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ABSTRACT

Normalising Flows (NFs) are a class of likelihood-based generative models that
have recently gained popularity. They are based on the idea of transforming a
simple density into that of the data. We seek to better understand this class of
models, and how they compare to previously proposed techniques for generative
modeling and unsupervised representation learning. For this purpose we reinterpret
NFs in the framework of Variational Autoencoders (VAEs), and present a new
form of VAE that generalises normalising flows. The new generalised model
also reveals a close connection to denoising autoencoders, and we therefore call
our model the Variational Denoising Autoencoder (VDAE). Using our unified
model, we systematically examine the model space between flows, variational
autoencoders, and denoising autoencoders, in a set of preliminary experiments
on the MNIST handwritten digits. The experiments shed light on the modeling
assumptions implicit in these models, and they suggest multiple new directions for
future research in this space.

1 INTRODUCTION AND BACKGROUND

Unsupervised learning offers the promise of leveraging unlabeled data to learn representations useful
for downstream tasks when labeled data is scarce (van den Oord et al., 2017b), or even to generate
novel data in domains where it is costly to obtain (Ha & Schmidhuber, 2018). Generative models are
particularly appealing for this as they provide a statistical model of the data, x, usually in the form of
a joint probability density p (x). The model’s density function, its samples and representations can
then be leveraged in applications ranging from semi-supervised learning (Kingma et al., 2014) and
speech and (conditional) image synthesis (van den Oord et al., 2016a; Ledig et al., 2017; Guadarrama
et al., 2017; Kingma & Dhariwal, 2018) to gene expression analysis (Grønbech et al., 2019) and
molecule design (Gómez-Bombarelli et al., 2018).

In practice, data x is often high-dimensional and the optimization associated with learning p (x) can
be challenging due to an abundance of local minima (Sønderby et al., 2016) and difficulty in sampling
from rich high-dimensional distributions (Murray & Salakhutdinov, 2009). Despite this, generative
modelling has undergone a surge of advancements with recent developments in likelihood-based
models (Kingma & Welling, 2013; Rezende et al., 2014; Dinh et al., 2014; van den Oord et al.,
2016a) and Generative Adversarial Networks (GANs; Goodfellow et al. (2014)). The former class is
particularly attractive, as it offers (approximate) likelihood evaluation and the ability to train models
using likelihood maximisation, as well as interpretable latent representations.

Autoencoders have a rich history in the unsupervised learning literature owing to their intuitive
and simple construction for learning complex latent representations of data. Through fitting a
parameterised mapping from the data through a lower dimensional or otherwise constrained layer
back to the same data, the model learns to summarise the data in a compact latent representation.
Many variants of autoencoders have been proposed to encourage the model to better encode the
underlying structure of the data though regularising or otherwise constraining the model (e.g., Rifai
et al., 2011; Alain & Bengio, 2013; Arpit et al., 2016).
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Denoising Autoencoders (DAEs) are a variant of the autoencoder under which noise is added to the
input data that the model must then output noise-free, i.e. x = fθ(x + ε) where ε is sampled from a,
possibly structured Vincent et al. (2008; 2010), noise distribution ε ∼ q(ε). They are inspired by the
idea that a good representation z would be robust to noise corrupting the data x and that adding noise
would discourage the model from simply learning the identity mapping. Although DAEs have been
cast as generative models (Bengio et al., 2013), sampling and computing likelihoods under the model
remains challenging.

Variational Autoencoders (VAEs) instead assume a probabilistic latent variable model, in which
n-dimensional data x correspond to m-dimensional latent representations z following some tractable
prior distribution, i.e. x ∼ pφ (x|z) with z ∼ p (z) (Kingma & Welling, 2013). The task is then to
learn parameters φ, which requires maximising the log marginal likelihood

log p (x) = log

∫
pφ (x|z) p (z) dz. (1)

In the majority of practical cases (e.g. pφ (x|z) taken to be a flexible neural network-conditional
distribution) the above integral is intractable. A variational lower bound on the marginal likelihood is
constructed using a variational approximation qθ (z|x) to the unknown posterior p (z|x):

log p (x) ≥ Eqθ(z|x) [log pφ (x|z)]−KL [qθ (z|x) ||p (z)] (2)

The right-hand side of (2), denoted L (θ, φ), is known as the evidence lower bound (ELBO). It can be
jointly optimised with stochastic optimisation w.r.t. parameters θ and φ in place of (1).

