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ABSTRACT

Inspired by the adaptation phenomenon of biological neuronal firing, we propose
regularity normalization: a reparameterization of the activation in the neural net-
work that take into account the statistical regularity in the implicit space. By
considering the neural network optimization process as a model selection prob-
lem, the implicit space is constrained by the normalizing factor, the minimum
description length of the universal code. We introduce an incremental version of
computing this universal code as normalized maximum likelihood and demon-
strated its flexibility to include data prior such as top-down attention. Preliminary
results showed that the proposed method outperforms existing methods in tackling
the limited and imbalanced data in a non-stationary setting. As an unsupervised
attention mechanism given input data, this biologically plausible normalization
has the potential to deal with other real-world scenarios as well as reinforcement
learning setting where the rewards are sparse and non-uniform. Further studies is
proposed to discover these scenarios and explore the behaviors among its variants.

1 INTRODUCTION

The Minimum Description Length (MDL) principle asserts that the best model given some data
minimizes the combined cost of describing the model and describing the misfit between the model
and data (Rissanen, 1978) with a goal to maximize regularity extraction for optimal data compres-
sion, prediction and communication (Grünwald, 2007). Most unsupervised learning algorithms can
be understood using the MDL principle (Rissanen, 1989), treating the neural network as a system
communicating the input to a receiver. If we consider the neural network training as the optimization
process of a communication system, each input at each layers of the system can be described as a
point in a low-dimensional continuous constraint space (Zemel & Hinton, 1999). If we consider the
neural networks as population codes, the constraint space can be subdivided into the input-vector
space, the hidden-vector space, and the implicit space, which represents the underlying dimensions
of variability in the other two spaces, i.e., a reduced representation of the constraint space. For in-
stance, given a image of an object, the rotated or scaled version still refers to the same object, thus
each image instance of the same object can be represented by a position on a 2D implicit space with
one dimension as orientation and the other as size (Zemel & Hinton, 1999). The relevant information
about the implicit space can be constrained to ensure a minimized description length of the system.

This type of constraint can also be found in biological brains of primates: high-level brain areas are
known to send top-down feedback connections to lower-level areas to select of the most relevant
information in the current input given the current task (Ding et al., 2017), a process similar to the
communication system. This type of modulation is performed by collecting statistical regularity
in a hierarchical encoding process among brain areas. One feature of the neural coding during the
hierarchical processing is the adaptation: in vision neuroscience, vertical orientation reduce their
firing rates to that orientaiton after the adaptation (Blakemore & Campbell, 1969), while the cell
responses to other orientations may increase (Dragoi et al., 2000). These behaviors well match the
information theoretical point-of-view that the most relevant information (saliency), which depends
on the statistical regularity, have higher “information”, just as the firing of the neurons. The more
regular the input features are, the lower it should yield the activation. We introduce the minimum
description length (MDL), such that the activation of neurons can be analogous to the code length of
the model (a specific neuron or neuronal population) - a shorter code length would be assigned to a
more regular input (such as after adaptation), and a longer code length to a more rare input or event.
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In this paper, we adopt the similar definition of implicit space as in Zemel & Hinton (1999), but
extend it beyond unsupervised learning, into a generic neural network optimization problem in both
supervised and unsupervised setting. Given the neuroscience inspiration described above, we con-
sider the formulation and computation of description length differently. Instead of considering neu-
ral networks as population codes, we formulate each layer of neural networks during training a state
of module selection. In our setup, the description length is computed not in the scale of the entire
neural networks, but by the unit of each layer of the network. In addition, the optimization objective
is not to minimize the description length, but instead, to take into account the minimum description
length as part of the normalization procedure to reparameterize the activation of each neurons in
each layer. The computation of the description length (or model cost as in Zemel & Hinton (1999))
aims to minimize it, while we directly compute the minimum description length in each layer not to
minimize anything, but to reassign the weights based on statistical regularities. Finally, we compute
the description length by an optimal universal code obtained by the batch input distribution in an
online incremental fashion.

