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ABSTRACT

Transformer networks have lead to important progress in language modeling and
machine translation. These models include two consecutive modules, a feed-
forward layer and a self-attention layer. The latter allows the network to capture
long term dependencies and are often regarded as the key ingredient in the success
of Transformers. Building upon this intuition, we propose a new model that solely
consists of attention layers. More precisely, we augment the self-attention layers
with persistent memory vectors that play a similar role as the feed-forward layer.
Thanks to these vectors, we can remove the feed-forward layer without degrading
the performance of a transformer. Our evaluation shows the benefits brought by
our model on standard character and word level language modeling benchmarks.

1 INTRODUCTION

Transformer networks (Vaswani et al., 2017) are sequence models that rely on the attention mecha-
nism (Bahdanau et al., 2015) to capture long term dependencies. Since their introduction in the context
of machine translation, they have been applied to many natural language processing tasks, such as
language modeling (Al-Rfou et al., 2019) or sentence representation (Devlin et al., 2019). On most
of them, they are now surpassing the former state-of-the-art models based on recurrent (Hochreiter &
Schmidhuber, 1997) or convolutional networks (Dauphin et al., 2017). At their core, transformers use
a self-attention layer that forms a representation of the current input by gathering the most relevant
information from its context. This layer is repeated along the network depth, allowing for information
to flow for long distances and to form rich sequence representations. The self-attention mechanism
is often considered as the key component of their success and many have worked on improving
transformers by increasing the size of the context captured by those layers (Wu et al., 2019; Dai et al.,
2019; Sukhbaatar et al., 2019).

However, self-attention layers are not the only component of transformer networks and they do
not explain the effectiveness of transformers by themselves. Each of these layers is followed
by a feedforward layer. These feedforward layers contain most of the parameters of the model.
This suggests that their role is probably as important as the self-attention mechanism. In fact,
the transformer layer, i.e., the sequence of self-attention and feedforward sublayers, should be
regarded as a single mechanism that gathers information from the context and transforms it into a
rich representation. Having such two different layer types of at the core makes Transformer models
harder to analyse and understand. In particular, there are not many works exploring the properties of
feedforward layers.

In this work, we simplify the transformer architecture by revisiting its mechanism, while keeping its
properties. We introduce a new layer that merges the self-attention and feedforward sublayers into a
single unified attention layer, as illustrated in Figure 1. As opposed to the two-step mechanism of
the transformer layer, it directly builds its representation from the context and a persistent memory
block without going through a feedforward transformation. The additional persistent memory block
stores, in the form of key-value vectors, information that does not depend on the context. In terms of
parameters, these persistent key-value vectors replace the feedforward sublayer. This modification
dramatically simplifies the structure of the network with no loss of performance.

We evaluate the resulting architecture on standard word level and character level language modeling
benchmarks and report performances that are competitive with transformers.
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Figure 1: On the left panel, the standard transformer layer is composed of a self-attention sublayer
followed by a feedforward sublayer. On the right panel, our all-attention layer merges the weights of
the feedforward sublayer with the self-attention sublayer. We represent both models in the case of a
single head, but in the general case, both the self-attention sublayer and our all-attention layers have
multiple heads.

2 RELATED WORK

Neural language modeling. Different network architectures have been proposed for language
modeling, such as feed-forward networks (Bengio et al., 2003a), recurrent networks (Mikolov et al.,
2010), gated convolutional networks (Dauphin et al., 2017) and transformer networks (Vaswani
et al., 2017). Of particular interest, Al-Rfou et al. (2019) apply deep transformers to character level
language modeling. Dai et al. (2019) introduces a caching mechanism, relying on the relative position
embeddings from Shaw et al. (2018), which makes inference in these models much more efficient for
unbounded sequences. More recently, Sukhbaatar et al. (2019) add a learnable self-attention span to
extend the size of the context.

Word level language models deal with large vocabularies and computing the most probable word
is computationally demanding. Solutions are to either replace the softmax loss with an approxima-
tion (Goodman, 2001; Morin & Bengio, 2005), to sample from the vocabulary during training (Bengio
et al., 2003b; Jozefowicz et al., 2016) or to include subword units (Sennrich et al., 2016). A simple
yet effective solution is to replace the loss by a hierarchical softmax designed to better take advantage
of the GPU specificities (Grave et al., 2017a).

