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ABSTRACT

Traditionally, unsupervised representation learning is used to discover underlying
regularities from raw sensory data without relying on labeled data. A great number
of algorithms in this field resorts to utilizing proxy objectives to facilitate learning.
Further, learning how to act upon these regularities is left to a separate algorithm.
Neural encoding in biological systems, on the other hand, is optimized to represent
behaviorally relevant features of the environment in order to make inferences that
guide successful behavior. Evidence suggests that neural encoding in biological
systems is shaped by such behavioral objectives. In our work, we propose a model
of inference-driven representation learning. Rather than following some auxiliary,
a priori objective (e.g. minimization of reconstruction error, maximization of the
fidelity of a generative model, etc.) and indiscriminately encoding information
present in an observation, our model learns to build representations that support
accurate inferences. Given a set of observations, our model encodes underlying
regularities that de facto are necessary to solve the inference problem in hand.
Rather than labeling the observations and learning representations that portray
corresponding labels or learning representation in a self-supervised manner and
learning explicit features of the input observations, we propose a model that learns
representations that implicitly shaped by the goal of correct inference.

1 INTRODUCTION

One of the central problems in unsupervised representation learning traditionally has been to find
a way of learning useful representations when target values are not available or simply do not
exist (Hinton & Sejnowskil, |1999; LeCun et al.,|2015). A common approach to this problem is to
essentially compress high dimensional input s.t. it can be later reproduced from a low dimensional
representation with minimum deviation from either the source or any other proxy objective. For
instance, autoencoders learn latent representations by minimizing the reconstruction error (Hinton &
Salakhutdinov, |2006)); variational autoencoders additionally constrain the representation which allows
for learning the factors of variation (Kingma & Welling} 2013} Higgins et al., [2017a)); generative
models can learn representations by maximizing the fidelity of generated outputs (Donahue et al.,
2016). Once representations are learned, their utility is usually evaluated on a separate downstream
task (Hsu et al., 2018} Higgins et al.| 2017b; Metz et al., [2019; Laversanne-Finot et al., 2018)).
On the other hand, there is a significant amount of evidence that suggests that perceptual neural
encoding in biological systems is shaped by the process of inference supporting effective behavior
(Janzen & Turennout, 2004). Theory of embodied cognition suggests that the process of information
internalization requires physical interaction with the environment (Calvo & Gomilal 2008)). In our
work, we propose one of the possible ways of learning representations of abstract concepts from
unlabeled data that in turn support the inference. We argue that an abstract surrogate objective such
as correct inference not only yields adequate representations but also a biologically valid way of
learning representations.

We organized the paper by first defining and describing our dataset and the model in Section 2 and
Section 3 respectively. In Section 4, we describe the results and provide an analysis of the network
behavior and performance, demonstrating the robustness of learned representations. Then, in order
to contextualize our work, we provide a summary of related research and empirical evidence that
supports our approach.
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2 DATASET

In our work, we use a synthetic dataset that consists of several types of inference tasks and observations
O. In general, the task is to make accurate inference based on a problem P which requires correct
interpretation of given observations O. Every observation is generated such that it follows a certain
pattern or regularity (i.e. regularities are implicitly encoded in the observations). Based on the
regularities encoded in the tasks, they can be divided into three categories: (1) binary operations,
(2) contextual 2-armed bandit, and (3) associative recall. In the case of binary operations, a single
observation can be often ambiguous hence we use a set of three observations to reduce ambiguity.
Finally, we use the results of the inference problems as targets. Learning algorithm does not use
labels of the regularities placed in the observations. The data is presented in the form of tensors of
binary activations. For the simplicity of data interpretation, we address each element as if it was a
number.
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Figure 1: (Top) Structure and possible interpretation of a training entry.
Here, the underlying regularity is based on binary function f(x1, z2)
is: x3 = x1 + x9. (Bottom left) Structure of Associative Recall task:
x1 and x5 together constitute a key and x5 is the target value. (Bottom
right) Structure of Contextual 2-Armed Bandit task: x3 = 0 means
that the left arm can be associated with the reward, if 3 = 1, then it is
the right arm (here, the arm 13 should be preferred.)

