We expect that increasing the number of partitions K makes the
Riemann sum approximate the integral over � more tightly. However, with each addition term, we
add noise due to the use of importance sampling to estimate the expectation E⇡� [log p/q]. Importance
sampling estimates of points on the curve further to the right are likely to be more biased because ⇡�

gets further from q as we increase �. We found the combination of these two effects means that there

1Code to reproduce all experiments is available at: https://github.com/vmasrani/tvo.
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Figure 3: Comparisons with baselines on a held out test set. (Left) Learning curves for different
methods. For TVO outperforms other methods both in terms of speed of convergence and the learned
model for S < 50. At S = 50 VIMCO achieves a higher test log evidence but takes longer to converge
than the TVO. (Right) KL divergence between current q and p (which measures how well q “tracks”
p) is lowest for TVO.

is a “sweet spot,” or an optimal number of partitions beyond which adding more partitions becomes
detrimental to performance.

We have empirically observed that the curve in Figure 1 is often rising sharply from � = 0 until a
point of maximum curvature �⇤, after which it is almost flat until � = 1, as seen in Figure 4. We
hypothesized that if �1 is located far before �⇤ (the point of maximum curvature), a large number
of additional partitions would be needed to capture additional area, while if �1 is located after �⇤,
additional partitions would simply incur a high cost of bias without significantly tightening the
bound. To investigate this, we choose small (10�10), medium (0.1) and large (0.9) values of �1, and
logarithmically space the remaining �2:K between �1 and 1. For each value of �1 we train the discrete
generative model for K 2 {2, 5, 10, . . . , 50} and S 2 {2, 5, 10, 50}, and show the test log evidence
at the last iteration of each trial, approximated by evaluating the IWAE loss with 5000 samples.

β 10

Eπβ

h

log pθ(x;z)
qφ(zjx)

i

β∗

tvo(θ;φ;x)

Figure 4: The location of
�⇤, the point of maximum
curvature.

Our hypothesis is corroborated in Figure 2, where we observe in Fig-
ure 2a that for �1 = 10�10 a large number of partitions are needed
to approximate the integral. In Figure 2b we increase �1 to 10�1 and
observe only a few partitions are needed to improve performance, af-
ter which adding additional partitions becomes detrimental to model
learning.

From Figure 2c we can see that if �1 is chosen to be well beyond �⇤,
the Riemann sum cannot recover the “lost” area even if the number of
partitions is increased. That the performance does not degrade in this
case is due to the fact that for sufficiently high �k, the curve in Figure 1
is flat and therefore ⇡�k ⇡ ⇡�k+1 ⇡ p✓(z |x). We also observe that in-
creasing number of samples S—which decreases importance sampling
bias per partition—improves performance in all cases.

In our second experiment, shown in the Figure 2d, we fix K = 2 and
investigate the quality of the learned generative model for different �1, This plot clearly shows �⇤ is
somewhere near 0.3, as model learning improves as �1 approaches this point then begins to degrade.

Given these results, we recommend using as many particles S as possible and performing a hyper-
parameter search over �1 (with K = 2) when using the TVO objective. We leave finding the optimal
placement of discretization points to future work.

Performance In Figure 3 (left), we compare the TVO against VIMCO and RWS with the wake-�
objective, the state-of-the-art IWAE-based methods for learning discrete latent variable models [20].
For S < 50, the TVO outperforms both methods in terms of speed of convergence and the final test
log evidence log p✓(x), estimated using 5000 IWAE particles as before. At S = 50 VIMCO achieves a
higher test log evidence but converges more slowly.
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Figure 5: Computational and gradient estimator efficiency. (Left) Time and memory efficiency of the
TVO with increasing number of partitions vs baselines, measured for 100 iterations of optimization.
Increasing the number of partitions is much cheaper than increasing the number of particles. (Right)

Standard deviation of the gradient estimator for each objective. TVO is lowest variance, VIMCO is
highest variance, RWS is in the middle.

We also investigate the quality of the learned inference network by plotting the KL divergence
(averaged over the test set) between the current q and current p as training progresses (Figure 3
(right)). This indicates how well q “tracks” p. This is estimated as log evidence minus ELBO where
the former is estimated as before and the latter is estimated using 5000 Monte Carlo samples. The KL
is lowest for TVO.

Somewhat surprisingly, for all methods, increasing number of particles makes the KL worse. We
speculate that this is due to the “tighter bounds” effect of Rainforth et al. [12], who showed that
increasing the number of samples can positively affect model learning but adversely affect inference
network learning, thereby increasing the KL between the two.