Finally, many works focus on the regularization of large language models. In particular, Zaremba et al.
(2014) show that dropout (Srivastava et al., 2014) is effective for recurrent networks. More recently,
Press & Wolf (2017) show that tying the embedding and classifier weights significantly improves
generalization. Baevski & Auli (2019) further show that combining this regularization technique with
the adaptive softmax of (Grave et al., 2017a) reduces the memory footprint of a transformer while
improving its performance.

Attention based models. The attention mechanism was first introduced in the context of mixture
of experts by Jordan & Jacobs (1994). It is only recently that Bahdanau et al. (2015) have shown
their potential when used in neural networks in the context of machine translation. Since then, this
mechanism is commonly incorporated within many models, with applications in natural language
processing and computer vision, besides transformers. Sukhbaatar et al. (2015) apply the attention
mechanism on the same sequence, i.e., the so-called self-attention, in an auto-regressive model called
end-to-end memory network. They show their potential in the context of language modeling. Graves
et al. (2014) use the attention mechanism for reading from and writing to internal memory for solving
algorithmic tasks. Vinyals et al. (2015) combine this self-attention mechanism with a recurrent
network to solve simple algorithmic problems. Later, Merity et al. (2017) show that these networks
can be used as language models if combined with a cache mechanism (Grave et al., 2017b). The
attention mechanism has been also applied to question answering (Miller et al., 2016) and image
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captioning (Xu et al., 2015). Finally, Shazeer et al. (2017) uses the attention mechanism as a mixture
of experts in a recurrent network.

3 TRANSFORMER LAYER

A transformer model is made of a stack of identical layers, called transformer layers. Each layer
is composed of a multi-head self-attention sublayer followed by a feedforward sublayer. Each
sublayer is also followed by an add-norm operation, i.e., a skip-connection (He et al., 2016), and
layer normalization (Lei Ba et al., 2016). In this section, we review the structure of the transformer
layer and refer the reader to Vaswani et al. (2017) for additional details of the overall model.

Multi-head self-attention sublayer. A core mechanism of a transformer network is the multi-head
self-attention layer, which consists of multiple attention heads applied in parallel. Each attention head
applies the attention mechanism of Bahdanau et al. (2015) on an input sequence of vectors. More
formally, given a sequence x1, ...,xT of d-dimensional input vectors, each head applies two linear
transformations to these vectors to form the key and value vectors:

kt = Wkxt, (1)
vt = Wvxt, (2)

where Wk and Wv are the “key” and “value” matrices of a size dh × d, where dh = d/H is the
dimension of a head and H is the number of heads. The key vectors are then used to compute a
similarity score between an element t of the input sequence and all the elements of its context Ct.
The context can be, for instance, the elements of the sequence that precede t in the case of language
modeling, or the whole sequence in the encoder for machine translation. The similarity score between
t and an element c of its context Ct is defined as

stc = x>t W
>
q

(
kc + p(t, c)

)
, (3)

where Wq ∈ Rdh×d is the “query” matrix, and p(t, c) is a position encoding function. There are
several ways to encode positions: fixed absolute (Vaswani et al., 2017), learned absolute (Al-Rfou
et al., 2019), and learned relative (Sukhbaatar et al., 2015; Shaw et al., 2018). The relative position
encoding function improves the efficiency for unbounded sequences, making them useful for language
modeling (Dai et al., 2019). In this paper, we thus use the relative position encoding defined as
p(t, c) = ut−c, where ui are position embeddings learned during training. The head then outputs
a vector yt by taking the average of the context representations weighted by attention weights atc
obtained by applying a softmax function to the similarity scores:

yt =
∑
c∈Ct

atc
(
vc + p(t, c)

)
and atc =

exp
(
stc/
√
dh
)∑

i∈Ct

exp
(
sti/
√
dh
) . (4)

Note that one can use different position encoding functions for the key and value sides. Finally, the
outputs from the different heads are concatenated for each timestep t and multiplied by the d × d
“output” matrix Wo. The final output of this sublayer is thus a sequence of T vectors of dimension d.