Conditionals qθ (z|x) and pφ (x|z) can be viewed respectively as probabilistically encoding data x in
the latent space, and reconstructing it from samples of this encoding. The first term of the ELBO
encourages good reconstructions, whereas the second term encourages the model’s latent variables to
be distributed according to the prior p (z). Generating new data using this model is accomplished by
reconstructing samples from the prior.

Normalising Flows (NFs) suppose that the sought distribution p (x) can be obtained by warping a
simple base density p (z), e.g. a normal distribution (Rezende & Mohamed, 2015). They make use of
the change of variables formula to obtain p (x) through a learned invertible transformation z = fθ (x)
as

log pθ (x) = log p (z) + log

∣∣∣∣det

(
∂fθ (x)

∂x

)∣∣∣∣ . (3)

Typically, fθ : Rn → Rn is obtained by stacking several simpler mappings, i.e. fθ = f1θ ◦ . . . ◦ fLθ
and the log-determinant obtained as the sum of log-determinants of these mappings.

This formulation allows for exact maximum likelihood learning, but requires fθ to be invertible
and to have a tractable inverse and Jacobian determinant. This restricts the flexibility of known
transformations that can be used in NFs (Dinh et al., 2014; 2016; Behrmann et al., 2018) and leads to
large and computationally intensive models in practice (Kingma & Dhariwal, 2018).

NFs can also be thought of as VAEs with encoder and decoder modelled as Dirac deltas pθ (x|z) =
δ (fθ (z)) and qθ (z|x) = δ

(
f−1θ (x)

)
, constructed using a restricted set of transformations. Further-

more, because NFs model continuous density, to prevent trivial solutions with infinite point densities
discrete data must be dequantised by adding random noise (Uria et al., 2013; Theis et al., 2015).

The contribution of this work is two-fold. First, we shed new light on the relationship between
DAEs, VAEs and NFs, and discuss the pros and cons of these model classes. Then, we also introduce
several extensions of these models, which we collectively refer to as the Variational Denoising
Autoencoders (VDAEs).

In the most general form VDAEs generalise NFs and DAEs to discrete data and learned noise
distributions. However, when the amount of injected noise is small, VDAE attains a form that allows
for using non-invertible transformations (e.g. fθ : Rn → Rm, with m � n). We demonstrate
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these theoretical advantages through preliminary experimental results on the binary and continuous
versions of the MNIST dataset.

2 A VAE THAT GENERALISES NF AND DAE

We model data x, a n dimensional vector that can have either continuous or discrete support. As
is customary for VAEs, our model for x is hierarchical and assumes a set of latent variables z with
tractable prior distribution p(z), and a flexible neural-network conditional distribution p(x|z). On
top of this standard VAE setup, we specify the dimension of z to equal the dimension of the data x.
In order to form the variational lower bound to train this model, we need an approximate inference
model, or encoder, qθ (z|x). Here, we will use an encoder that samples the latents z as

ε ∼ q (ε) , x̃ = x + ε, z = fθ(x̃), (4)

where q (ε) is a tractable noise distribution and fθ(x̃) is a one-to-one transformation with tractable
Jacobian-determinant. In order to use the encoder qθ (z|x) implied by this procedure, we not only
need to sample from it, but we must also evaluate its entropy for the KL-term in (2). To do this we
make use of the fact that z is a one-to-one transformation of the noise ε, given the training data x.
Using the standard formulas for a change of variables, we thus get the following expression for the
entropy of qθ (z|x):

H [qθ (z|x)] = H [q (ε)] +Eε log

∣∣∣∣det

(
∂fθ (x + ε)

∂ε

)∣∣∣∣ = H [q (ε)] +Eq(x̃|x) log

∣∣∣∣det

(
∂fθ (x̃)

∂x̃

)∣∣∣∣ ,
where q (x̃|x) is a distribution whose sampling process is described in (4). Our variational lower
bound (2) on the data log marginal likelihood then becomes

log p(x) ≥ H [q (ε)] + Eε

[
log p(z) + log p(x|z) + log

∣∣∣∣det

(
∂fθ (x̃)

∂x̃

)∣∣∣∣] , (5)

where again x̃ = x + ε and z = fθ(x̃).