We begin our presentation in section 2, formulating the problem setting in neural network training
as a layer-specific model selection process under MDL principle. We then introduce the proposed
regularity normalization (RN) method, its formulation and the incremental implementation. We also
present several variants of the regularity normalization by incorporating batch and layer normal-
izations, termed regularity batch normalization (RBN) and regularity layer normalization (RLN),
as well as including the data prior as a top-down attention mechanism during the training process,
termed saliency normalization (SN). In appendix A, we present the preliminary results on the im-
balanced MNIST dataset and demonstrated that our approach is advantageous over existing normal-
ization methods in different imbalanced scenarios. In the last section, we conclude our methods and
point out several future work directions as the next step of this research.

2 PROBLEM SETTING

2.1 MINIMUM DESCRIPTION LENGTH
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Figure 1: Normalized maximal likelihood. Data sam-
ple xi are drawn from the data distributionX and model
θ̂i is the optimal model that describes data xi with the
shortest code length. θj is an arbitrary model that is
not θ̂3, so P (x3|θj) is not considered when computing
optimal universal code according to NML formulation.

Given a model class Θ consisting of a fi-
nite number of models parameterized by the
parameter set θ. Given a data sample x,
each model in the model class describes a
probability P (x|θ) with the code length com-
puted as − logP (x|θ). The minimum code
length given any arbitrary θ would be given
by L(x|θ̂(x)) = − logP (x|θ̂(x)) with model
θ̂(x) which compresses data x most efficiently
and offers the maximum likelihood P (x| ˆθ(x))
(Grünwald, 2007). However, the compressibil-
ity of the model will be unattainable for multi-
ple inputs, as the probability distributions are
different. The solution relies on a universal
code, P̄ (x) defined for a model class Θ such
that for any data sample x, the shortest code for
x is always L(x|θ̂(x)) (Rissanen, 2001).

2.2 NORMALIZED MAXIMUM LIKELIHOOD

Among the universal code, the normalized maximum likelihood (NML) probability minimizes the
worst-case regret with the minimax optimal solution is given by Myung et al. (2006):

PNML(x) =
P (x|θ̂(x))∑
x′ P (x′|θ̂(x′))

(1)

2



Under review as a conference paper at ICLR 2019

where the summation is over the entire data sample space. Fig 1 describes the optimization problem
of finding optimal model P (xi|θ̂i) given data sample xi among model class Θ. The models in the
class, P (x|θ), are parameterized by the parameter set θ. xi are data sample from data X . With this
distribution, the regret is the same for all data sample x given by Grünwald (2007):

COMP (Θ) ≡ − logPNML(x) + logP (x|θ̂(x)) = log
∑
x′

P (x′|θ̂(x′)) (2)

which defines the model class complexity, i.e. how many data samples can be well explained by Θ.

2.3 NEURAL NETWORKS AS MODEL SELECTION
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Figure 2: Model selection in neural network. If we
consider each time step of the optimization (drawn here
to be batch-dependent) as the process of choose the op-
timal model from model class Θi for ith layer of the
neural networks, the optimized parameter θ̂ij with sub-
script j as time step t = j and superscript i as layer i
can be assumed to be the optimal model among all mod-
els in the model class Θi. The normalized maximum
likelihood can be computed by choosing P (xij |θ̂ij), the
“optimal” model with shortest code length given data
xij , as the summing component in the normalization.

In the neural network setting where optimiza-
tion process are performed in batches (as in-
cremental data sample xj with j denoting the
batch j), the model selection process is formu-
lated as a partially observable problem (as in
Fig 2). Herein to illustrate our approach, we
consider a feedforward neural network as an ex-
ample, without loss of generalizability to other
architecture (such as convolutional layers or re-
current modules). xij refers to the activation
at layer i at time point j (batch j). θij is the
parameters that describes xij (i.e. weights for
layer i − 1) optimized after j − 1 steps (seen
batch 0 through j − 1). Because one cannot
exhaust the search among all possible θ, we as-
sume that the optimized parameter θ̂ij at time
step j (seen batch 0 through j−1) is the optimal
model P (xij |θ̂ij) for data sample xij . Therefore,
we generalize the optimal universal code with
NML formulation as:

PNML(xi) =
P (xi|θ̂i(xi))∑0,··· ,i

xj
P (xj |θ̂j(xj))

(3)

where θ̂[0,··· ,i−1](xi) (or denoted θ̂i(xi) as in
Fig 2) refers to the parameter already optimized
for i − 1 steps and have seen sequential data
sample x0 through xi−1. This distribution is
updated every time a new data sample is given,
and can therefore be computed incrementally.