Feedforward sublayer. The second element of a transformer layer is a fully connected feedforward
layer. This sublayer is applied to each position t in the input sequence independently, and consists of
two affine transformations with a pointwise non-linear function in between:

FF(xt) = U σ (Vxt + b) + c, (5)
where σ(x) = max(0, x) is the ReLU activation function; V and U are matrices of dimension d×df
and df × d respectively; b and c are the bias terms. Typically, df is set to be 4 times larger than d.

Add-norm. Both the multi-head self-attention and the feed-forward layer are followed by an add-
norm operation. This transformation is simply a residual connection (He et al., 2016) followed
by layer normalization (Lei Ba et al., 2016). The layer normalization computes the average and
standard deviation of the output activations of a given sublayer and normalizes them accordingly.
This guarantees that the input yt of the following sublayer is well conditioned, i.e., that yT

t 1 = 0 and
yT
t yt =

√
d. More precisely, the AddNorm operation is defined as:

AddNorm(xt) = LayerNorm(xt + Sublayer(xt)), (6)
where Sublayer is either a multi-head self-attention or a feedforward sublayer.
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Transformer layer. The overall transformer layer has the following set of equations:

zt = AddNorm(MultiHead(xt)), (7)
yt = AddNorm(FF(zt)), (8)

where MultiHead is the multi-head self-attention sublayer. This is shown on the left panel of Fig. 1.

4 OUR APPROACH

In this section, we first show that a feedforward sublayer can be viewed as an attention layer. Then, we
take advantage of this interpretation of a feedforward model to concatenate it with the self-attention
layer, forming a novel layer that relies solely on a multi-head attention layer without the need for a
feedforward sublayer.

4.1 FEEDFORWARD SUBLAYER AS AN ATTENTION LAYER

We transform the feedforward sublayer into an attention layer by replacing the ReLU non-linear
function in Eq. 5 by a Softmax function and removing the biases:

yt = USoftmax(Vxt) =

df∑
i=1

atiU∗,i. (9)

Here we use notations U∗,i and Vi,∗ to denote column and row vectors respectively. The activation
ati is thus the attention weight computed with Vi,∗ and xt. The vectors xt, Vi,∗ and U∗,i are
equivalent to the query, key and value vectors respectively. The Eq. 9 is also equivalent to the
self-attention sublayer of Eq. 3-4 with the context vectors kt, vt set to zero and the vectors Vi,∗
and U∗,i are used as key and value side position embeddings respectively. This allows for a similar
implementation for the feedforward and the self-attention sublayers, and opens the possibility of
merging them into a single layer.

4.2 PERSISTENT MEMORY AUGMENTED SELF-ATTENTION LAYER

Here we propose a single attention layer that can replace both self-attention and feedforward layers
in Transformers, which we call all-attention layer. Our layer applies the attention mechanism
simultaneously on the sequence of input vectors, as in the standard self-attention layer, and on a set
of vectors not conditioned on the input. These vectors are added to capture information that does not
depend on the immediate context, like general knowledge about the task. They are shared across the
data and, in some sense, forms a persistent memory similar to the feedforward layer. Therefore we
call them persistent vectors. More precisely, the persistent vectors are a set of N pairs of key-value
vectors, respectively stacked in two dh × N dimensional matrices Mk and Mv. As discussed in
Section 4.1, Mk and Mv can be interpreted as V and U of a feedforward sublayer.

