
Under review as a conference paper at ICLR 2020

IDENTIFYING WEIGHTS AND ARCHITECTURES OF
UNKNOWN RELU NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The output of a neural network depends on its parameters in a highly nonlinear
way, and it is widely assumed that a network’s parameters cannot be identified
from its outputs. Here, we show that in many cases it is possible to reconstruct
the architecture, weights, and biases of a deep ReLU network given the ability
to query the network. ReLU networks are piecewise linear and the boundaries
between pieces correspond to inputs for which one of the ReLUs switches between
inactive and active states. Thus, first-layer ReLUs can be identified (up to sign
and scaling) based on the orientation of their associated hyperplanes. Later-layer
ReLU boundaries bend when they cross earlier-layer boundaries and the extent of
bending reveals the weights between them. Our algorithm uses this to identify the
units in the network and weights connecting them (up to isomorphism). The fact
that considerable parts of deep networks can be identified from their outputs has
implications for security, neuroscience, and our understanding of neural networks.

1 INTRODUCTION

The behavior of deep neural networks is as complex as it is powerful. The relation of individual pa-
rameters to the network’s output is highly nonlinear and is generally unclear to an external observer.
Consequently, it has been widely supposed in the field that it is impossible to recover the parameters
of a network merely by observing its output on different inputs.

Beyond informing our understanding of deep learning, going from function to parameters could have
serious implications for security and privacy. In many deployed deep learning systems, the output is
freely available, but the network used to generate that output is not disclosed. The ability to uncover
a confidential network not only would make it available for public use but could even expose data
used to train the network if such data could be reconstructed from the network’s weights.

This topic also has implications for the study of biological neural networks. Experimental neurosci-
entists can record some variables within the brain (e.g. the output of a complex cell in primary visual
cortex) but not others (e.g. the pre-synaptic simple cells), and many biological neurons appear to be
well modeled as the ReLU of a linear combination of their inputs (Chance et al., 2002). It would
be highly useful if we could reverse engineer the internal components of a neural circuit based on
recordings of the output and our choice of input stimuli.

In this work, we show that it is, in fact, possible in many cases to recover the structure and weights
of an unknown ReLU network by querying it. Our method leverages the fact that a ReLU network is
piecewise linear and transitions between linear pieces exactly when one of the ReLUs of the network
transitions from its inactive to its active state. We attempt to identify the piecewise linear surfaces
in input space where individual neurons transition from inactive to active. For neurons in the first
layer, such boundaries are hyperplanes, for which the equations determine the weights and biases of
the first layer (up to sign and scaling). For neurons in subsequent layers, the boundaries are “bent
hyperplanes” that bend where they intersect boundaries associated with earlier layers. Measuring
these intersections allows us to recover the weights between the corresponding neurons.

Our major contributions are:

• We identify how the architecture, weights, and biases of a network can be recovered from
the arrangement of boundaries between linear regions in the network.

1

Under review as a conference paper at ICLR 2020

• We implement this procedure and demonstrate its success in recovering trained and un-
trained ReLU networks.
• We show that this algorithm “degrades gracefully,” providing partial weights even when full

weights are not recovered, and show that these situations can indicate intrinsic ambiguities
in the network.

Figure 1: Left: Architecture of a ReLU network N (x) : R2 → R with two hidden layers, each
of width 5. Center: Graph of the piecewise linear function N (x) as a function of the two input
variables. Right: Boundaries between linear regions of the network N , essentially a “flattened”
version of the center image. Boundaries corresponding to neurons from the first layer are shown
in blue, from the second layer in red. Green shading indicates the gradient ∂N/∂x1 along input
dimension 1; note that the gradient is constant within each region since N (x) is piecewise linear.

2 RELATED WORK

Various works within the deep learning literature have considered the problem of learning a network
given its output on inputs drawn (non-adaptively) from a given distribution. It is known that this
problem is in general hard (Goel et al., 2017), though positive results have been found for certain
specific choices of distribution in the case that the network has only one or two layers (Ge et al.,
2019; Goel & Klivans, 2017). By contrast, we consider the problem of learning about a network of
arbitrary depth, given the ability to issue queries at specified input points. In this work, we leverage
the theory of linear regions within a ReLU network, an area that has been studied e.g. by Telgarsky
(2015); Raghu et al. (2017); Hanin & Rolnick (2019a). Most recently Hanin & Rolnick (2019b)
considered the boundaries between linear regions as arrangements of “bent hyperplanes”. Milli
et al. (2019); Jagielski et al. (2019) show the effectiveness of this strategy for networks with one
hidden layer. For inference of other properties of unknown networks, see e.g. Oh et al. (2019).