This is similar to a denoising autoencoder in that we try to reconstruct the original data x from
the corrupted data x̃ through the conditional model p(x|z). The difference with classical denoising
autoencoders is that our objective has additional terms that regularise our latent representations z
to be distributed according to a prior distribution p(z). In addition, the proposed setup allows us to
learn the noise distribution q(ε), where this is treated as a fixed hyperparameter in the literature on
denoising autoencoders.

This model is also a generalisation of normalising flows. Specifically, consider the special case
where we take

q (ε) = N
(
0, σ2In

)
p(x|z) = N

(
f−1θ (z), σ2In

)
(6)

σ2 → 0

then the lower bound in (5) becomes the standard normalising flow log-likelihood (3). We provide a
detailed derivation in Appendix A.

The advantage of our generalised model over standard normalising flows is that our model allows for
non-zero noise level σ2. Interestingly, successful applications of normalising flows in the literature
often already add a significant amount of noise in order to dequantise the data, and empirical results
suggest higher amounts of noise lead to models that produce better-looking samples (e.g. Kingma &
Dhariwal (2018) model only the top 5 bits of the data).
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In addition, our model does not require tying the parameters of the encoder and decoder. Although
we are still using a flow-based encoder qθ (z|x), our decoder is not restricted to a specific functional
form. The conditional distribution p(x|z) can e.g. have discrete support if the data x is discrete,
making our model naturally applicable to data such as text or other highly-structured data, without
requiring an explicit dequantisation step. When adding a significant amount of noise, a decoupled
decoder will generally be able to achieve a higher variational lower bound compared to using the
tied-parameter decoder (6).

3 GENERALISING TO NON-INVERTIBLE ENCODERS

The VAE we proposed in Section 2 is more general than NFs, but it still requires an invertible
one-to-one encoder with tractable Jacobian-determinant. This restricts our modeling choices since
all transformations used in the encoder can only be chosen from a small set of transformations for
which we know how to compute inverses and Jacobian-determinants. Additionally, the representation
given by our encoder will be of the same dimension as our data x, which may not be optimal for
all applications (e.g. model-based reinforcement learning (Ha & Schmidhuber, 2018; Hafner et al.,
2018) or compression (Ballé et al., 2018)). To relax these restrictions further we generalise our model
to allow non-invertible encoders as well.

We proceed by taking our model from Section 2, with x̃ = x + ε and z = fθ(x̃), and performing a
Taylor expansion of the resulting latent variables z(x, ε) around ε = 0 (see Appendix B). This gives

z = fθ (x) + Jε+O(ε2),

where J ≡ ∂fθ(x)
∂x is the Jacobian of fθ.

For small noise levels, as used in Section 2, the O(ε2) term becomes negligible. If the noise
distribution is Gaussian, i.e. q (ε) = N

(
0, σ2In

)
, this means that for small σ we get

qθ (z|x) = N
(
fθ (x) , σ2JJT

)
. (7)

Using this form of encoder qθ (z|x), together with general prior p(z) and conditional distribution
p(x|z), we get a VAE that still generalises NFs but now also allows us to choose non-invertible
non-one-to-one transformations fθ. We refer to this even broader class of VAE as L-VDAE, for
Linearised-VDAE.

3.1 LOG-DETERMINANT COMPUTATION

Evaluating the entropy H [qθ (z|x)] in this case requires computing the log-determinant of the
covariance matrix C = JJT for the data x:

H [qθ (z|x)] =
1

2
[m log 2π +m+ log det C] , (8)

where m is the dimensionality of z. When using transformations fθ without a tractable Jacobian
(e.g. the general Residual Network (ResNet; He et al. (2016)) blocks), we explicitly evaluate C
and compute log det C =

∑m
i log λi, where the eigenvalues λi are obtained using the eigenvalue

decomposition C = QΛQT with Λ = diag (λi|i = 1, . . . ,m). The decomposition is further re-used
in the backward pass when evaluating the derivative of the log-determinant using Jacobi’s formula:
d
dC log det C = QΛ−1QT .

Evaluation of the Jacobian J can be done by performing reverse-mode automatic differentiation with
respect to each element of z, thus incurs a factor of m additional computational cost. Covariance
matrix C is obtained using a single matrix multiplication and takes O

(
m2n

)
operations with the

eigenvalue decomposition taking another O
(
m3
)

operations.