These persistent vectors are simply added to the pool of key and value vectors conditioned on the
input:

[k1, . . . ,kT+N ] = Concat ([Wkx1, . . . ,WkxT ],Mk) , (10)
[v1, . . . ,vT+N ] = Concat ([Wvx1, . . . ,WvxT ],Mv) . (11)

Let us denote by C+
t the concatenation of the context Ct and the indices corresponding to the N

persistent vectors. The similarity score between an element t of the input sequence and an element c
of its extended context C+

t is computed the same way as in Eq. (3), i.e.:

stc = x>t W
>
q

(
kc + p(t, c)

)
, (12)

where the position encoding corresponding to a persistent vector is equal to zero. The all-attention
then outputs a vector yt with the same attention function as in Eq. (4), i.e.,

yt =
∑
c∈C+

t

atc
(
vc + p(t, c)

)
and atc =

exp
(
stc/
√
dh
)∑

i∈C+
t

exp
(
sti/
√
dh
) . (13)
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As with a self-attention sublayer, an all-attention layer can have multiple heads, where outputs from the
different heads are concatenated for each timestep t and multiplied Wo. Note that persistent vectors
are not shared between heads. Our overall layer is then simply this new MultiHeadAllAttn
sublayer followed by the AddNorm operation as defined in Eq. (6), i.e.,

yt = AddNorm (MultiHeadAllAttn(xt)) . (14)

The right panel of Fig. 1 summarize the all-attention layer in the case of a single head: we remove the
feedforward sublayer and add unconditioned persistent vectors to the self-attention sublayer. While
the persistent vectors are directly comparable to a feedforward sublayer in the case of a single head, a
multi-head version is more comparable to multiple small feedforward layers working in parallel. If
there are as many persistent vectors as the ReLU units, an all-attention layer has the same number of
parameters as the standard transformer layer regardless of the number of heads (ignoring bias terms).

Note that using attention mechanism to address unconditioned persistent vectors has been previously
proposed in the context of question answering with knowledge bases (Miller et al., 2016).

4.3 LANGUAGE MODELING

Language modeling is the problem of assigning a probability to a sequence of tokens (w1, . . . , wT ):

P (w1, . . . , wT ) =

T∏
t=1

P (wt | wt−1, . . . , w1).

In this paper, we focus on tokens that are either words or characters. Language modeling has been
dominated by neural networks with models either based on feedforward networks (Bengio et al.,
2003a) or recurrent networks (Mikolov et al., 2010). Recently auto-regressive versions of transformers
have been achieving the best performance on standard benchmarks (Al-Rfou et al., 2019; Dai et al.,
2019; Baevski & Auli, 2019). In this section, we describe several specificities of these models that
we borrow to make our model work on language modeling, especially with a large vocabulary and a
long context.

Relative position embeddings and caching. The relative position embeddings are learnable vec-
tors ui that are encoding the relative positions in the sequence by setting p(t, c) = ut−c in Eq. 3.
They replace the fixed absolute position embeddings of the original transformer to allow these models
to work on unbounded sequences. When the input sequence is processed in small blocks for efficiency,
caching mechanism (Dai et al., 2019) is necessary to ensure that every token t has the same context
length regardless of its position in the block.

Adaptive context size. In adaptive attention span (Sukhbaatar et al., 2019), each attention head
separately learns its context size from data. This allows few heads to have a very long attention span,
while others to focus only on recent past. As a result, it becomes possible to extend the maximum
attention span without increasing memory footprint and computation time significantly. The method
works by multiplying the attention weights in Eq. 4 by a soft-masking function mz(t− r) that maps
values to [0, 1]. The real parameter z ∈ [0, T ] controls how much of the attention stays the same,
and it is learned together with the rest of the model. Since our attention weights in Eq. 13 contain
additional values corresponding to the persistent vectors, we simply pad the masking function with 1
on the locations corresponding to those persistent vectors. This ensures that we only adapt the context
size, while the persistent vectors are always included in the attention.