Neuroscientists have long considered similar problems with biological neural networks, albeit armed
with prior knowledge about network structure. For example, it is believed that complex cells in
the primary visual cortex, which are often seen as translation-invariant edge detectors, obtain their
invariance through what is effectively a two-layer neural network (Kording et al., 2004). A first layer
is believed to extract edges, while a second layer essentially implements maxpooling. Heggelund
(1981) perform physical experiments akin to our approach of identifying one ReLU at a time, by
applying inputs that move individual neurons above their critical threshold one by one. Being able
to solve such problems more generically would be useful for a range of neuroscience applications.

3 PRELIMINARIES

3.1 DEFINITIONS

In general, we will consider fully connected, feed-forward neural networks (multilayer perceptrons)
with ReLU activations. Each such network N defines a function N (x) from input space Rnin to
output space Rnout . We denote the layer widths of the network by nin (input layer), n1, n2, . . . , nd,
nout (output layer). We use Wk to denote the weight matrix from layer (k − 1) to layer k, where
layer 0 is the input; and bk denotes the bias vector for layer k. Given a neuron z in the network, we
use z(x) to denote its preactivation for input x ∈ Rnin . Thus, for the jth neuron in layer k, we have

zkj (x) =

nk−1∑
i=1

Wk
ij ReLU(zk−1i (x) + bki).

2

Under review as a conference paper at ICLR 2020

For each neuron z, we will use Bz to denote the set of x for which z(x) = 0. In general1, Bz will
be an (nin−1)-dimensional piecewise linear surface in Rnin (see Figure 1, in which input dimension
is 2 and the Bz are simply lines). We call Bz the boundary associated with neuron z, and we say
that B =

⋃
Bz is the boundary of the overall network. We refer to the connected components of

Rnin \B as regions. Throughout this paper, we will make the Linear Regions Assumption: The set of
regions is the set of linear pieces of the piecewise linear function N (x). While this assumption has
tacitly been made in the prior literature, it is noted in Hanin & Rolnick (2019b) that there are cases
where it does not hold – for example, if an entire layer of the network is zeroed out for some inputs.

3.2 ISOMORPHISMS OF NETWORKS

Before showing how to infer the parameters of a neural network, we must consider to what extent
these parameters can be inferred unambiguously. Given a network N , there are a number of other
networks N ′ that define exactly the same function from input space to output space. We say that
such networks are isomorphic to N . For multilayer perceptrons with ReLU activation, we consider
the following network isomorphisms:

Permutation. The order of neurons in each layer of a network N does not affect the underlying
function. Formally, let pk,σ(N) be the network obtained fromN by permuting layer k according to
σ (along with the corresponding weight vectors and biases). Then, pk,σ(N) is isomorphic to N for
every layer k and permutation σ.

Scaling. Due to the ReLU’s equivariance under multiplication, it is possible to scale the incoming
weights and biases of any neuron, while inversely scaling the outgoing weights, leaving the overall
function unchanged. Formally, for z the ith neuron in layer k and c any positive constant, let sz,c(N)

be the network obtained from N by replacing Wk
·i, b

k
i , and Wk+1 by cWk

·i, cb
k
i , and (1/c)Wk+1

i· ,
respectively. It is simple to prove that sz,c(N) is isomorphic to N (see Appendix A).

Thus, we can hope to recover a network only up to layer-wise permutation and neuron-wise scaling.
Formally, pi,σ(N) and sz,c(N) are generators for a group of isomorphisms of N . (As we shall see
in §5, some networks also possess additional isomorphisms.)

4 THE ALGORITHM

Figure 2: Schematic of our algorithms for identifying the first layer of N and the additional layers.

4.1 INTUITION

Consider a network N and neuron z ∈ N , so that Bz is the boundary associated with neuron z.
Recall that Bz is piecewise linear. We say that Bz bends at a point if Bz is nonlinear at that point
(that is, if the point lies on the boundary of several regions). As observed in Hanin & Rolnick
(2019b), Bz can bend only at points where it intersects boundaries Bz′ for z′ in an earlier layer of

1More precisely, this holds for all but a measure zero set of networks, and any network for which this is not
true may simply be perturbed slightly.

3

Under review as a conference paper at ICLR 2020

the network. In general, the converse also holds; Bz bends wherever it intersects such a boundary
Bz′ (see Appendix A). Then, for any two boundaries Bz and Bz′ , one of the following must hold:
Bz bends at their intersection (in which case z occurs in a deeper layer of the network), Bz′ bends
(in which case z′ occurs in a deeper layer), or neither bends (in which case z and z′ occur in the same
layer). It is not possible for both Bz and Bz′ to bend at their intersection – unless that intersection is
also contained in another boundary, which is vanishingly unlikely in general. Thus, the architecture
of the network can be determined by evaluating the boundaries Bz and where they bend in relation
to one another.

Moving beyond architecture, the weights and biases of the network can also be determined from the
boundaries, one layer at a time. Boundaries for neurons in the first layer do not bend and are simply
hyperplanes; the equations of these hyperplanes expose the weights from the input to the first layer
(up to permutation, scaling, and sign). For each subsequent layer, the weight between neurons z and
z′ can be determined by calculating how Bz′ bends when it crosses Bz . The details of our algorithm
below are intended to make these intuitions concrete and perform efficiently even when the input
space is high-dimensional.