2.1 BINARY OPERATIONS
This part of the dataset includes 7 functions:

x3 = 1 + X2 + ¢, where ¢ € [0, 1,2, 3]

x3 = sd(z1) + sd(x2), where sd is digit sum of an integer
T3 =x1 > To,x3 €0,1

r3=x1 < T,x3 €0,1

T3 =x1 — T9,S.t.x3 >0

T3 = X9 —T1,S8.t.x3 >0

NNk Wb -

x3 = xo div 1, where div is integer division

Each of the observations is always structured such that the third number in it is a result of a
mathematical or logic binary operation applied to the first two numbers: &3 = f(x1, x2). To make
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an inference, the model needs to determine the function f based on the observations O and apply it
to the given problem P: g = f(P). Within each function included in the dataset, each pair of x; and
o 1S unique.

2.2 CONTEXTUAL 2-ARMED BANDIT

The problem of the contextual 2-armed bandit is a variant of a well-known multi-armed bandit
problem (Auer et al.,2002). The 2-armed bandit problem is usually used in meta-learning research.
We, however, reframe it as an inference problem. Given a set of observations, the task is to pick either
left or right arm. Each arm has a number associated with it. In the contextual bandit problem, it is not
necessarily the left or the right arm that is more likely to score but the one with a label (number in
our dataset) that, in the observations, corresponds with the right decision. The goal is therefore to
pick the arm which is more likely to score. In our dataset we use the following reward distribution:
662% or 331 %.

2.3 ASSOCIATIVE RECALL

Associative recall task is reminiscent of a simple short-term memory task: given a dictionary (i.e.
a set of (key, value) tuples), the task is to recall the value that corresponds to the given key in the
dictionary. Every key in the dataset is unique, hence, every association is also a unique combination.

3 MODEL

3.1 MODEL ARCHITECTURE

Our model is a two-tailed neural network. It takes a set of observations O and inference problem
P and makes an inference § : § = H(O',P’;6). The first tail takes observations one-by-one,
consolidates them in the internal state of a recurrent cell, passes combined representation through
a bottleneck 7, and finally combines its output O = F(O; §F") with the output of the second tail
P’ = G(P;6%). Second tail and the head components of the network are stacks of fully connected
layers.
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Figure 2: Model architecture

3.2 LEARNING STRATEGY

One of the major goals of this work is to introduce a representation learning mechanism that
combines several observations and is focused on discovering regularities underlying them (implicit
information) rather than on compressing input data into more interpretable features of explicitly
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presented information. We suggest that one of the possible ways to do that is to learn representations
not independently but in the process of observation facilitated inference. Hence, our dataset only
contains the results for the inference problems but does not label the underlying regularities. In fact,
in some cases, it is possible to assign several labels to a single regularity (for details see Section 4)
which makes labeling counterproductive. Such an approach has its own limitations, yet it is based on
certain aspects of representation learning in biological systems (see Section 5.2 for details).

3.2.1 OBIECTIVE FUNCTION

Our model is trained to minimize the discrepancy between inferred result and actual result. We also
use a regularization term R to make representation r more efficient, as suggested in (Kingma &
‘Welling| 2013; Higgins et al.,|2017a). The loss function is the following:

L= Z Y +BxR 1)

We use multivariate KullbackLeibler divergence (D) (2) between a diagonal multivariate normal,
and a standard normal distribution (Kullback and Leibler, 1951) for representation regularization
purposes:

R = Drr(N(u,0?) || N(O, 1)) Zo +u2—Ino? -1 2)

Thus, the objective is the following:
arg min L 3)

3.3 IMPLEMENTATION

We implemented our model in Tensorflow (Abadi et al., 2016) and used the Adam optimization
algorithm for training (Kingma & Bal 2014). We use a synthetic dataset generated according to
Section 2. The size of the dataset depends on a set of variables and can be customized. The content
of the dataset can also be customized by excluding and including certain problems. Our model was
trained on all problems described in Section 2 together. We split the dataset 50/50 for training and
testing respectively. In this paper, we report only test performance. Our model utilizes 1,277,084
trainable parameters 6. Input size is 192: observations O take (i.e. 48 each observation o;), and 48
for the problem P. The number of observations is a variable. In this work, we use 3 observations
0;, yet our model shows adequate results for both fewer and more observations. For recurrent layer
we use Gated Recurrent Unit cell (Cho et al., [2014) with an internal size of 96. The size of the
bottleneck 7 is 8.