3 REGULARITY NORMALIZATION

3.1 FORMULATION

Regularity normalization is outlined in Algorithm 1, where the input would be the activation of
each neurons in certain layer and batch. Parameters COMP and θ are updated after each batch,
through the incrementation in the normalization and optimization in the training respectively. The
incrementation step involves computing the log sum of two values, which can be easily stabilized
with the log-sum-exp trick. The normalization factor is then computed as the shortest code length L
given the NML.
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3.2 VARIANT: SALIENCY NORMALIZATION

NML distribution can be modified to also include a data prior function, s(x), given by Zhang (2012):

PNML(x) =
s(x)P (x|θ̂(x))∑

x′ s(x′)P (x′|θ̂(x′))
(4)

where the data prior function s(x) can be anything, ranging from the emphasis of certain inputs,
to the cost of certain data, or even top-down attention. For instance, we can introduce the prior
knowledge of the fraction of labels (say, in an imbalanced data problem where the oracle informs
the model of the distribution of each label in the training phase); or in a scenario where we wish
the model to focus specifically on certain features of the input, say certain texture or color (just
like a convolution filter); or in the case where the regularity drifts (such as the user preferences
over years): in all these applications, the procedure can be more strategic given these additional
information. Thus, we formulate this additional functionality into our regularity normalization, to
be saliency normalization (SN), where PNML is computed with the addition of a pre-specified s(x).

3.3 VARIANT: BEYOND ELEMENTWISE NORMALIZATION

Algorithm 1: Regularity Normalization (RN)

Input: Values of x over a mini-batch: B = {x1,··· ,m};
Output: yi = RN(xi) given Parameter: COMPt, θ̂t

COMPt+1 = increment(COMPt, P (xi|θ̂t(xi)))
Lxi = COMPt+1 − logP (xi|θ̂t(xi))
yi = Lxi ∗ xi

In our current setup, the normalization is com-
puted elementwise, considering the implicit
space of the model parameters to be one-
dimensional (i.e. all activations across the batch
and layer are considered to be represented by
the same implicit space). Instead, the defi-
nition of the implicit can be more than one-
dimensional to increase the expressibility of the
method, and can also be user-defined. For in-
stance, we can perform regularity normaliza-
tion over the layer dimension such that the im-
plicit space has the dimension of the layer, as

the regularity layer normalization (RLN), and similarly, if over the dimension of the batch, regular-
ity batch normalization (RBN), which have the potential to inherit BN and LN’s innate advantages.

4 CONCLUSION

Inspired by the neural code adaptation of biological brains, we propose a biologically plausible
normalization method taking into account the regularity (or saliency) of the activation distribution in
the implicit space, and normalize it to upweight activation for rarely seen scenario and downweight
activation for commonly seen ones. We introduce the concept from MDL principle and proposed
to consider neural network training process as a model selection problem. We compute the optimal
universal code length by normalized maximum likelihood in an incremental fashion, and showed
this implementation can be easily incorporated with established methods like batch normalization
and layer normalization. In addition, we proposed saliency normalization, which can introduce top-
down attention and data prior to facilitate representation learning. Fundamentally, we implemented
with an incremental update of normalized maximum likelihood, constraining the implicit space to
have a low model complexity and short universal code length.