Algorithm 1 The first layer
Initialize P1 = P2 = S1 = {}
for t = 1, . . . , L do

Sample line segment `
P1 ← P1 ∪ PointsOnLine(`)

end for
for p ∈ P1 do

H = InferHyperplane(p)
if TestHyperplane(H) then

S1 ← S1 ∪ GetParams(H)
else P2 ← P2 ∪ {p}
end if

end for
return Parameters S1,

unused sample points P2

Algorithm 2 Additional layers
Input Pk and S1, . . . , Sk−1
Initialize Sk = {}
for p1 ∈ Pk−1 on boundary Bz do

Initialize Az = {p1}, Lz = Hz = {}
while Lz 6⊇ Layer k − 1 do

Pick pi ∈ A and v
p′, Bz′ = ClosestBoundary(pi,v)
if p′ on boundary then

Az ← Az ∪ {p′ + ε}
Lz ← Lz ∪ {z′}
Hz ← Hz ∪ {InferHyperplane(pi)}

else Pk ← Pk ∪ {p1}; break
end if

end while
if Lz ⊇ Layer k − 1 then Sk ← GetParams(Tz)
end if

end for
return Parameters Sk, unused sample points Pk+1

4.2 THE FIRST LAYER

We begin by identifying the first layer of the network N , for which we must infer the number of
neurons, the weight matrix W1, and the bias vector b1. As noted above, for each z = z1i in the first
layer, the boundary Bz is a hyperplane with equation W1

·ix+ b1
i = 0. For each neuron z in a later

layer of the network, the boundaryBz will, in general, bend and not be a (complete) hyperplane (see
Appendix A). We may therefore find the number of neurons in layer 1 by counting the hyperplanes
contained in the network’s boundary B, and we can infer weights and biases by determining the
equations of these hyperplanes.

Boundary points along a line. Our algorithm is based upon the identification of points on the
boundary B. One of our core algorithmic primitives is a subroutine PointsOnLine that takes
as input a line segment ` ⊂ Rnin and approximates the set ` ∩ B of boundary points along `. The
algorithm proceeds by leveraging the fact that boundary points subdivide ` into regions within which
N (x) is linear. We maintain a list of points in order along ` (initialized to the endpoints and midpoint
of `) and iteratively perform the following operation: For each three consecutive points on our list,
x1,x2,x3, we determine if the vectors (N (x2)−N (x1))/||x2−x1||2 and (N (x3)−N (x2))/||x3−
x2||2 are equal (to within computation error) – if so, we remove the point x2 from our list, otherwise
we add the points (x1 + 2x2)/3 and (x3 + 2x2)/3 to our list.2 The points in the list converge by
binary search to the set of discontinuities of the gradient ∂N (x)/∂x, which are our desired boundary
points. Note that PointsOnLine is where we make use of our ability to query the network.

2These weighted averages speed up the search algorithm by biasing it towards points closer towards the
center of the segment, which is where we expect the most intersections given our choice of segments.

4

Under review as a conference paper at ICLR 2020

Sampling boundary points. In order to identify the boundaries Bz for z in layer 1, we begin by
identifying a set of boundary points with at least one on each Bz . A randomly chosen line segment
through input space will intersect some of the Bz – indeed, if it is long enough, it will intersect any
fixed hyperplane with probability 1. We sample line segments ` in Rnin and run PointsOnLine
on each. Many sampling distributions are possible, but in our implementation we choose to sample
segments of fixed (long) length, tangent at their midpoints to a sphere of fixed (large) radius. This
ensures that each of our sample lines remains far from the origin, where boundaries are in closer
proximity and therefore more easily confused with one another (this will become useful in the next
step). Let P1 be the overall set of boundary points identified on our sample line segments.

Inferring hyperplanes. We now proceed to fit a hyperplane to each of the boundary points we have
just identified. For each p ∈ P1, there is a neuron z such that p lies on Bz . The boundary Bz is
piecewise linear, with nonlinearities only along other boundaries, and with probability 1, p does not
lie on a boundary besides Bz . Therefore, within a small enough neighborhood of p, Bz is given by
a hyperplane, which we call the local hyperplane at p. If z is in layer 1, then Bz equals the local
hyperplane. The subroutine InferHyperplane takes as input a point p on a boundary Bz and
approximates the local hyperplane within which p lies. This algorithm proceeds by sampling many
small line segments around p, running PointsOnLine to find their points of intersection withBz ,
and performing a linear regression to find the equation of the hyperplane containing these points.