Taken together, evaluation of (8) takes O
(
m2n

)
operations, which is comparable to the O

(
d3
)

cost
of Glow’s 1x1 invertible convolutions in later layers (i.e. after repeating the use of the multi-scale
architecture from Dinh et al. (2016) that trades spatial dimensions for channels), where d refers to
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the number of channels used in the convolution. This computational cost is permissive for small
latent space dimensionalities m. However, scaling up L-VDAE to larger latent spaces would require
stochastic approximations of the log-determinant (Han et al., 2015; 2018). These approximations can
be implemented efficiently through Jacobian-vector and vector-Jacobian products, without evaluating
C or J explicitly, and can be optimised directly by backpropagating through the approximation. With
this approach computational complexity will be linear in n subject to some regularity conditions.

3.2 SAMPLING FROM THE VARIATIONAL POSTERIOR

Sampling from the Gaussian variational posterior qφ is necessary for training and inference in L-
VDAE. It can be accomplished using the standard reparameterisation trick (Kingma & Welling,
2013), where random normal noise ω ∼ N (0, In) is transformed into the posterior sample as
z = fθ (x) + Jω. We implement this as a Jacobian-vector product, which enables efficient sampling
for cases when the Jacobian log-determinant of fθ is cheaper to evaluate than the Jacobian itself (e.g.
when fθ is a flow).

4 RELATED WORK

VDAE blends ideas from the VAE and NFs literature and is closely related to both model families. It
is most similar to methods that combined variational inference and NFs by using the latter as part of
the approximate variational posterior (Rezende & Mohamed, 2015; Kingma et al., 2016b; van den
Berg et al., 2018). These methods use a strategy in which samples from the (Gaussian) posterior are
further transformed with a NF, whereas in VDAE the posterior distribution is implicitly defined using
a sampling procedure inspired by DAE, where posterior samples are obtained by transforming data
with added noise using NFs.

VDAE is a natural formulation of DAEs as probabilistic models. It is conceptually similar to the
Denoising VAEs (Im et al., 2017), which propose an alternative probabilistic formulation of DAEs
as VAEs. The method of Im et al., however, does not generalise NFs and, in contrast to VDAE, it
requires explicitly choosing the type and amount of corruption noise.

The idea of challenging the default choice of using uniform noise for dequantisation in NFs was also
explored in Flow++ (Ho et al., 2019), where the authors learned a flexible conditional noise model
q (ε|x) as NF itself. Our sampling procedure (4) is similar to dequantisation in Flow++, as it can be
viewed as a result of applying a NF to dequantisation given by an implicitly conditioned noise model.
The main differences, however, are that in VDAE the decoder reconstructs the original (quantised)
data, which is also what makes our model applicable to highly-structured data; and, in contrast to
Flow++, VDAE can inject substancially more noise than a single dequantisation bin.

In relation to VAEs, the linearised form of VDAE can be viewed as an extension of the vanilla VAE
(Kingma & Welling, 2013) that replaces the diagonal Gaussian posterior with a Jacobian-based full
covariance posterior. It is thus similar to methods that extend VAE with more flexible prior (e.g.
autoregressive (Chen et al., 2016) or mixture (Tomczak & Welling, 2017)) or variational posterior
(e.g. full covariance Gaussian (Kingma et al., 2016a) or mixture (Nalisnick et al., 2016; Miller et al.,
2017)) distributions. Notably, unlike some of these methods, L-VDAE does not increase the number
of parameters of the inference or generative networks.

As a method that increases flexibility of transformations in NFs, L-VDAE with non-invertible encoders
can be compared to Invertible Residual Networks (i-ResNets; Behrmann et al. (2018)) and FFJORD
(Grathwohl et al., 2018). These methods too depart from the requirement of restricting the form of
the Jacobian of the resulting transformation. Both, i-ResNets and FFJORD also drop the requirement
of having an analytical inverse, which is similar to how VDAE seeks to learn an approximate inverse
using its decoder network. However, unlike VDAE, these methods guarantee invertibility and provide
ways of computing the exact inverse. Notably, the methods differ considerably in how they achieve
the above generalisations.