Preliminary results offered a proof of concept to the proposed method. Given the limited experi-
ments at the current state, our approach empirically outperforms existing normalization methods its
advantage in the imbalanced or limited data scenario as hypothesized. Next steps of this research
include experiments with variants of the regularity normalization (SN, RLN, RBN etc.), as well
as the inclusion of top-down attention given by data prior (such as feature extracted from signal
processing, or task-dependent information). In concept, regularity-based normalization can also be
considered as an unsupervised attention mechanism imposed on the input data. As the next step, we
are currently exploring this method to convolutional and recurrent neural networks, and applying to
popular state-of-the-art neural network architectures in multiple modalities of datasets, as well as
the reinforcement learning setting where the rewards can be very sparse and non-uniform.
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Table 1: Test errors of the imbalanced permutation-invariant MNIST 784-1000-1000-10 task

“Balanced” “Rare minority” “Highly imbalanced” “Dominant oligarchy”
n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

baseline 4.80± 0.34 14.48± 0.63 23.74± 0.63 32.80± 0.48 42.01± 1.01 51.99± 0.71 60.86± 0.42 70.81± 0.90 80.67± 0.81 90.12± 0.56
BN 2.77± 0.12 12.54± 0.68 21.77± 0.57 30.75± 0.68 40.67± 1.01 49.96± 1.02 59.08± 1.56 67.25± 1.21 76.55± 3.15 80.54± 5.31
LN 3.09± 0.25 8.78± 1.89 14.22± 1.45 20.62± 3.26 26.87± 2.16 34.23± 4.64 36.87± 1.43 41.73± 6.12 41.20± 2.52 41.26± 2.90
WN 4.96± 0.26 14.51± 0.98 23.72± 0.87 32.99± 0.62 41.95± 1.03 52.10± 0.67 60.97± 0.40 70.87± 0.88 80.76± 0.80 90.12± 0.56
RN 4.91± 0.87 8.61± 1.93 14.61± 1.29 19.49± 1.01 23.35± 2.74 33.84± 3.77 41.47± 4.28 60.46± 6.45 81.96± 1.31 90.11± 0.54
RLN 5.01± 0.65 9.47± 2.70 12.32± 1.25 22.17± 2.11 23.76± 3.48 32.23± 3.70 43.06± 7.95 57.30± 14.16 88.36± 3.97 89.55± 0.71
LN+RN 4.59± 0.65 8.41± 2.59 12.46± 1.95 17.25± 3.28 25.65± 4.27 28.71± 4.40 33.14± 5.58 36.08± 4.66 44.54± 3.89 82.29± 9.94
SN 7.00± 0.41 12.27± 2.91 16.12± 3.11 24.91± 3.60 31.07± 3.15 41.87± 3.98 52.88± 4.67 68.44± 3.19 83.34± 4.13 82.41± 5.14
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A PRELIMINARY RESULTS

As a proof of concept, we evaluated our approach on MNIST dataset LeCun (1998) and computed
the total number of classification errors as a performance metric. As we specifically wish to un-
derstand the behavior where the data inputs are non-stationary and highly imbalanced, we created
an imbalanced MNIST benchmark to test seven methods: batch normalization (BN), layer normal-
ization (LN), weight normalization (WN), and regularity normalization (RN), as well as three vari-
ants: saliency normalization (SN) with data prior as class distribution, regularity layer normalization
(RLN) where the implicit space is defined to be layer-specific, and a combined approach where RN
is applied after LN (LN+RN).

Given the nature of regularity normalization, it should better adapt to the regularity of the data
distribution than other methods, tackling the imbalanced data issue by up-weighting the activation
of the rare sample features and down-weighting those of the dominant sample features.

To simulate changes in the context (input) distribution, in each epoch we randomly choose n classes
out of the ten, and set their sampling probability to be 0.01 (only 1% of those n classes are used in
the training). In this way, the training data may trick the models into preferring to classifying into the
dominant classes. For simplicity, we consider the classical 784-1000-1000-10 feedforward neural
network with ReLU activation functions for all six normalization methods, as well as the baseline
neural network without normalization. As we are looking into the short-term sensitivity of the
normalization method on the neural network training, one epoch of trainings are being recorded (all
model face the same randomized imbalanced distribution). Training, validation and testing sets are
shuffled into 55000, 5000, and 10000 cases. In the testing phase, the data distribution is restored to
be balanced, and no models have access to the other testing cases or the data distribution. Stochastic
gradient decent is used with learning rate 0.01 and momentum set to be 0.9.