Testing hyperplanes. Not all of the hyperplanes we have identified are actually boundaries for
neurons in layer 1, so we need to test which hyperplanes are contained in B in their entirety, and
which are the local hyperplanes of boundaries that bend. The subroutine TestHyperplane takes
as input a point p and a hyperplane H containing that point, and determines whether the entire
hyperplane H is contained in the boundary B of the network. This algorithm proceeds by sampling
points within H that lie far from p and applying PointsOnLine to a short line segment around
each such point to check whether these points all lie on B. Applying TestHyperplane to those
hyperplanes inferred in the preceding step allows us to determine those Bz for which z is in layer 1.

From hyperplanes to parameters. Finally, we identify the first layer of N from the equations of
hyperplanes contained in B. The number of neurons in layer 1 is given simply by the number of
distinct Bz which are hyperplanes. As we have observed, for z = z1i in layer 1, the hyperplane Bz
is given by W1

·ix+ b1
i = 0. We can thus determine W1

·i and b1
i up to multiplication by a constant.

However, we have already observed that scaling W1
·i and b1

i by a positive constant (while inversely
scaling W2

i·) is a network isomorphism (§3.2). Therefore, we need only determine the true sign of
the multiplicative constant, corresponding to determining which side of the hyperplane is zeroed out
by the ReLU. This determination of sign will be performed below in §4.3.

Sample complexity. We expect the number of queries necessary to obtain weights and biases (up to
sign) for the first layer should grow as O(nin(

∑
i ni) log n1), which for constant-width networks is

only slightly above the number of parameters being inferred. Assuming that biases in the network
are bounded above, each sufficiently long line has at least a constant probability of hitting a given
hyperplane, suggesting that log n1 lines are required according to a coupon collector-style argument.
Hanin & Rolnick (2019a) show that under natural assumptions, the number of boundary points
intersecting a given line through input space grows linearly in the total number of neurons in the
network. Finally, each boundary point on a line requires O(nin) queries in order to fit a hyperplane.

4.3 ADDITIONAL LAYERS

We now assume that the weights W1, . . . ,Wk−1 and biases b1, . . . ,bk−1 have already been deter-
mined within the network N , with the exception of the sign choice for weights and biases at each
neuron in layer k− 1. We now show how it is possible to determine the weights Wk and biases bk,
along with the correct signs for Wk−1 and bk−1.

Closest boundary along a line. In this part of our algorithm, we will need the ability to move
along a boundary to its intersection with another boundary. For this purpose, the subroutine
ClosestBoundary will be useful. It takes as input a point p, a vector v and the network pa-
rameters as determined up to layer k − 1, and outputs the smallest c > 0 such that q = p+ cv lies
on Bz for some z in layer at most k − 1. In order to compute c, we consider the region R within
which p lies, which is associated with a certain pattern of active and inactive ReLUs. For each
boundary Bz , we can calculate the hyperplane equation which would define Bz were it to intersect
R, due to the fixed pattern of active and inactive neurons withinR, and we can calculate the distance

5

Under review as a conference paper at ICLR 2020

from p to this hyperplane. While not every boundary Bz intersects R, the closest boundary does,
allowing us to find the desired c.

Unused boundary points. In order to identify the boundaries Bz for z in layer k, we wish to
identify a set of boundary points with at least one on each such boundary. However, in previous
steps of our algorithm, a set Pk−1 of boundary points was created, of which some were used in
ascertaining the parameters of earlier layers. We now consider the subset Pk ⊂ Pk−1 of points that
were not found to belong to Bz , for z in layers 1 through k− 1. These points have already had their
local hyperplanes determined.

Exploring boundary intersections. Consider a point p1 ∈ Pk such that p1 ∈ Bz . Note that Bz
will, in general, have nonlinearities where it intersects each Bz′ for which z′ lies in an earlier layer
than z. We explore these intersections, and in particular attempt to find a point ofBz ∩Bz′ for every
z′ in layer k − 1. Given the local hyperplane H at p1, we pick a direction v along H and apply
ClosestBoundary to calculate the closest point of intersection p′ with Bz′ for all z′ already
identified in the network. (Below we discuss how best to pick v.) Note that if z is in layer k, then
p′ must be on Bz as well as Bz′ , while if z is in a later layer of the network, then there may exist
unidentified neurons in layers below z and therefore Bz may bend before meeting Bz′ . We check if
p′ lies on Bz by applying PointsOnLine, and if so apply InferHyperplane to calculate the
local hyperplane of Bz on the other side of Bz′ from p1. We select a representative point p2 on this
local hyperplane. We repeat the process of exploration from the points p1,p2, . . . until one of the
following occurs: (i) a point of Bz ∩Bz′ has been identified for every z′ in layer k− 1 (this may be
impossible; see §5), (ii) z is determined to be in a layer deeper than k (as a result of p′ not lying on
Bz), or (iii) a maximum number of iterations has been reached.