In i-ResNets Behrmann et al. make use of the ResNet network architecture (He et al., 2016) and
identify conditions on the eigenvalues of the residual blocks, under which they parameterise invertible
mappings. They then make use of spectral normalisation (Miyato et al., 2018) to guarantee that the
condition is satisfied throughout training; and employ fixed point iteration to invert the residual blocks

5



Published as a workshop paper at ICLR 2019

Table 1: Model test performance comparison on continuous MNIST (in bits per dimension; lower is
better).

LATENTS METHOD NLL -ELBO

16 VAE 6.55 6.63
L-VDAE 6.53 6.62

32 VAE 6.15 6.25
L-VDAE 6.10 6.22

64 VAE 5.78 5.89
L-VDAE 5.74 5.86

128 VAE 5.49 5.66
L-VDAE 5.40 5.58

28× 28 L-VDAE * 5.76 6.18
VDAE: RESNET 5.74 6.19

28× 28 NICE ** 4.18 -
NICE 4.36 -
REALNVP 1.06 -
GLOW 1.05 -
FFJORD 0.99 -
I-RESNET 1.06 -

∗ Using a NICE flow for the variational posterior.
∗∗ Results based on our implementation.

for generation. i-ResNets further lift the restriction on the form of the Jacobian in a computationally
tractable way by using Taylor series expansion in conjunction with stochastic trace estimation
(Hutchinson, 1990).

FFJORD (Grathwohl et al., 2018) is inspired by the re-interpretation of ResNets and NFs as discrete
approximations of solutions to the initial value problem of some underlying ODE continuously trans-
forming data x (from data-space to the latent z-space; Chen et al. (2018)). Grathwohl et al. (2018);
Chen et al. (2018) parameterise this ODE as a neural network fθ (z (t) , t) to obtain Continuous-time
Normalising Flows (CNFs), in which the change in log-density at time t is given by the instantaneous
change of variables formula

∂ log pθ (z (t))

∂t
= −Tr

[
∂fθ (z (t) , t)

∂z (t)

]
. (9)

The right-hand side of (9) is given by the trace of the Jacobian of transformation fθ instead of the
log-determinant as in NFs. Combined with the use of stochastic trace estimation (Hutchinson, 1990),
this difference alleviates the need to restrict transformations fθ to those with a tractable Jacobian
log-determinant. However, the use of ODEs also necessitates employing an ODE solver to integrate
(9) for every evaluation of, and backpropagation through log pθ (z (t)). The number of function
evaluations required for this increases with training and may become prohibitively large (Grathwohl
et al., 2018).

Finally, VDAE is loosely related to autoregressive generative models, as they both fall into the
class of likelihood-based generative models. Autoregressive models factorise likelihood of high-
dimensional data as a product of simple per-dimension conditional distributions, i.e. p (x) =∏
i p (xi|x0, . . . , xi−1) (van den Oord et al., 2016a;b). Factorised structure of these models necessi-

tates sequential sampling, and a good choice of the ordering of dimensions of x. Overcoming these
challenges in practice often requires highly engineered solutions, for example as in van den Oord
et al. (2017a) or Menick & Kalchbrenner (2018). Furthermore, data representations formed by hidden
layers of autoregressive models appear to be more challenging to manipulate than in VAEs or NFs
(Kingma & Dhariwal, 2018).
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Figure 1: Test set negative ELBO in bits per dimension (lower is better) on continuous MNIST
shown as a function of fixed noise level log σ for VDAE.

Table 2: Model test performance comparison on dynamic binary MNIST data (in nats; lower is
better).

LATENTS METHOD NLL -ELBO

16 VAE 83.46± 0.18 87.17± 0.20
L-VDAE 82.68± 0.14 86.07± 0.15

32 VAE 82.96± 0.16 86.47± 0.23
L-VDAE 81.54± 0.24 84.81± 0.24

64 VAE 82.77± 0.20 86.41± 0.28
L-VDAE 81.49± 0.21 84.92± 0.25

128 VAE 82.99± 0.19 86.73± 0.26
L-VDAE 81.82± 0.18 85.39± 0.23

28× 28 L-VDAE * 96.47± 0.23 116.94± 0.37
VDAE:
RESNET

92.03± 0.28 110.00± 0.36

∗ Using a NICE flow for the variational posterior.

5 EXPERIMENTS

We performed empirical studies of the performance of VDAE on the image generation task on
the MNIST dataset (LeCun, 1998), comparing it to a VAE implementation with a fully factorised
Gaussian posterior and to the NICE (Dinh et al., 2014) normalising flow as baselines.