Adaptive input and output. In word level language modeling, the size of the vocabulary is very
large, making the use of a softmax loss function prohibitive both in terms of running time and memory
footprint. A standard solution to circumvent this issue is to replace the full softmax function by the
adaptive softmax of Grave et al. (2017a). The idea of the adaptive softmax is to split the vocabulary
into disjoint clusters and compare words only within the same cluster. The clusters V1, . . . ,VK are
formed by partitioning the vocabulary V by following word frequency. The most frequent words are
in the first cluster V1 while the least frequent ones are in the last cluster. The size of each cluster is
picked to minimize the overall running time, leading to small clusters of frequent words and large
clusters of infrequent words. Finally, they further reduce the running time and the memory footprint
by adapting the capacity of the classifiers according to their cluster assignment: The words in the k-th
cluster have a classifier that is 4k smaller than the one in the first cluster. The underlying motivation
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is that infrequent words are hard to predict and there is thus no need to use many parameters for them.
The memory footprint of the model is further reduced by tying up the embedding weights with the
classifier weights (Inan et al., 2017; Press & Wolf, 2017). In the case of the adaptive softmax, this
leads to a special form of embeddings called adaptive input (Baevski & Auli, 2019).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

In this section, we describe our hyperparameters choices, our optimization scheme as well as the
details of the datasets we consider.

Implementation details. We initialize token and position embeddings from N (0, 1), and the
matrices Wq,k,v,o from U(−

√
d,
√
d). The position embeddings are shared accross all the heads.

Persistent vectors are reparameterized by ki =
√
dhk

′
i and vi =

√
Nv′i, where the parameters k′i

and v′i are initialized from N (0, 1/dh) and N (0, 1/N) respectively. This way the persistent vectors
have the same unit variance as the context vectors initially, while the underlying parameters k′i and
v′i are initialized similar to the weights of a feedforward sublayer.

For character level language modeling, we set the model dimension to d = 512, and the number of
heads to 8. Our small (large) models have 18 (36) all-attention layers, N = 1024 (2048) persistent
vectors and a dropout rate of 0.3 (0.4) applied to attention weights. The adaptive span has the same
hyperparameters as Sukhbaatar et al. (2019) with a maximum span of 8192, except the loss coefficient
is set to 10−7. We use Adagrad (Duchi et al., 2011) with a learning rate of 0.07. We clip individual
gradients with a norm larger than 0.03 (Pascanu et al., 2013). We warmup the learning rate linearly
for 32k timesteps (Vaswani et al., 2017). A training batch consists of 64 samples, each with 512
consecutive tokens. When the loss on validation stops decreasing, we divide the learning rate by 10
for an additional 20-30k steps. Training large models takes about a day on 64 V100 GPUs.

For word level language modeling, we use a model with d = 512 and 36 layers, each with 8 heads
and 2048 persistent vectors. We use Adam with a learning rate of 0.00025 and 8k warmup steps. The
whole gradient norm is clipped at 1. A batch consists of 64 samples, each with 256 tokens. We use
an adaptive span of 2048 with a loss of 5× 10−7. The dropout rate is set to 0.3 for attention weights,
and 0.1 for input embeddings and the final representation.

Datasets and metrics. For character level language modeling, we consider the enwik8 and
text8 datasets from Mahoney (2011). Both datasets have a training set of 100M tokens and a
vocabulary of 28 and 205 unique characters respectively (including the end-of-sentence token). Both
datasets are made of Wikipedia articles split at the character level. The text8 dataset is preprocessed
by lowering casing and retaining only whitespaces and the letters that are in the ISO basic Latin
alphabet. We report bit per character (bpc) on dev and test sets.

For word level language modeling, we consider the WikiText-103 dataset introduced by Merity
et al. (2017). The training set of WikiText-103 contains around 100M tokens and a vocabulary of
about 260k words. Each word in the vocabulary appears at least 3 times in the training data. The
dataset is made of Wikipedia articles. We report perplexity (ppl) on the dev and test sets.

Dataset specific implementation details. Following Baevski & Auli (2019) on WikiText-103,
we use tied adaptive softmax and adaptive input with 3 clusters of size 20k, 40k and 200k. The
dimensions of the classifiers in each cluster are consecutively divided by 4, leading to the following
dimensions d, d/4 and d/16.

5.2 MAIN RESULTS

We compare our approach to the state of the art on several standard benchmarks on both word level
and character level language modeling.

Character level language modeling. In Table 1, we report the results on enwik8. Our small
model outperforms all other models of similar sizes. Our large model matches the state-of-the-art
performance with significantly fewer parameters. On text8, our small model also matches the best
performing model from Sukhbaatar et al. (2019) as shown in Table 2. Our large model is 0.01 bpc
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Table 1: Comparison with the state of the art on character level language modeling on enwik8. We
report bpc for the test set as well as the number of parameters.