How to explore. An important step in our algorithm is exploring points of Bz that lie on other
boundaries. Given a set of points Az = {p1,p2, . . . ,pm} on Bz , we briefly consider sev-
eral methods for picking a point pi and direction v along the local hyperplane at pi to apply
ClosestBoundary. One approach is to pick a random point pi from those already identified
and a random direction v; this has the advantage of simplicity. However, it is somewhat faster to
consider for which z′ the intersectionBz∩Bz′ has not yet been identified and attempt specifically to
find points on these intersections. One approach for this is to pick a missing z′ and identify for which
pi the boundary Bz′ lies on the boundary of the region containing pi and solve a linear program to
find v. Another approach is to pick a missing z′ and a point pi, calculate the hyperplane H which
would describeBz′ under the activation pattern of pi, and choose v along the local hyperplane to pi
such that the distance toH is minimized. This is the approach which we take in our implementation,
though more sophisticated approaches may exist and present an interesting avenue for further work.

From boundaries to parameters. We now identify layer k ofN , along with the sign of the param-
eters of layer k−1, by measuring the extent to which hyperplanes bend at their intersection. We are,
in addition, able to identify the correct signs at layer k − 1 by solving an overconstrained system of
constraints capturing the influence of neurons in layer k− 1 on different regions of input space. The
following theorem formalizes the inductive step that allows us to go from what we know at layer
k − 1 (weights and biases, up to scaling and sign) to the equivalent set of information for layer k,
plus filling in the signs for layer k − 1. The proof is given in Appendix B.
Theorem. The following holds true for deep multi-layer perceptronsN satisfying the Linear Region
Assumption (§3.1), excluding a set of networks with measure zero:

Suppose that the weights and biases ofN are known up through layer k− 1, with the exception that
for each neuron in layer k − 1, the sign of the incoming weights and the bias is unknown. Suppose
also that for each z in layer k, there exists an ordered set of points Az = {p1,p2, . . . ,pm} such
that: (i) Each point lies on the boundary of Bz , and in (the interior of) a distinct region with respect
to the earlier-layer boundaries already known; (ii) each point (except for p1) has a precursor in an
adjacent region; (iii) for each such pair of points, the local hyperplanes of Bz are known, as is the
boundaryBz′ dividing them (z′ in an earlier layer); (iv) the set of such z′ includes all of layer k−1.

Then, it is possible to recover the weights and biases for layer k, with the exception that for each
neuron, the sign of the incoming weights and the bias is unknown. It is also possible to recover the
sign for every neuron in layer k − 1.

Note that even when assumption (iv) of the Theorem is violated, the algorithm recovers the weights
corresponding to whichever boundaries are successfully crossed (as we verify empirically in §6).

6

Under review as a conference paper at ICLR 2020

5 DISCUSSION

We here explore some reasons why our algorithm may fail, motivate our recursive approach, and
discuss the potential for generalizations to different architectures.

Non-intersecting boundaries. It is possible that for some neurons z and z′ in consecutive layers,
there is no point of intersection between the boundaries Bz and Bz′ (or that this intersection is very
small), making it impossible to infer the weight between z and z′ by our algorithm. Some such cases
represent an ambiguity in the underlying network – an additional isomorphism to those described
in §3.2. Namely, Bz ∩ Bz′ is empty if one of the following cases holds: (1) whenever z is active,
z′ is inactive; (2) whenever z is active, z′ is active; (3) whenever z is inactive, z′ is inactive; or
(4) whenever z is inactive, z′ is active. In case 1, observe that a slight perturbation to the weight
w between z and z′ has no effect upon the network’s output; thus w is not uniquely determined.
Cases 2-4 present a more complicated picture; depending on the network, there may or may not be
additional isomorphisms.

Boundary topology. For simplicity in our algorithm, we have not considered the relatively rare
cases where boundaries Bz are disconnected or bounded. If Bz is disconnected, then it may not be
possible to find a connected path along it that intersects all boundaries arising from the preceding
layer. In this case, it is simple to infer that two independently identified pieces of the boundary
belong to the same neuron to infer the full weight vector. Next, if Bz is bounded for some z, then
it is a closed (d − 1)-dimensional surface within d-dimensional input space3. While our algorithm
requires no modification in this case, bounded Bz may be more difficult to find by intersection with
randomly chosen lines, and a more principled sampling method may be helpful.

Our recursive approach. Our approach proceeds layer by layer, leveraging the fact that each
boundary bends only those for those boundaries corresponding to earlier neurons in the network.
Our approach in the first layer is, however, distinct from (and simpler than) the algorithm for sub-
sequent layers. One might wonder why, once the first k − 1 layers have been identified, it is not
possibly simply to apply our first-layer algorithm to the nk−1-dimensional “input space” arising
from activations of layer k − 1. Unfortunately, this is not possible in general, as this would require
the ability to evaluate layer k for arbitrary settings of layer k− 1. ReLU networks are hard to invert,
and therefore it is unclear how one could manufacture an input for a specified layer k− 1 activation,
even while knowing the parameters for the first k − 1 layers.