For the VDAE encoder we used additive couplings to construct fθ from the implicit variational
posterior; and, unless otherwise specified, fully-connected ResNet blocks followed by a sigmoid
transformation to obtain the decoder parameters µφ and pφ. A Gaussian distributionN (µφ (z) , λIn)
with a learned parameter λ was used for the continuous MNIST decoder; and Bernoulli (pφ (z)) for
binary MNIST.

Similarly, unless otherwise specified, ResNet blocks with linear projection layers to change dimen-
sionality were used for the L-VDAE encoder and decoder. Details of the chosen architectures can be
found in Appendix D.

5.1 CONTINUOUS MNIST

To model discrete 8-bit pixel values with continuous density models, we followed the procedure of
Uria et al. (2013) to dequantise the data, and added noise u ∼ U (0, 1) to the pixel values prior to
normalising them to [0, 1]. Note that for VDAE this was done prior and in addition to adding noise ε
from the posterior sampling procedure (4) to the inputs.

Decoupled encoder and decoder We start by confirming for a range of noise levels and archi-
tectures that de-coupling the encoder and decoder networks in VDAE allows for achieving higher
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Figure 2: Samples from our models trained on the binary MNIST dataset; samples from the dataset
are provided for reference (top row).

ELBOs. Figure 1 compares ELBO attained by VDAE with Gaussian noise q (ε) = N
(
0, σ2I

)
for

a range of fixed σ. The results show that any decoupling of the weights improves over the coupled
network, in which the NICE flow is used in the encoder and its inverse - in the decoder. Specifically,
we observe that for architectures with a sigmoid activation in the last layer of the decoder, the ELBO
rapidly improves with decreasing noise levels. Based on these results, in the following experiments
we only consider the more general ResNet architecture in the VDAE decoder.

We report average test set performance over 10 training runs; when sufficiently large, standard
deviations are also given. Qualitative samples are drawn from models with the best test ELBO among
the training runs. NLL was estimated via 5000 importance samples as in Rezende et al. (2014).

Quantitative results We now consider the cases when i) noise variance σ2, in case of VDAE; or ii)
in case of L-VDAE, the covariance scale σ from (7); are optimised together with the model. Results
of these experiments are shown in Table 1. For ease of presentation, we also include evaluation results
for existing flow models (reproduced from Behrmann et al. (2018)).

We first note that for cases when the latent dimensionality is smaller than the input space (i.e. m < n),
L-VDAE consistently outperforms the VAE baseline in terms of the achieved ELBO, albeit by a small
margin. This is consistent with L-VDAE having a more powerful variational posterior. Moreover,
for L-VDAE increasing the dimensionality of the latent space consistently improves the variational
lower bound. Surprisingly, L-VDAE with n = m and VDAE break this trend and do not improve on
the ELBOs obtained for m = 128. We also note that neither of our proposed extensions manage to
achieve likelihoods comparable to NFs, including the NICE baseline.

Both shortcomings could be explained by the difference in architectures between the methods. In
contrast to the L-VDAE with m = n, which employs a NICE flow in the encoder, L-VDAE with
m < n makes use of the more expressive ResNet blocks. Similarly, the flexibility of the NICE flow
used in VDAE for the implicit posterior may be insufficient for a denoising VAE. We also observe
that when using a NICE flow in the decoder, VDAE outperforms L-VDAE in terms of likelihood,
signalling that the VDAE approach can further improve on the linearised models, if combined with a
more powerful flow.

Qualitative results We found that without additional regularisation, such as fixing the decoder
variance λ2 or the noise variance σ2 to values larger than what would have been learned by the model,
or assigning a higher weight to the KL-term in the optimisation objective, our models would not
produce high-quality samples for the continuous MNIST dataset. We thus omit continuous MNIST
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model samples from the main text, but explore the effect of fixing the noise variance on sample
quality in Appendix E.

5.2 BINARY MNIST

To explore the applicability of VDAE to structured data, we applied it to the binarised version of
the MNIST dataset. As is customary for dynamic MNIST, digits were binarised by sampling from a
Bernoulli distribution given by the pixel intensities. Results in Table 2 mirror those we observed on
the continuous MNIST, namely L-VDAE consistently achieves higher ELBO than the VAE baseline,
which tends to improve as the latent dimensionality grows; and L-VDAE and VDAE, which make
use of NICE in the decoder, attain significantly worse likelihood despite the increased dimensionality.
Finally, VDAE also improves on L-VDAE with a NICE encoder.