Efficiency Since we use K = 2 partitions for the same number of particles S, the time and memory
complexity of TVO is double that of other methods. While this is true, in both time and memory cases,
the constant factor for increasing S is much higher than for increasing K. As shown in Figure 5 (left),
it is virtually free to increase number of partitions. This is because for each new particle, we must
additionally sample from the inference network and score the sample under both p and q to obtain
a weight. On the other hand, we can reuse the S samples and corresponding weights in estimating
values for the K + 1 terms in the Riemann sum. Thus, the region of the the computation graph that
is dependent on K is after the expensive sampling and scoring, and only involves performing basic
operations on additional matrices of size S ⇥K.

Variance In Figure 5 (right), we plot the standard deviation of the gradient estimator for each method,
where we compute the standard deviation for the dth element of the gradient estimated over 10
samples and take the average across all D.

The gradient estimator of the TVO has lower variance than both VIMCO, which uses REINFORCE
with a control variate as a gradient estimator and RWS which can calculate the gradient without
reparameterizing or using the log-derivative trick. At S = 5, RWS has lower gradient variance but its
performance is worse in terms of both model and inference learning.

7.2 Continuous Deep Generative Models

Using the binarized MNIST dataset and experimental design described above, we also evaluated our
method on a deep generative model with continuous latent variables. The model is described in detail
in Appendix I. For each S 2 {5, 10, 50} we sweep over K 2 {2, ..., 6} and 20 �1 values linearly
spaced between 10�2 and 0.9. We optimize the objectives using the Adam optimizer with default
parameters.

Performance In Figure 6 (left), we train the model using the TVO and compare against the same
model trained using the single sample VAE objective and multisample IWAE objective. The TVO
outperforms the VAE and performs competitively with IWAE at 50 samples, despite not using the
reparameterization trick. IWAE is the top performing objective in all cases. As in the discrete case,

7



Figure 6: Learning curves for learning continuous deep generative models using different objectives.
(Left) Despite not using the reparameterization trick, TVO outperforms VAEs and is competitive with
IWAE at 50 samples. For all S, IWAE > TVO > VAE. (Right) Standard deviation of the gradient
estimator for each objective. The TVO has lower variance than IWAE but higher than VAE.

increasing the number of particles S improves model learning for all methods, but the improvement
is most significant for the TVO. Interestingly VAE performance actually decreases when the number
of samples increases from 10 to 50. A similar effect was noticed by Burda et al. [8] on the omniglot
dataset.

Variance In Figure 6 (right), we plot the standard deviation of each method’s gradient estimator. The
standard deviation of the TVO estimator falls squarely between VAE (best) and IWAE (worst). The
variance of each method improves as the number of samples increases, and as in the discrete model,
the improvement is most significant in the case of TVO. Unlike in the discrete case, the variance
does not decrease as the optimization proceeds, but plateaus early and then gradually increases. In
Appendix F we include additional experiments to evaluate the properties of the covariance gradient
estimator when used on the ELBO.

For both IWAE and the TVO, increasing the number of samples leads to decreased gradient variance
and improved model learning. However, IWAE has the best performance but the highest variance
across the three models. These results lend support to the conclusions of Rainforth et al. [12] who
observe that the variance of a gradient estimator “is not always a good barometer for the effectiveness
of a gradient estimation scheme.”

8 Conclusions

The thermodynamic variational objective represents a new way to tighten evidence bounds and
is based on a tight connection between variational inference and thermodynamic integration. We
demonstrated that optimizing the TVO can have a positive impact on the learning of discrete deep
generative models and can perform as well as using the reparameterization trick to learn continuous
deep generative models.

The weakness of our method lies in choosing the discretization points. This does, however, point
out opportunities for future work wherein we adaptively select optimal positions of the �1:K points,
perhaps using techniques from the Bayesian numerical quadrature literature [36–38].

The approximate path integration perspective provided by our development of the TVO also sheds
light on the connection between otherwise disparate deep generative model learning techniques. In
particular, the TVO integration perspective points to ways to improve wake-sleep via tightening the
EUBO using similar integral upper-bounding techniques. Further experimentation is warranted to
explore how TVO insights can be applied to all special cases of the TVO including non-amortized
variational inference and to the use of the TVO as a compliment to annealing importance sampling for
final model evidence evaluation.
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