Other architectures. While we have expressed our algorithm in terms of multilayer perceptrons
with ReLU activation, it also extends to various other architectures of neural network. Other piece-
wise linear activation functions admit similar algorithms. For a network with convolutional layers,
it is possible to use the same approach to infer the weights between neurons, with two caveats: (i)
As we have stated it, the algorithm does not account for weight-sharing – the number of “neurons”
in each layer is thus dependent on the input size, and is very large for reasonably sized images. (ii)
Pooling layers do affect the partition into activation regions, and indeed introduce new discontinu-
ities into the gradient; our algorithm therefore does not apply. For skip connections as in ResNets
(He et al., 2016), our algorithm holds with slight modification, which we defer until future work.

6 EXPERIMENTS

We verified the success of our algorithm on both untrained and trained networks. In keeping with
literature on ReLU network initialization (He et al., 2015; Hanin & Rolnick, 2018), networks were
initialized using i.i.d. normal weights with variance 2/fan-in and i.i.d. normal biases with unit vari-
ance. We trained networks on either the MNIST dataset or a memorization task of 1000 “datapoints”
of dimension 10 with coordinates drawn i.i.d. from a unit Gaussian and given arbitrary binary labels.
Training was performed using the Adam optimizer and a cross-entropy loss applied to the softmax of
the final layer, over 20 epochs for MNIST and 1000 epochs for the memorization task. The trained
networks (when sufficiently large) were able to attain near-perfect accuracy. We observed that both
the first-layer algorithm and additional-layer algorithm identified weights and biases to within ex-
tremely high accuracy (see Figures 3 and 4). Even in cases where, for the additional-layer algorithm,
a small fraction of neurons were not identified (see §5), the algorithm was able to correctly predict
the remaining parameters.

3For 2D input, such Bz must be topological circles, but for higher dimensions, it is conceivable for them to
be more complicated surfaces, such as toroidal polyhedra.

7

Under review as a conference paper at ICLR 2020

Figure 3: Results of our first-layer algorithm, applied to networks with two or more hidden layers
as the width of the first layer varies. All other layers have fixed width 10. Untrained networks have
input and output dimension 10, those trained on the memorization task have input dimension 10 and
output dimension 2, and those trained on MNIST have input dimension 784 and output dimension
10. Left: The number of queries issued by our algorithm per parameter identified in the networkN ;
the algorithm is terminated once the desired number of neurons have been identified. Right: Log
normalized error log(||Ŵ1 −W1||2/||Ŵ1||2) for Ŵ1 the approximated weights. Weight vectors
were scaled to unit norm to account for isomorphism (see §3.2). Curves are averaged over 5 runs in
the case of MNIST and 40 runs otherwise, with standard deviations shown.

Figure 4: Results of our algorithm for additional layers, applied to networks with two layers, the
first layer of width 10, as the width of the second layer varies. Left: Number of estimated layer
2 neurons. Right: Log normalized error between estimated and corresponding true neurons (as in
Figure 3 above) for approximated weights Ŵ1 and biases b̂1. Curves are averaged over 4 runs, with
standard deviations between runs shown as shaded regions.

7 CONCLUSION

In this work, we have shown that it is often possible to recover the architecture, weights, and biases
of deep ReLU networks by repeated queries. We proceed by identifying the boundaries between
linear regions of the network and the intersections of these boundaries. Our approach is theoretically
justified and empirically validated on networks before and after training. Where the algorithm does
not succeed in giving a complete set of weights, it is nonetheless able to give a partial set of weights,
and incompleteness in some cases reflects unresolvable ambiguities about the network.

Our approach works for a wide variety of networks, though not all. It is limited to ReLU or otherwise
piecewise linear activation functions, though we believe it possible that a continuous version of this
method could potentially be developed in future work for use with sigmoidal activation. If used with
convolutional layers, our method does not account for the symmetries of the network and therefore
scales with the size of the input as well as the number of features, resulting in high computation.
Finally, the method is not robust to defenses such as adding noise to the outputs of the network, and
therefore can be thwarted by a network designer that seeks to hide their weights/architecture.

We believe that the methods we have introduced here will lead to considerable advances in identi-
fying neural networks from their outputs, both in the context of deep learning and, more specula-
tively, in neuroscience. While the implementation we have demonstrated here is effective in small
instances, we anticipate future work that optimizes these methods for efficient use with different
architectures and at scale.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Frances S Chance, Larry F Abbott, and Alex D Reyes. Gain modulation from background synaptic
input. Neuron, 35(4):773–782, 2002.

Rong Ge, Rohith Kuditipudi, Zhize Li, and Xiang Wang. Learning two-layer neural networks with
symmetric inputs. In International Conference on Learning Representations (ICLR), 2019.