4 RESULTS

In our work, we demonstrate a model of representation learning mediated by an inference process.
We show that certain abstract concepts can be learned from observations only retrospectively in
the process of making inferences. Empirical evidence suggests that, when it comes to representing
abstract concepts, biological systems, rather than representing a maximum number of features,
facilitate successful behavior with the selective neural encoding of features relevant at the behavioral
level. Since it is difficult to imagine an a priori rule that can extract relevant information, we
trained our model using the objective that optimizes for the accuracy of the inference. Overall test
performance of our model (98.610.1%) suggests that it was able to learn representations that facilitate
inference.

To visualize the representations learned by our model we reduced their dimensionality to 2 via an
autoencoder and plotted the results. We also plotted the centers of the manifolds of representations and
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Figure 3: Learned representations of mathematical problems, associative recall, and contextual

2-armed bandit

calculated the distances between these points to illustrate the relative position of the representations.
Figures 2 and 3 suggest that our model learned certain relationships between the concepts that
these representations depict. For instance, virtually complete overlap between representations of
xr3 = 1 — T2 and x3 = T2 — 1, s.t. 3 > 0 shows that our model found that these operations
are equivalents of the absolute difference between x; and x,. Close proximity and order in the
group of representations for 3 = x; + @2 + ¢, where ¢ € [0, 3] shows that the model discovered
the relationship between these operations. Overlap between special cases of 3 = 1 > x5 and
x3 = x1 div x5 can be interpreted as well: for all x; and x5 : 1 > x2 both functions will output 0.

Distance Matrix

S(x1) + S(x2) 4 0.00 0.53 0.54 0.58 0.44 0.44 BWIN 057 0.56 0.49 044 039

x1>x2 -4 053 000 026 0.15 0.28 048 045 041 039

xl<x2 - 054 026 000 040 0.71 0.58

x1/tx2 4 0.58 015 037 035 033 033

x1-x2 - 0.44 0.55 017 0.14 014 015

x2 - x1 o 0. 0.14 0.15

Associative recall 0.78 0.83
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Figure 4: Distance between manifolds of learned representations

To prove that our model learns representations empirically shaped by the objective of the inference
as opposed to an a priori meaning of underlying regularities, we coupled observations of binary
operations with unrelated inference problems (e.g. Og,—z, >z, With Pey—g, diva, forall Og,—z, >,
and Py, —2, div,). Performance of the model did not change significantly. Therefore, we concluded
that, unless observation contains necessary information (e.g. like in the case of associative recall or
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2-armed bandit tasks), a correct inference can be supported by any regularity that empirically appears
to be useful.

We compared performance of representation learning component of our model with the performance
of B-VAE (with 3 € [0,1, 16, 64]). The structure of encoder and decoder networks in the 5-VAE
was precisely the same as of the representation learning component of our model. Neither AE (i.e.
B = 0), nor VAE (8 = 1), nor 3-VAE (8 € [16, 64]) managed to learn meaningful representations of
the observations presented in our dataset. Given the same amount of training, baseline models did not
converge to a reasonable error rate.
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(a) B =064 (b) B =16 (©p=4 @p=1
Figure 5: Representation learned by 8-VAE (with 3 € [1, 16, 64])

5 RELATED WORK

5.1 REPRESENTATION LEARNING

One of the major goals of representation learning has been an ability to encode raw data in the way
such an encoding could be useful in subsequent learning of a downstream task (Kingma & Ba, |2014;
Rasmus et al.| 2015; Hsu et al.l 2018) or have useful qualities, such as interpretability, smoothness of
the manifold, explanatory power, sparsity, disentanglement of the underlying factors of variation, etc.
(Kingma & Welling, 2013} Higgins et al.,|2017a; [Donahue et al.,|2016} |Bengio et al., 2014)).