When n = 0, it means that no classes are downweighted, so we termed it the “fully balanced”
scenario. When n = 1 to 3, it means that a few cases are extremely rare, so we termed it the “rare
minority” scenario. When n = 4 to 8, it means that the multi-class distribution are very different,
so we termed it the “highly imbalanced” scenario. When n = 9, it means that there is one or
two dominant classes that is 100 times more prevalent than the other classes, so we termed it the
“dominant oligarchy” scenario. In real life, rare minority and highly imbalanced scenarios are very
common, such as predicting the clinical outcomes of a patient when the therapeutic prognosis data
are mostly tested on one gender versus the others, or in reinforcement learning setting where certain
or most types of rewards are very sparse.

Table 1 reports the test errors (in %) of eight methods in 10 training conditions. In the balanced
scenario, the proposed regularity-based method doesn’t show clear advantages over existing meth-
ods, but still managed to perform the classification tasks without major deficits. In both the “rare
minority” and “highly imbalanced” scenarios, regularity-based methods performs the best in all
groups, suggesting that the proposed method successfully constrained the model to allocate learning
resources to the “special cases” which are rare and out of normal range, while BN and WN failed
to learn it completely (as in the confusion matrices not shown here). In the “dominant oligarchy”
scenario, LN performs the best, dwarfing all other normalization methods. However, as in the case
of n = 8, LN+RN performs considerably well, with performance within error bounds to that of LN,
beating other normalization methods by over 30 %. It is noted that LN also managed to capture the
features of the rare classes reasonably well in other imbalanced scenarios, comparing to BN, WN
and baseline. The hybrid methods RLN and LN+RN both displays excellent performance in the im-
balanced scenarios, suggesting that combining regularity-based normalization with other methods is
advantageous.

These results are mainly in the short term domain as a proof of concept. Further analysis need to be
included to fully understand these behaviors in the long term (the converging performance over 100
epochs). However, the major test accuracy differences in the highly imbalanced scenario (RN over
BN/WN/baseline for around 20%) in the short term provides promises in its ability to learn from the
extreme regularities.
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B RELATED WORK

Normalization. Batch normalization (BN) performs global normalization along the batch dimen-
sion such that for each neuron in a layer, the activation over all the mini-batch training cases follows
standard normal distribution, reducing the internal covariate shift (Ioffe & Szegedy, 2015). Simi-
larly, layer normalization (LN) performs global normalization over all the neurons in a layer, and
have shown effective stabilizing effect in the hidden state dynamics in recurrent networks (Ba et al.,
2016). Weight normalization (WN) applied normalization over the incoming weights, offering com-
putational advantages for reinforcement learning and generative modeling (Salimans & Kingma,
2016). Like BN and LN, we apply the normalization on the activation of the neurons, but as an
element-wise reparameterization (over both the layer and batch dimension). In section 3.2, we also
proposed the variant methods based on our approach with batch-wise and layer-wise reparameteri-
zation, the regularity batch normalization (RBN) and regularity layer normalization (RLN).

Description length in neural networks. Hinton & Van Camp (1993) first introduce the description
length to quantify neural network simplicity and develop an optimization method to minimize the
amount of information required to communicate the weights of the neural network. Zemel & Hinton
(1999) considered the neural networks as population codes and used MDL to develop highly redun-
dant population code. They showed that by assuming the hidden units reside in low-dimensional
implicit spaces, optimization process can be applied to minimize the model cost under MDL prin-
ciple. Our proposed method adopt a similar definition of implicit space, but consider the implicit
space as data-dependent encoding statistical regularities. Unlike Zemel & Hinton (1999) and Hinton
& Van Camp (1993), we consider the description length as a indicator of the data input and assume
that the implicit space is constrained when we normalize the activation of each neurons given its
statistical regularity. Unlike the implicit approach to compute model cost, we directly compute the
minimum description length with optimal universal code obtained in an incremental style.
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