Surbhi Goel and Adam Klivans. Learning neural networks with two nonlinear layers in polynomial
time. Preprint arXiv:1709.06010, 2017.

Surbhi Goel, Varun Kanade, Adam Klivans, and Justin Thaler. Reliably learning the ReLU in
polynomial time. In Conference on Learning Theory (COLT), 2017.

Boris Hanin and David Rolnick. How to start training: The effect of initialization and architecture.
In Neural Information Processing Systems (NeurIPS), 2018.

Boris Hanin and David Rolnick. Complexity of linear regions in deep networks. In International
Conference on Machine Learning (ICML), 2019a.

Boris Hanin and David Rolnick. Deep ReLU networks have surprisingly few activation patterns. In
Neural Information Processing Systems (NeurIPS), 2019b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpass-
ing human-level performance on ImageNet classification. In IEEE International Conference on
Computer Vision (ICCV), 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

P Heggelund. Receptive field organization of simple cells in cat striate cortex. Experimental Brain
Research, 42(1):89–98, 1981.

Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and Nicolas Papernot. High-
fidelity extraction of neural network models. arXiv preprint arXiv:1909.01838, 2019.

Konrad P Kording, Christoph Kayser, Wolfgang Einhauser, and Peter Konig. How are complex cell
properties adapted to the statistics of natural stimuli? Journal of neurophysiology, 91(1):206–212,
2004.

Smitha Milli, Ludwig Schmidt, Anca D Dragan, and Moritz Hardt. Model reconstruction from
model explanations. In Proceedings of the Conference on Fairness, Accountability, and Trans-
parency, pp. 1–9. ACM, 2019.

Seong Joon Oh, Bernt Schiele, and Mario Fritz. Towards reverse-engineering black-box neural
networks. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, pp. 121–
144. Springer, 2019.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the
expressive power of deep neural networks. In International Conference on Machine Learning
(ICML), 2017.

Matus Telgarsky. Representation benefits of deep feedforward networks. Preprint
arXiv:1509.08101, 2015.

A USEFUL LEMMATA

Lemma 1 (Isomorphism under scaling). Given an MLP N with ReLU activation, the network
sz,c(N) is isomorphic to N for every neuron z and constant c > 0.

9

Under review as a conference paper at ICLR 2020

Proof. Suppose that z = zki is the ith neuron in layer k. Then, for each neuron zk+1
j in layer k + 1

of the network N , we have:

zk+1
j (x) =

nk∑
i=1

Wk
ij ReLU(z

k
i (x) + bki)

=

nk∑
i=1

Wk
ij ReLU

((
nk−1∑
h=1

Wk−1
hi ReLU(zk−1h (x) + bk−1h)

)
+ bki

)
(1)

By comparison, in network sz,c(N), we have:

zk+1
j (x) =

nk∑
i=1

1

c
Wk

ij ReLU(zki (x) + cbki)

=

nk∑
i=1

1

c
Wk

ij ReLU

((
nk−1∑
h=1

cWk−1
hi ReLU(zk−1h (x) + bk−1h)

)
+ cbki

)

=

nk∑
i=1

Wk
ij ReLU

((
nk−1∑
h=1

Wk−1
hi ReLU(zk−1h (x) + bk−1h)

)
+ bki

)
, (2)

where we used the property that ReLU(cx) = cReLU(x) for any c > 0.

As expressions (1) and (2) are equal, we conclude that sz,c(N) is isomorphic to N .

Lemma 2 (Bending hyperplanes). The set of networks N with the following property has measure
zero in the space of networks: There exist neurons zk−1i and zkj in consecutive layers such that the
boundary Bzkj intersects Bzk−1

i
but does not bend at the intersection.

Proof. Observe that Bzkj is defined by the equation:

0 = zkj (x) =

nk−1∑
h=1

Wk
hj ReLU(zk−1h (x) + bk−1h).

As it does not bend when it intersects Bzk−1
i

, the gradient of the RHS must remain unchanged

when ReLU(zk−1i (x) + bk−1i) flips between active and inactive. Unless another neuron transitions
simultaneously with zk−1i (an event that occurs with measure zero), this can happen only if Wk

ij = 0,
which itself is a measure zero event.

B PROOF OF THEOREM

In this proof, we will show how the information we are given by the assumptions of the theorem is
enough to recover the weights and biases for each neuron z in layer k. We will proceed for each
z individually, progressively learning weights between z and each of the neurons in the preceding
layer (though for skip connections this procedure could also easily be generalized to learn weights
from z to earlier layers).

For each of the points pi ∈ Az , suppose that Hi is the local hyperplane associated with pi on
boundaryBz . The gradient ∂z∂x (pi) at pi is orthogonal toHi, and we thus already know the direction
of the gradient, but its magnitude is unknown to us. We will proceed in order through the points
p1,p2, . . . ,pm, with the goal of identifying ∂z

∂x (pi) for each pi, up to a single scaling factor, as this
computation will end up giving us the incoming weights for z.