However, as shown in Figure 2, and in contrast to the continuous MNIST results, all our models
produce plausible handwritten digit samples.

6 CONCLUSION AND FUTURE WORK

We introduced Variational Denoising Autoencoders (VDAEs), a family of models the bridges the
gap between VAEs, NFs and DAEs. Our model extends NFs to discrete data and non-invertible
encoders that use lower-dimensional latent representations. Preliminary experiments on the MNIST
handwritten digits demonstrate that our model can be successfully applied to data with discrete
support, attaining competitive likelihoods and generating plausible digit samples. We also identified
a failure mode of our models, in which their performance does not scale well to cases when latent
and input dimensionalities are the same (i.e. when a flow-based encoder is used).

Future work should address limitations of the method identified in our experiments. In particular,
replacing additive coupling blocks with the more powerful invertible convolutions, affine coupling
blocks and invertible residual blocks (Dinh et al., 2016; Kingma & Dhariwal, 2018; Behrmann
et al., 2018) can significantly improve the variational posterior for high dimensions. It can also be
interesting to explicitly condition the transformation fθ used for defining the posterior sampling
procedure on the data x, for example by defining fθ (x, ε) ≡ fx,θ (ε) using a hyper-network (Ha
et al., 2016).

REFERENCES

Guillaume Alain and Yoshua Bengio. What regularized auto-encoders learn from the data generating
distribution. In International Conference on Learning Representations, 2013.

Devansh Arpit, Yingbo Zhou, Hung Ngo, and Venu Govindaraju. Why regularized auto-encoders
learn sparse representation? In International Conference on Machine Learning, 2016.
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A VDAE IS A GENERALISATION OF NORMALISING FLOWS

For convenience we start by repeating the variational lower bound for our VDAE model, as presented
in Section 2:

log p(x) ≥ H[q(ε)] + Eε

[
log p(z) + log p(x|z) + log

∣∣∣∣det

(
∂fθ (x̃)

∂x̃

)∣∣∣∣] ,
where ε ∼ q(ε), x̃ = x + ε and z = fθ(x̃).

We then examine the special case where we choose q (ε) = N
(
0, σ2In

)
and p(x|z) =

N
(
f−1θ (z), σ2In

)
. Plugging in these choices in the lower bound gives:

log p(x) ≥n(log(2πσ) +
1

2
)

+Eε

[
log p(z)− n log(2πσ)− 1

2σ2
(x− f−1θ (z))T (x− f−1θ (z)) + log

∣∣∣∣det

(
∂fθ (x̃)

∂x̃

)∣∣∣∣]
=
n

2
+ Eε

[
log p(z)− 1

2σ2
εT ε+ log

∣∣∣∣det

(
∂fθ (x̃)

∂x̃

)∣∣∣∣]
=Eε

[
log p(z) + log

∣∣∣∣det

(
∂fθ (x̃)

∂x̃

)∣∣∣∣] .
If we now let the noise level go to zero, σ → 0, we will get that x̃→ x, z→ fθ(x), which leaves us
with

log p(x) = log p(z) + log

∣∣∣∣det

(
∂fθ (x)

∂x

)∣∣∣∣ ,
where the bound thus becomes tight as the noise level is decreased to zero. This is the usual log
likelihood for normalising flow models.

B VDAE APPROXIMATE POSTERIOR FOR SMALL NOISE LEVEL

For our VDAE model, as specified in Section 2, we defined x̃ = x + ε and z = fθ(x̃). Our sampled
latents z(x̃) = z(x, ε) are thus a function of both the original uncorrupted data x as well as the added
noise ε. To gain further insight into the approximate posterior distribution qθ (z|x) this implies, we
perform a Taylor expansion of z(x, ε) around ε = 0 which gives

z = fθ (x) + Jε+O(ε2),

where J ≡ ∂fθ(x)
∂x is the Jacobian matrix of fθ (x). If the scale of the noise becomes very small,

the O(ε2) term becomes negligible and we thus have z ≈ fθ (x) + Jε. If we further specify the
noise to be Gaussian, q (ε) = N

(
0, σ2In

)
, like we did in the last section to show equivalence with

normalising flows, we then have that

lim
σ→0

qθ (z|x) = N
(
fθ (x) , σ2JJT

)
.