Model #Params test bpc

Small models
Ha et al. (2017) – LN HyperNetworks 27M 1.34
Chung et al. (2017) – LN HM-LSTM 35M 1.32
Zilly et al. (2017) – Recurrent highway networks 46M 1.27
Mujika et al. (2017) – Large FS-LSTM-4 47M 1.25
Krause et al. (2017) – Large mLSTM 46M 1.24
Al-Rfou et al. (2019) – T12 44M 1.11
Dai et al. (2019) – Transformer-XL 41M 1.06
Sukhbaatar et al. (2019) - Transformer + adaptive span 39M 1.02
All-attention network + adaptive span 39M 1.01
Large models
Al-Rfou et al. (2019) – T64 235M 1.06
Dai et al. (2019) – Transformer-XL 18l 88M 1.03
Dai et al. (2019) – Transformer-XL 24l 277M 0.99
Child et al. (2019) – Sparse Transformer (fixed) 95M 0.99
Sukhbaatar et al. (2019) - Transformer + adaptive span 209M 0.98
All-attention network + adaptive span 114M 0.98

Table 2: Comparison with the state of the art on character level language modeling on text8. We
report bpc for the dev and test sets as well as the number of parameters.

Model #Params dev bpc test bpc

Small models
Chung et al. (2017) – LN HM-LSTM 35M - 1.29
Zilly et al. (2017) – Recurrent highway networks 45M - 1.27
Krause et al. (2017) – Large mLSTM 45M - 1.27
Al-Rfou et al. (2019) – T12 44M - 1.18
Sukhbaatar et al. (2019) - Transformer + adaptive span 38M 1.05 1.11
All-attention network + adaptive span 38M 1.05 1.11
Large models
Al-Rfou et al. (2019) – T64 235M 1.06 1.13
Dai et al. (2019) – Transformer-XL 277M - 1.08
Sukhbaatar et al. (2019) - Transformer + adaptive span 209M 1.01 1.07
Transformer + adaptive span 116M 1.02 1.08
All-attention network + adaptive span 114M 1.02 1.08

below the state-of-the-art, but it matches the performance of a “Transformer + adaptive span” baseline
1 of a similar size.

Word level language modeling. In Table 3, we compare the all-attention network with the state of
the art among small models on the WikiText-103 dataset. Our network is 3.4 ppl better than the
previous best, which was a Transformer-XL of a comparable size 2. For completeness, we also report
the state of the art obtained with larger models, that is about 2 perplexity points better than us. In
Appendix A, we show sample attention maps from our model.

5.3 ABLATION STUDY

In this section, we compare different variations of our large model on character level language
modeling on Text8. First, we vary the number of persistent vectors N in each layer as shown in

1This baseline has 22 layers, 512 hidden units and 4096 ReLU units.
2See Appendix B for Transformer baselines trained using the same code and settings as our model.
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Table 3: Comparison with the state of the art on word level language modeling on WikiText-103.
We report perplexity (ppl) for the dev and test sets as well as the number of parameters.

Model #Params dev ppl test ppl

Small models
Grave et al. (2017b) – LSTM - - 48.7
Bai et al. (2018) – TCN - - 45.2
Dauphin et al. (2017) – GCNN-8 - - 44.9
Grave et al. (2017b) – LSTM + Neural cache - - 40.8
Merity et al. (2018) – 4-layer QRNN 151M 32.0 33.0
Rae et al. (2018) – LSTM + Hebbian + Cache - 29.7 29.9
Dai et al. (2019) – Transformer-XL Standard 151M 23.1 24.0
All-attention network + adaptive span 133M 19.7 20.6
Best published result with a large model (Dai et al., 2019) 257M 17.7 18.3
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Figure 2: The performance of our large model on Text8 as we vary (left) the number of persistent
vectors, or (right) the way how persistent vectors integrate with self-attention.