We begin with p1 by assigning ∂z
∂x (p1) arbitrarily to either one of the two unit vectors orthogonal to

Hi. Due to scaling invariance (Lemma 1), the weights of N can be rescaled without changing the
function so that ∂z∂x (pi) is multiplied by any positive constant. Therefore, our arbitrary choice can
be wrong at most in its sign, and we need not determine the sign at this stage. Now, suppose towards
induction that we have identified ∂z

∂x (pi) (up to sign) for i = 1, . . . , s − 1. We wish to identify
∂z
∂x (ps).

10

Under review as a conference paper at ICLR 2020

By assumption (ii), there exists a precursor pr to ps such that Hr and Hs intersect on a boundary
Bz′ . Let vr = tz

∂z
∂x (pr) be our estimate of ∂z

∂x (pr), for unknown sign tz ∈ {+1,−1}. Let vs be a
unit normal vector to Hs, so that vs = ctz

∂z
∂x (ps) for some unknown constant c. We pick the sign

of vs so that it has the same orientation as vr with respect to the surfaceBz , and thus c > 0. Finally,
let v = tz′

∂z′

∂x (pr) = tz′
∂z′

∂x (ps) be our estimate of the gradient of z′; where tz′ ∈ {+1,−1} is
also an unknown sign (recall that since z′ is in layer k− 1 we know its gradient up to sign). We will
use v and vr to identify vs.

Suppose that z = zkj is the jth neuron in layer k and that z′ = zk−1h is the hth neuron in layer k− 1.
Recall that

z(x) = zkj (x) =

nk−1∑
i=1

Wk
ij ReLU(zk−1i (x) + bk−1i). (3)

AsBz′ is the boundary between inputs for which z′ = zk−1h is active and inactive, ReLU(zk−1h (x)+

bk−1h) must equal zero either (Case 1) on Hr or (Case 2) on Hs.

In Case 1, we have
∂z

∂x
(ps)−

∂z

∂x
(pr) = Wk

hj

∂z′

∂x
(pr),

or equivalently:
ctzvs − tzvr = Wk

hjtz′v,

which gives us the equation:
cvs − vr = Wk

hjtztz′v.

Since we know the vectors vs,vr,v, we are able to deduce the constant c.

A similar equation arises in Case 2:

vr − cvs = Wk
hjtztz′v,

giving rise to the same value of c. We thus may complete our induction. In the process, observe
that we have calculated a constant Wk

hjtztz′t
′, where the sign t′ is +1 in Case 1 and −1 in Case

2. Note that tz′t′ can be calculated based on whether v points towards pr or ps. Therefore, we
have obtained Wk

hjtz , which is exactly the weight (up to z-dependent sign) that we wished to find.
Once we have all weights incoming to z (up to sign), it is simple to identify the bias for this neuron
(up to sign) by calculating the equation of any known local hyperplane for Bz and using the known
weights and biases from earlier layers.

To complete the proof, we must now also calculate the correct signs tz′ of the neurons in layer k−1.
Pick some z = zkj in layer k and observe that for all points ps ∈ Az there corresponds an equation,
obtained by taking gradients in equation (3):

∂zkj
∂x

(ps) =

nk−1∑
i=1

Wk
ij1i,s

∂zk−1i

∂x
(ps),

where 1i,s equals 1 if ps is on the active side of Bzk−1
i

. We can substitute in our (sign-unknown)
values for these various quantities:

tzvs =

nk−1∑
i=1

Wk
ij1i,stzk−1

i
vi.

Now, we may estimate 1i,s by a function 1′i,s that is 1 if ps and vi are on the same side of Bzk−1
i

.
This estimate will be wrong exactly when tzk−1

i
= −1. Thus, 1i,s = (1 + tzk−1

i
1′i,s)/2, giving us

the equation:

tzvs =

nk−1∑
i=1

Wk
ij

1 + tzk−1
i

1′i,s

2
tzk−1

i
vi

=
1

2

nk−1∑
i=1

Wk
ij(tzk−1

i
+ 1′i,s)vi

11

Under review as a conference paper at ICLR 2020

All the terms of this equation are known, with the exception of tz and the nk−1 variables tzk−1
i

– giving us a linear system in nk−1 + 1 variables. For a given zkj , there are nk−1 different ps
representing the intersections with Bz′ for each z′ in layer k − 1; choosing these ps should in
general give linearly independent constraints. Moreover, the equation is in fact a vector equality
with dimension nin; hence, it is a highly overconstrained system, enabling us to identify the signs
tzk−1

i
for each zk−1i . This completes the proof of the theorem.

12

	Introduction
	Related work
	Preliminaries
	Definitions
	Isomorphisms of networks

	The algorithm
	Intuition
	The first layer
	Additional layers

	Discussion
	Experiments
	Conclusion
	Useful Lemmata
	Proof of Theorem