Using this form of approximate posterior in combination with p(x|z) = N
(
f−1θ (z), σ2In

)
, as in the

last section, then makes our variational lower bound equivalent to the standard log-likelihood for
normalising flows.

In order to better understand the relationship between normalising flows and VAEs we experiment
with using qθ (z|x) = N

(
fθ (x) , σ2JJT

)
as our approximate posterior in various models. Here we

also make use of the freedom the VAE perspective gives us to reduce the dimension of z as compared
to the data x.

C MODEL INITIALISATION

Residual blocks are initialised to be invertible by reducing them to identity mappings. For each
residual block y = x + ReLU (ReLU (. . .ReLU (xW1) . . .) WL−1) WL with x,y ∈ R1×n and

13



Published as a workshop paper at ICLR 2019

Wi ∈ Rn×n we zero-out all elements of WL. The same scheme was employed for initialising
additive coupling blocks, which can be viewed as residual blocks of a restricted form.

Projection layers reduce dimensionality of their inputs using a linear map y = xW with x ∈ R1×n,
y ∈ R1×m and W ∈ Rn×m. This generally leads to loss of information and makes model training
harder. To mitigate this effect we initialise the rows of W using a set of m random orthogonal vectors.
The decoder projection layers, mapping data to higher dimensions, are then initialised to WT .

D HYPER-PARAMETERS AND ARCHITECTURES

All models were trained for 1000 epochs using the ADAM optimiser (Kingma & Ba, 2014) with a
batch size of 1000 samples. To improve stability of the training, the learning rate was warmed up
from 10−5 to the chosen learning rate (see below) over the first 10 epochs. Further, the KL term was
warmed up by linearly annealing its weight β from 0 to 1 over the first 100 epochs (Bowman et al.,
2015).

For each experiment, the learning rate schedule S ∈ {linear, none}, learning rate α ∈
(
10−5, 10−3

)
and ADAM optimiser parameters β2 ∈ {0.9, 0.99, 0.999, 0.9999} and ε ∈

{
10−4, 10−5, 10−8

}
were determined by using Bayesian optimisation of the ELBO on the validation set.

NICE When implementing the model (standalone, or part of VDAE), we closely followed the
architecture and hyper-parameters described in Dinh et al. (2014). Namely, the network consisted
of 4 additive coupling blocks, each with 5 fully-connected hidden layers of size 1024 with ReLU
activations, followed by a linear layer (see Appendix C). Dimension partitioning was alternated
between even and odd dimensions after every block. When used as a standalone model, a L2

regularisation with weight λ = 0.01 was used to improve sample quality.

L-VDAE and vanilla VAE When not used in conjunction with a NICE model in the encoder, the
L-VDAE and VAE models employed a fully-connected ResNet architecture with B consecutive
residual blocks followed by a linear projection layer to higher or lower dimensions. In the encoder,
the last projection layer parameterised the means of the Gaussian variational posterior (and, in case of
VAE, a parallel projection layer parameterised the log-variances). A sequence of 4 residual-projection
“blocks” was used with the last block i = 4 projecting to m dimensions (dimensionality of the latents)
and the blocks before it, respectively to min

[
2i ·m, 28× 28

]
dimensions. Each residual block

consisted of 2 hidden layers with ReLU activations followed by a linear layer (see Appendix C). The
residual block hidden size H ∈ {32, 64, 128, 256, 1024} and the block multiplicity B ∈ {1, 2, 3}
were chosen through Bayesian optimisation as described above.

Unless otherwise specified, when used together with a NICE model, the VDAE and L-VDAE models
employed a ResNet architecture in the decoder. In this case, the ResNet architecture was chosen to
closely resemble that of the NICE model. Specifically, hyper-parameter values B = 1 and H = 1024
were used, and no projection layers were employed.

Priors We employed a logistic prior with s = 1 and µ = 0 (as in Dinh et al. (2014)) for models
that made use of the NICE flow (even if it was only used in the encoder network); and a factorised
normal prior otherwise.

E ADDITIONAL SAMPLES

Figure 3: Samples from the VDAE model trained on the continuous MNIST data with different
learned noise levels log σ. Provided as a reference for samples obtained from models with fixed
noise levels (Figure 4).
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