Figure 2(left). The result shows that persistent vectors are crucial for performance, already reaching a
good performance at N = 1024. A model without persistent vectors (i.e. N = 0) is equivalent to a
transformer model without feedforward sublayers, and it performs poorly. This also demonstrates the
importance of feedforward layers in transformer models. However, it maintains decent performances
because it still has a lot of parameters (38M) in the Wq,k,v,o matrices.

We also compare several different ways of integrating persistent vectors into self-attention:

• All-attn: this is our default model presented in Section 4 where persistent vectors are simply
concatenated to context vectors.

• Attn-split: this is the same as “all-attn” except the attention over context and persistent vectors
are computed separately. In other words, we replace the softmax in Eq. 13 with two separate
softmax functions: one for context vectors only and one for persistent vectors only.

• Head-split: this is the same as “all-attn” except we constrain half of the heads to attend only to
context vectors, and the other half to attend only to persistent vectors.

• Single-head: this is the same as “attn-split”, but now persistent vectors are not split into multiple
heads. Instead, each layer has a single set of persistent key-value vectors of a dimension d.

• FF-attn: a Transformer model where the ReLU of feedforward sublayers is replaced with a
Softmax function as discussed in Section 4.1. This is the same as “single-head” above except
persistent vectors are kept as a separate sublayer that comes after a self-attention sublayer. Since
this will double the depth of a model, we decrease the number of layers to 24 and increase the
feedforward size to 3072 to maintain the number of parameters same.

Note that all those versions have the same number of parameters except “head-split”, which has fewer
parameters because half of its persistent vectors are not used. The result is shown in Figure 2(right).
There are few things to notice: (i) “all-attn” outperforms “attn-split”, which indicates that there is a
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benefit in computing attention jointly over persistent and context vectors; (ii) “single-head” is worse
than “attn-split”, which means persistent vectors with more heads are better; and (iii) dividing the
heads into context-only and persistent-only groups does not work well; and (iv) “FF-attn” does not
work as good as “all-attn” which means the switch from ReLU to Softmax alone is not sufficient.

6 CONCLUSION

In this paper, we propose a novel attention layer that presents a unified mechanism to aggregate
general and contextual information. It extends the self-attention layer of a transformer with a set of
persistent vectors that are capable of storing information that is complementary to the short term
information in contexts. We also show that these persistent vectors can replace the feedforward layers
in a transformer network with no loss of performance. We think that this simplified layer can help
better understand how information is processed and stored in transformer-like sequence models.
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A ATTENTION MAPS

Figure 3: Sample attention maps from our model that trained on the WikiText-103 dataset. The 4
plots correspond to 4 different attention heads in the model. The Y -axis is different samples from a
short sequence, and the X-axis shows all the vectors in the attention. The first 2048 vectors come
from the context, and the remaining 2048 are persistent vectors. In the top 2 heads, few persistent
vectors are dominating the attention, although the 2nd head has some attention weights in the context
part as well. The 3rd head has more diverse activations on the persistent vectors, while also attending
to very recent context. The last head is mostly attending to about last 500 tokens in the context, but
there are some activations in the persistent vectors.
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B BASELINE TRAINING

We trained baseline Transformer models on the WikiText-103 dataset using the same code and
settings as our model to check if some of the training details (e.g. weight initialization, position
embeddings, adaptive span, etc.)̇ affected our result in Table 3. We considered two baselines with
roughtly the same number of parameters as our model: 1) a 22-layer model with a hidden size of 512
and a feedforward layer size of 4096; 2) a 36-layer model with a hidden size of 512 and a feedforward
layer size of 2048. The 22-layer model is more comparable to our model because it has a similar
number of nonlinear layers as our model, while 36-layer has twice as much non-linear layers as
our model. The training of those models are plotted in Figure 4 against our model (excluding the
finetuning part). As we can see, the training of the 36-layer model has diverged early in the training,
which is not surprising as such deep Transformer models are known to be unstable during training.
The same thing happenned to the 22-layer model but near the end of its training. However, it is almost
certain that its final performance would have been worse than our model even if its training did not
diverge.

Figure 4: Training of baseline Transformer models on WikiText-103 dataset.
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