Hinton & Salakhutdinov| (2006) showed that autoencoders (AE) can transform high dimensional data
into low dimensional representations that minimize reconstruction error. |[Kingma & Welling| (2013)
presented Variational Auto Encoders (VAE) an approach to learning representations that encode
high-level factors of variation. More recent, [Higgins et al.| (2017b) pre-trained 5-VAE to encode
basic visual concepts of the visual environment, effectively disentangling such variational factors.
In turn, latent representations produced by 5-VAE supported a reinforcement learning model and
have proven to be particularly useful for transfer learning. Similarly, Laversanne-Finot et al.|(2018)
utilized B-VAE to learn representations that contain independent features. Then, a separate model
used pre-trained /3-VAE to support curiosity-driven exploration in a robotic arm task. |Hsu et al.| (2018)
used several unsupervised embedding algorithms to learn representations useful in subsequent object
discrimination procedure. Their results suggest that the use of embeddings improved the performance
of the discrimination model.

Goodfellow et al.|(2014)) demonstrated the ability of Generative Adversarial Networks (GANs) to
learn a mapping from latent distribution to data distribution and captures semantic variation features.
Further work, Bidirectional Generative Adversarial Networks (BiGAN) (Donahue et al.,[2016]), made
it possible to learn a mapping from data to latent representations useful for a supervised discrimination
task.

5.2 TASK-MEDIATED NEURAL ENCODING

A significant body of empirical evidence and theoretical work suggests that neuronal encoding
emerges and further develops mediated by the behavioral objectives (Oxenham (ed.) & Oxenhaml
2005}; [Kuchibhotla & Bathellier, [2018} |[Kraus et al., [2014} Janzen & Turennout, [2004)). Biological
systems, in order to succeed in achieving these objectives, need to make inferences based on sensory
input. In turn, the efficiency of the inference is contingent on the ability to encode relevant information.
Sustained activity in PFC support context-relevant representations when a task requires different
behavior based on the context (Rikhye et al.,|2018; Bolkan et al.,[2018). The visual system of a fly is
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tuned to process and represent optic flow, which is perhaps the most important visual feature at the
behavioral level of a relatively simple animal (Egelhaaf et al.,2002). Recent research suggests that
musical training improves auditory processing by enhancing neural encoding of meaningful acoustic
features which, in turn, benefits language and cognition (Kraus et al.|[2014; Tierney et al., 2013}
Parbery-Clark et al.,|2009; |[Kraus et al., 2010). Implicit relevance of objects placed at key points was
associated with neural activity in the parahippocampal gyrus (area of the brain implicated in visual
navigation) whereas explicit relevance improved object recognition processing in the visual cortex
(Janzen & Turennout, |[2004). Similarly, in auditory cortex, encoding has been shown to be mediated
by ascending neuromodulation and top-down attention (Kuchibhotla & Bathellier, 2018} |Caras &
Sanes)|, [2017).

6 DISCUSSION

The ability to perceive regularities in the raw perceptual data one the most important skills that
biological systems develop very early and continue to develop and which facilitates learning and
other cognitive abilities. Development of this ability does not require explicit training as it is observed
in various biological systems and perhaps one of the fundamental mechanisms in learning. Likewise,
unsupervised learning, a discipline in machine learning, has been focused on problems that cannot and
do not have explicit training or labels. We showed that the absence of labels does not automatically
mean that the process of learning of the regularities is driven by a single universal objective (e.g.
minimization of reconstruction error). Rather, learning of representations of relevant information can
be shaped by behavioral objectives and enables learning of abstract concepts that cannot be learned
solely from observations.

The utility of the representations learned in such a manner will depend on their behavioral relevance
and experience. We showed that simple model that is given a reasonable objective, can learn
representations that even very clever encoding algorithms could not in a self-supervised manner.
Hence, in conclusion, we would like to emphasize the role of intrinsic motivation (i.e. objective) and
the environment in learning useful representations.
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